Central analysis server

Mark DePristo, Lisa Brooks, Pearl O'Rourke, Carlos Bustamante, David Altshuler

NIH Workshop on Establishing a Central Resource of Data from Genome Sequencing Projects, June 2012

What are we trying to accomplish?

To make it possible for researchers to answer scientific questions about the relationships between inherited DNA variation and human phenotypes

- For example:
 - Given a disease of interest, what set of human genes harbor DNA variation that is robustly associated with risk of disease or somatic mutation in cancer?
 - Given a gene of interest, what phenotypes (if any) are associated with inherited and somatic DNA variation?

Why can we not achieve our goal today?

- Until recently, there existed fundamental barriers to integrated analysis of genotype and phenotype
- Data about each disease was incomplete and of inadequate scale
 - Collected and analyzed in silos, one phenotype and one sample set at a time, without clear routes to access
 - Unmeasured confounders due to different technical platforms
- Diverse analytical methods were developed but
 - It is difficult for methods devs and analysts to access the data
 - It is difficult for data holders to run most methods
 - Many computational methods were not instantiated in software of sufficient quality to perform (let alone automate) analysis

These barriers have fallen

- Because of next-generation sequencing
 - Rich data type with intrinsic QC properties
 - >50,000 genome sequences already generated
- Because dbGAP provides a route to access
- Because of newer analysis tools
 - That can integrate and harmonize data collected at different sites and with different platforms
 - That can perform data processing and association analysis in an automated manner

We could seize this opportunity to build a <u>central analysis server</u>

- To aggregate in a single location available data on human DNA sequence and phenotype
- To provide a state-of-the-art computational environment and analysis tools to manage, process, and analyze the data for phenotypic association
- To managing security, data use, and user access to ensure that each dataset is used only in manners allowed by the original informed consent and data use agreements

Yes, that's nice but how would this work?

A few key features of the server

- The main development need is to build a computational Platform to
 - Coordinate sample NGS data and phenotypes
 - Understand and enforce data use policies per sample and per user
 - Execute apps at the scale of 100,000s of samples
- The platform must be continuously updating and evolving
 - Must be able to upload new Apps for users (after vetting)
 - Must regularly update analysis of all samples with the best methods
 - Must continuously monitor data sources for new samples
- Need apps for variation discovery in 100Ks of samples
 - Product is harmonized, error corrected polymorphic sites across samples
 - Genotypes and their likelihoods for each sample at every site
 - Joint error modeling across samples to remove errors

The Platform must understand and enforce data use restrictions per sample and user

Today

- Sign a piece of paper
- Download raw data from dbGAP
- "On honor" to follow use and users policy

In the Platform

- Represents data use restriction for each sample
 - Ex: IRB consent, NIH
- Enforces these policies per user
 - Ex: P. Investigator only
- Restricts analyses to only those allowed per user across samples
 - Ex: Autism researcher looking for rare variation in Autism case samples

Example data use policies

1000 Genomes samples

Users: freely available Uses: no restrictions

NIMH Autism samples

Users: NIHM approved investigators

Uses: Autism research only

NIMH common controls

Users: NIHM approved investigators Uses: any condition or trait

Goal: to force compliance with existing data use policy, whatever they may be

The Platform must track data use policies at multiple levels of data detail

The server will support analysis of samples across the sharing spectrum

1000 Genomes sample

- Low-level data is freely available
- The server would allow anyone to operate on them in any way possible given the server's apps
- Can we freely merged with other data sets

Single use sample

- E.g., Schizophrenia by noncommercial users
- Investigators studying Schizophrenia could still use the server data for
 - Analysis infrastructure
 - Access to shared controls
- But no studies of other phenotypes could see this sample or benefit from these data

Most samples fall somewhere in the middle

(Some) advantages of a central server

- Enhances the value of large collections of shareable data by streamlining access
 - E.g., the common NIMH controls and the 1000 Genomes Project
- Enjoys a strong network effect to drive adoption
 - Access to cutting-edge Apps for data processing and analysis
 - Easy access to comparator datasets
- Knowledge base of variation, phenotype association, and supporting NGS data provides a natural interface to:
 - Biologists who can determine what variants (and phenotype associations) are known in their gene of interest
 - Pharma / biotech who can explore the impact of rare (e.g., LoF) variation across genes and disease
 - Geneticists who can easily incorporate large-scale high-quality control data into their association studies

Conclusions

- Central server would provide a sustainable infrastructure for integrative genetic analyses
- Computational and ELSI challenges are real but manageable

A successful server would be immensely valuable

- Should build multiple servers to encourage innovation and diversity
- Servers specific to disease areas, e.g., cancer?

Serving our larger ecosystem

Biologist / Pharma / Biotech

#server It's a comprehensive knowledge base for trait genetics

<u>Geneticist</u>

#server It's the largest sample size for my disease study

<u>Statistician</u>

#server It's data for my models!

Method developer

#server So easy to share my method with the community

<u>ELSI</u>

#server It understands the rules that protect the people behind the samples

Appendix

ELSI consideration for the server

- The central server would likely be considered a research protocol and would need to be reviewed and approved by an IRB
- No sharing of individual-level data from the system
- The IRB protocol should include details on the "business rules" such as:
- Requirements for submission of data to the server
 - All data will have been generated from tissue obtained under an IRB-approved informed consent form (ICF) process
 - Server Data Managers would confirm agreed-upon standards before the server accepted a dataset, such as that any HIPAA identifiers were removed, and would obtain the data use conditions from the DAC that approves use of the data set, or from the originating institution.
- Requirements on use of data
 - High interest analyses will be pre-computed with results made available to all users
 - Requests for custom analyses will be submitted in a uniform manner that allows automated systems to confirm that requests conform to data use conditions.

Proof-of-concept data processing core

- We don't have general platform with user management and security
- We do have at BI practical, highly scalable infrastructure for processing NGS data to very high quality
- We performed joint data processing and error modeling of chr1 of ~16K exomes
 - Samples from 1000 Genomes, Autism, Diabetes, Schizophrenia, and the Exome Sequencing Project
 - Data generated at BI, Sanger, BCM, BGI, Germany, among others over last 3 years with multiple capture technologies
- Machine learning approach to find errors among all samples simultaneously
- Product is all polymorphic sites across all samples and the genotypes (and likelihoods) of each sample at each site
- The BI/GATK data processing tools would be among the first installed in the Platform

Computational requirements to analyze chr1 of 16K exomes

Samples	16,373
Per-sample BAM processing	16K CPU days
Analytic BAM storage	~18 MB
Joint calling	120 CPU days
Polymorphic sites found	196K
Likely SNP artifact removed (% LoF)	43K
Likely indel artifacts removed (% LoF)	2.2K
Chr1 VCF	93 GB