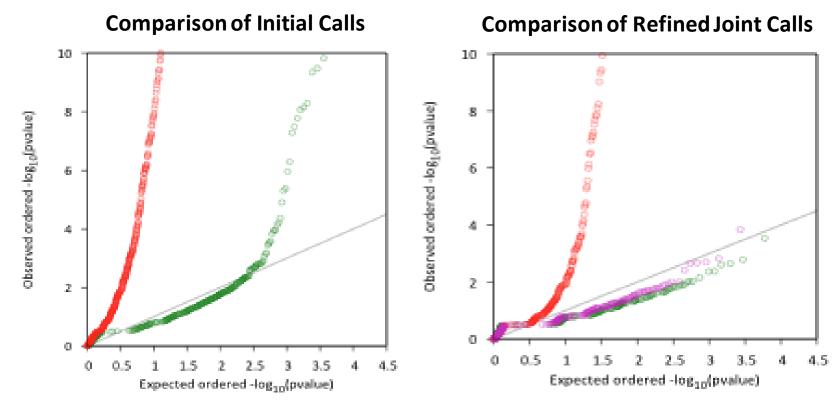
Sequence Data Processing

Workshop on Central Resource of Data From Genome Sequencing Projects

Why?

- Many analyses will benefit from combining information across sequencing projects
- Possibilities include ...
 - Meta-analyses that improve on analyses of any single sample
 - Case-control studies of rare variation that use many controls
 - High-resolution of analyses of natural selection
- Differences in sequence processing between projects can affect these analyses to different degrees

Case-Study #1


Rare variant in CFH and macular degeneration

• R1210C, rare variant in *CFH* that abrogates C-terminal ligand binding, is associated with AMD

- Initial demonstration by Raychaudhuri et al (2012)

- What would it take to rediscover the variant in an exome wide experiment?
- We sequenced 2,348 AMD cases and 789 controls in collaboration with Washington University Genome Center
 - Variant is seen in 23 cases, 0 controls (good!)
 - P-value is about .003 (middling!)
 - Variant present 2 of 12,000+ exomes used for exome chip design (impressive!)

Case-Study #2 Comparison of Exomes Sequenced at Two Centers

- Initial calls show many differences between centers
- Calling and filtering with uniform process reduces differences
- Many differences are not intrinsic to sequence generation, but to calling Filtered, On-Target, Near-Target

Options for Sequencing Processing

- Laissez-Faire:
 - Each project provides its own calls
 - Focus on standard formats, queriable structures
- Central Planning:
 - Define minimum standards for calls that are deposited
 - Define analysis tools for calls that are deposited
 - Increases similarity between datasets
- Central Analyses:
 - Calls generated centrally, using data across many projects

Option #1 Using Calls Provided by Each Project

- Some valuable analyses are relatively robust to differences between sequence analysis protocols
 - Meta-analyses of association study results for quantitative traits
- Facilitating this option still requires:
 - Harmonization of phenotypes
 - Consistent use of standard formats
 - Streamlining of data access protocols
 - Data models that facilitate combining data across studies

Option #2 Minimum Standards for Calls

- A set of minimum standards for calls generated by each project could help...
 - Analyses should include variant types beyond SNPs
 - Analyses report per base coverage in addition to discovered variants
- Standards could even require that each study is processed with the same set of tools
- This would provide incremental improvement on option #1, but probably still only allow meta-analysis
 - The power of artifact filters, for example, depends on sample size
 - Old and new projects would likely be analyzed with different tools

Option #3 Joint Processing of Many Projects

- Most compute and labor intensive
- Many analyses improve with sample size
 - Power to discover variants
 - Ability to resolve complex events
 - Ability to resolve haplotypes
 - Ability to filter sequencing artifacts
- Allows benefits of new analysis tools to percolate
- Technically feasible to call 10,000s of samples
- ... especially if we are happy with 80% solution

Challenges for Joint Processing of Many Projects

- Uniform protocols for accessing sequence data across studies are essential
 - Much more difficult if analysis require manual intervention
- The challenges of handling corner cases can't be underestimated
 - When are we willing to drop legacy data?
 - Shortest reads
 - Higher error rates
 - Obsolete platforms

- A few samples with poor quality data can influence results

Sharing of "Derivates"

- Some information, like allele frequencies, could allow many benefits of joint calling without sharing raw sequence data
- Examples include:
 - Distilled summaries of haplotype structure
 - Distilled prior evidence for variant bases
- The risks of sharing these derivatives are similar to those involved in sharing allele frequencies

Final Thoughts

- All these options are likely to be pioneered by investigators with shared scientific interest
 - What happens when we combine individuals with information on a favorite trait across sequencing studies?
- Currently, not fully exploiting what can be done with calls from individuals projects (whether GWAS or sequencing)
- Many opportunities for improved sequence analysis by combining data processing across projects