Analysis tools and portals

Gabor Marth

Boston College NIH Data Aggregation Meeting Wednesday, June 5-6, 2012, Rockville, MD Sequences in a central place, variant recalled or aggregated, metadata and phenotype harmonized ...

... what tools are needed make the data useful for the community?

What type of analyses can we do?

- Population genetic
 - Haplotype phasing
 - Single-variant allele frequencies
 - Variant burden
- Functional
 - Coding annotations
 - Disease databases
 - Non-coding annotations
 - Loss of Function analyses
- GWAS
 - Meta-analysis
 - De novo analysis
- Systems biology / higher order analyses
 - Network / pathway analysis

- Well-defined vs. open-ended
- Algorithmically easy vs. hard
- Tools mature vs. emerging
- Computation-heavy vs. light

Who are we trying to serve?

How does my tool perform?

Statistician / tool developer

What's different about the nonresponder?

Drug developer

Is this variant associated with any known phenotype?

Biologist in small laboratory

Do I get a bigger pvalue from all the extra samples? I see a variant in this gene... should I alter the treatment of my patient?

Medical consortium project analyst

Clinician

How to make analysis accessible?

- Easy to install
- Easy to use
- Intuitive
- Fast
- Interactive
- Web-based
- Storage & hardware
- Informatics expertise

How can we provide the analyses?

- Raw data download
- Query portals, viewers, data slicers
- Static variant annotations, pre-computed resources
- Analysis environment with central data, facilities for users to add their own data, tools installed and computational resources to run the analysis

What static analyses make sense?

- Variants, variant allele frequencies, sample genotypes
- Phased haplotypes

-					,	Oncoscope				- + ×
Proje	ict Edit	t Tools	Window	Help						
-	Targets	~		Coreviewer	~			11 ~ 24	03177	0 Ø Ø
Home	Chrom	Position	Length							
100	2	9170217	9877					\sim		
Project	3	530842	423							
	8	56305863	12	22Mb	23Mb	24Mb	25Mb	26Mb	27Mb	28Mb
No. of Lot	11	24003177	2300987							
	18	76410	59					F	Predicte	ed
Surgets Constant								impa geno	act on t me str	tumor ucture

variant consequence

- Haplotype browsing
- Phenotype browsing

What tasks require analysis services?

• Read mapping, and variant calling

(Daniel McArthur)

 This category has the highest tool development cost because of the additional engineering required

One tool or multiple tools?

		FP metric
Dataset	SNPs	Total
Tool 1	632,344	2.32
Tool 2	547,173	2.34
Tool 3	576,125	2.36
Tool 4	629,761	2.26
		FP metric
Dataset	SNPs	FP metric Ts/Tv
Dataset 4 of 4	SNPs 410,243	FP metric Ts/Tv 2.56
Dataset 4 of 4 3 of 4	SNPs 410,243 518,407	FP metric Ts/Tv 2.56 2.50 2.50

There are inherent advantages to having alternative tools available

Centralized or distributed development?

- Tool development is iterative... once we get an answer, we want to ask a new question
- Often users are better served by light, flexible tools for customized analysis... a tool ecosystem

Who would develop the tools?

- Many current tools from large genome centers but the majority from smaller tool development groups
- There is also a large and successful "cottage industry" of tool development, where small informatics groups can produce very sophisticated software, and respond nimbly to user needs

How to move forward?

- Focus on the cloud
- Build an open environment for tool deployment to pull in the widest possible developer base
- Models and technologies exist (iPhone apps, etc.)