Categorizing variants after whole genome sequencing:

Implementation of "binning" -- a structured algorithm for the identification of clinically relevant incidental findings

Jonathan S. Berg, MD/PhD

Department of Genetics Lineberger Comprehensive Cancer Center Carolina Center for Genome Sciences The University of North Carolina at Chapel Hill Implementation of a next-generation clinical diagnostic test

- How do we find the clinically relevant variants?
 - PGx variants / common SNPs are easy, just a (somewhat difficult) question of which ones to use
 - Rare disease causing mutations are a challenge
- Three "sweeps" through the data:
 - 1. Diagnostic results (max. sensitivity)
 - 2. Incidental findings (max. specificity)
 - 3. Research (long-term analyses)

Context matters!

- Symptomatic patient
 - Diagnostic assessment
 - Needs to report full range of variants, including VUS (as with standard genetic testing)
- Asymptomatic patient
 - Incidental assessment
 - Prior probability of a genetic disorder approaches 0
 - Must maximize specificity so as to provide a clinically relevant posterior probability

Incidental analysis

- <u>Goal</u>: identify clinically relevant findings unrelated to the patient's presentation
- <u>Premise</u>: the vast majority of genomic variants have no clinical relevance *and must be ignored in a medical context*
 - Therefore imperative to maximize specificity and avoid reporting VUS
 - Set a "high bar" to ensure that variants reported to physicians/patients can be incorporated into clinical care in an evidence-based fashion

Genetics IN Medicine • Volume 13, Number 6, June 2011

COMMENTARY

Deploying whole genome sequencing in clinical practice and public health: Meeting the challenge one bin at a time

Jonathan S. Berg, MD, PhD¹, Muin J. Khoury, MD, PhD², and James P. Evans, MD, PhD¹

- Current practices in medical genetics may not be suitable for genome-wide analysis
- Need for evidence-based, structured computational analysis for diagnostic and incidental results

Bins for incidental findings

- **<u>Strategy</u>**: Automated annotation of all variants
 - 1. A priori categorization of **genes** according to clinical utility and risk for harm
 - 2. A priori definition of the types of variants that should be reported
 - Sort variants into predetermined "bins," then review/report only those likely to be deleterious
 - "Versioning" of analyses to allow one to know precisely what parameters were used

Bins for incidental findings

- Bin 1: Clinically actionable (Lynch, Long QT)
- Bin 2: Clinically valid but not directly actionable
 - 2a: low risk for harm (GWAS risk SNPs, PGx)
 - 2b: medium risk for harm (most Mendelian disorders)
 - 2c: high risk for harm (Huntington's, Presenilin)
- Bin 3: No known clinical significance
- Carrier status category*

Bins for incidental findings

- Informatics screening of OMIM genes
- 2016 genes "binned"
- Final bin decision was a judgment call

- Bin 1: 161 genes
- Bin 2:
 - 2b: 1798 genes
 - 2c: 57 genes

Theories are good, but data are better...

- 80 genomes sequenced by Complete Genomics
 - 19 patients with likely hereditary cancer susceptibility enrolled in a WGS study at UNC
 - 61 genomes made publically available by Complete Genomics
- 1000 Genomes Project allele frequency data
- Human Gene Mutation Database

Expectations

- The likelihood for any given person to have a disease-causing Mendelian mutation is LOW
 - Expect very few bin 1 or 2 findings per person
 - Most individuals will be carriers of heterozygous mutations in autosomal recessive genes

All variants in binned genes: ~13,000 variants in bin 1 genes ~175,000 variants in bin 2b genes ~9,200 variants in bin 2c genes

Rare variants in binned genes:

10-fold reduction (<5% AF) 15-fold reduction (<1% AF)

No missense variants?

- Limiting to truncating variants sacrifices sensitivity, excludes known disease causing missense mutations
- Possible solution: query the Human Gene Mutation Database for "DM" variants
 - Identified 871 unique variants, 771 missense
 - Average 74 (61-106) per person
 - Surprisingly little overlap with rare missense variants

~80% of HGMD "DM" variants identified have >5% allele frequency

Most HGMD "DM" variants are rare...

...but too many are common

Final binning algorithm

- Variant annotated within "binned" gene and
- <5% allele frequency</p>

and

- "DM" in HGMD

OR

Protein truncating

Final binning algorithm Variants per genome

	Bin 1	Bin 2b	Bin 2c	Carrier
Binned variants	1.5 (0-5)	6.4 (2-14)	0.2 (0-2)	9.2 (0-17)

- A very tractable number for a human to review on a per person basis

- Close to expected numbers, but still too many
- Needed to perform manual curation of 1391 variants to remove or reassign

Final binning algorithm Variants per genome

Binned variants 1.5 (0-5) 6.4 (2-14) 0.2 (0-2) 9.2 (0-17)		Bin 1	Bin 2b	Bin 2c	Carrier
	Binned variants	1.5 (0-5)	6.4 (2-14)	0.2 (0-2)	9.2 (0-17)

Upon review, ~50% were removed from consideration, 5% moved to carrier status

- Used "Goldilocks" approach to reviewing variants (not too harsh, not too lenient)

- Reviewed literature
- Assessed type/location of variant
- Used allele frequency information, especially in dominant disorders

Reclassification of variants after review

Final binning algorithm Variants per genome

Bin 1 Bin 2b Bin 2c Carrier							
Binned variants	1.5 (0-5)	6.4 (2-14)	0.2 (0-2)	9.2 (0-17)			
~50% removed from consideration, 5% moved to carrier status							
After review	0.3 (0-2)	2.6 (0-8)	0.06 (0-1)	5.5 (0-12)			
~8.5 variants to confirm/report per sample							

- Still more variants than expected

- Sequencing artifacts? False positive reports in the literature? Incomplete penetrance?

Incidental carrier status findings

- 79/80 were "carriers" for at least one recessive condition
 - Range 0 12

RESEARCH ARTICLE

HUMAN GENOMICS

Carrier Testing for Severe Childhood Recessive Diseases by Next-Generation Sequencing

Callum J. Bell,¹* Darrell L. Dinwiddie,^{1,2}* Neil A. Miller,^{1,2} Shannon L. Hateley,¹ Elena E. Ganusova,¹ Joann Mudge,¹ Ray J. Langley,¹ Lu Zhang,³ Clarence C. Lee,⁴ Faye D. Schilkey,¹ Vrunda Sheth,⁴ Jimmy E. Woodward,¹ Heather E. Peckham,⁴ Gary P. Schroth,³ Ryan W. Kim,¹ Stephen F. Kingsmore^{1,21}

Summary

- A structured framework permits consistent analysis of WGS data, critical for clinical work
 - Every report will be linked to a "version" of the analytic scheme for reproducibility and future updating
- Clinical WGS analysis for incidental findings can be a tractable problem
 - High quality variant database critical
 - Predefined "rules" for automated annotation

Future Directions

- Refinement of bins
 - Expect debate over the genes in each category
 - Anticipate changes with advances in medical genetics
- Refinement of "rules" for reporting variants
 - More nuanced, gene- and disease-specific criteria
 - Development and utilization of clinical-grade databases
- Validation and deployment of risk prediction models with proven clinical utility

Future Directions

- Best practices for informed consent, return of results, integration with medical record
- ELSI issues related to clinical use of NGS
 - The field is in a state of equipoise regarding return of incidental findings
 - Should all results be divulged automatically?
 - How can we best enable patient preferences?
 - Need to study patient decision-making and outcomes from return of incidental findings
 - Incidental findings in infants/children?

UNC Clinical Genetics

Jim Evans, Kristy Lee, Kate Foreman, Cecile Skrzynia, Catherine Fine, Ofri Leitner

<u>Berg Lab</u> Michael Adams, Laura Milko David DeWeese, Jonathan Mathew

<u>RENCI</u>

Kirk Wilhelmsen, Nassib Nassar, Charles Schmitt, Chris Bizon

UNC Molecular Genetics Lab Karen Weck, Jessica Booker, Kristy Crooks

