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Outline	  

•  Chroma-n	  structure,	  histone	  modifica-ons	  and	  
combinatorial	  pa?erns	  

•  How	  to	  segment	  the	  genome	  in	  chroma-n	  states	  

•  How	  to	  use	  ChromHMM	  step	  by	  step	  

•  Further	  references	  
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Epigene-cs	  and	  chroma-n	  structure	  
•  All	  (almost)	  the	  cells	  of	  our	  body	  share	  the	  same	  genome	  	  but	  

have	  very	  different	  gene	  expression	  programs….	  

h?p://jpkc.scu.edu.cn/ywwy/zbsw(E)/edetail12.htm	  
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The	  code	  over	  the	  code	  
•  The	   chroma-n	   structure	   and	   the	   accessibility	  
are	  mainly	  controlled	  by:	  	  

1. Nucleosome	  
posi-oning,	  	  

2. DNA	  methyla-on,	  

3. Histone	  
modifica-ons.	  
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Histone	  Modifica-ons	  
Specific	  histone	  modifica-ons	  or	  combina-ons	  of	  
modifica-ons	  confer	  unique	  biological	  func-ons	  to	  
the	  region	  of	  the	  genome	  associated	  with	  them:	  
•  H3K4me3:	  promoters,	  gene	  ac.va.on	  

•  H3K27me3:	  promoters,	  poised	  enhancers,	  
gene	  silencing	  

•  H2AZ:	  promoters	  

•  H3K4me1:	  enhancers	  

•  H3K36me3:	  transcribed	  regions	  

•  H3K9me3:	  gene	  silencing	  

•  H3k27ac:	  ac.ve	  enhancers	  
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ChIP-‐seq	  to	  measure	  histone	  data	  
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Figure 2 | ChIP profiles. a | Examples of the profiles generated by chromatin immunopre-
cipitation followed by sequencing (ChIP–seq) or by microarray (ChIP–chip). Shown is a 
section of the binding profiles of the chromodomain protein Chromator, as measured  
by ChIP–chip (unlogged intensity ratio; blue) and ChIP–seq (tag density; red) in the 
Drosophila melanogaster S2 cell line. The tag density profile obtained by ChIP–seq 
reveals specific positions of Chromator binding with higher spatial resolution and 
sensitivity. The ChIP–seq input DNA (control experiment) tag density is shown in grey for 
comparison. b | Examples of different types of ChIP–seq tag density profiles in human T 
cells. Profiles for different types of proteins and histone marks can have different types of 
features, such as: sharp binding sites, as shown for the insulator binding protein CTCF 
(CCCTC-binding factor; red); a mixture of shapes, as shown for RNA polymerase II 
(orange), which has a sharp peak followed by a broad region of enrichment; medium size 
broad peaks, as shown for histone H3 trimethylated at lysine 36 (H3K36me3; green), 
which is associated with transcription elongation over the gene; or large domains, as 
shown for histone H3 trimethylated at lysine 27 (H3K27me3; blue), which is a repressive 
mark that is indicative of Polycomb-mediated silencing. BPIL2, bactericidal/permeability-
increasing protein-like 2; FBXO7, F box only 7; NPC1, Niemann-Pick disease, type C1; 
Pros35, proteasome 35 kDa subunit; SYN3, synapsin III. Data for part b are from REF. 25.

also informative, as this ratio corresponds to the fraction 
of nucleosomes with the particular modification at that 
location, averaged over all the cells assayed.

One of the difficulties in conducting a ChIP–seq con-
trol experiment is the large amount of sequencing that 
may be necessary. For input DNA and bulk nucleosomes, 
many of the sequenced tags are spread evenly across the  
genome. To obtain accurate estimates throughout  
the genome, sufficient numbers of tags are needed at 
each point; otherwise fold enrichment at the peaks will 
result in large errors due to sampling bias. Therefore, the 
total number of tags to be sequenced is potentially very 
large. Alternatively, it is possible to avoid sequencing a 
control sample if one is only interested in differential 
binding patterns between conditions or time points and 
if the variation in chromatin preparations is small.

Depth of sequencing. One crucial difference between 
ChIP–chip and ChIP–seq is that the number of tiling 
arrays that is used in a ChIP–chip experiment is fixed 
regardless of the protein or modification of interest, 
whereas the number of fragments that is sequenced in 
a ChIP–seq experiment is determined by the investiga-
tor. In published ChIP–seq experiments, a single lane 
of the Illumina Genome Analyzer was the basic unit of 
sequencing. When it was introduced, a single lane gen-
erated 4–6 million reads before alignment but, owing to 
improvements in the system, a single lane now gener-
ates 8–15 million reads or more. Given the cost of each 
experiment, many early data sets contained reads from 
a single lane regardless of what the specific experiment 
was. Intuitively, one expects that when a large number 
of binding sites are present in the genome for a DNA-
binding protein or when a histone modification covers 
a large fraction of the genome, a correspondingly large 
number of tags will be needed to cover each bound 
region at the same tag density. One reasonable crite-
rion for determining sufficient sequencing depth would 
be that the results of a given analysis do not change 
when more reads are obtained. In terms of the number  
of binding sites, this criterion translates to the presence of  
a ‘saturation point’ after which no further binding sites 
are discovered with additional reads.

The issue of saturation points has been examined 
in a recent paper through simulation studies48. In three 
example data sets, a reference set of sites was generated 
based on the full set of sequencing reads in each case. 
Then, a wide range of different read counts was sampled 
from the complete data set, with multiple random selec-
tions for each sample size. Binding sites were determined 
for each sample with a threshold probability (p value), 
and the results for each sample size were averaged. The 
fraction of the reference set that was recovered as a func-
tion of the number of reads is shown in FIG. 3A. If there 
was a saturation point, the number of sites found would 
increase up to a certain point and then plateau, which 
would indicate that the rate at which new sites were 
being discovered had slowed down to the point where 
any further increase in the number of reads would be 
inefficient at yielding new sites. When the simulation 
was performed, however, the results indicated that 
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We	  can	  “call	  peaks”	  but…	  

NANOG, POU5F1, and a reduced but significant level of SOX2.
We then investigated a cohort of long noncoding RNA (lncRNA)
genes and detected significant levels of transcripts for 2,175
known and 281 unannotated lncRNA genes in at least one cell
type (Figures 2A and S2A). Using the same entropy-based
approach, we found 930 lncRNA genes defined as lineage
restricted (Figure S2C), which constitute 37.9% of total ex-
pressed lncRNA genes. By contrast, only 16.5% of expressed
coding genes are characterized as lineage restricted (Fig-
ure S2D). The above analysis defined a large number of coding
and noncoding genes that are differentially expressed in H1
and its derived cells. The lists of all lineage-restricted genes
are included in Table S1.

Intriguingly, the promoters of several lncRNA genes highly
expressed in H1 overlap with the long terminal repeat (LTR)-
containing retrotransposons (Figure 2B). This appears to be a
general phenomenon as we observed that significant percent-
ages of transcription start sites (TSSs) of lncRNA genes directly
fall into LTRs (Figure 2C). The percentages are notably higher for
H1- and ME-enriched lncRNA genes (30% and 31%, respec-
tively), which are in contrast to those of coding genes (<2%).
By quantifying the transcription levels of all major classes of
mappable repetitive elements, we found that the ERV1 (class I
endogenous retrovirus) elements are preferentially expressed
in H1 and ME, but not in other cell types (Figure 2D, top). Strik-
ingly, such lineage-specific expression occurs almost exclu-
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Figure 1. Generation of Comprehensive
Epigenome Reference Maps for hESCs and
Four hESC-Derived Lineages
(A) Schematic of hESC differentiation procedures

and a summary of the epigenomic data sets pro-

duced in this study.

(B) A snapshot of the UCSC genome browser

shows the DNAmethylation level (mCG/CG), RNA-

seq reads (+, Watson strand; !, Crick strand),

and ChIP-seq reads (RPKM) of 24 chromatin

marks in H1.

See also Figure S1.

sively at the ERV1 subfamily HERV-H
and its flanking LTR elements LTR7 (Fig-
ure 2D, bottom). Together, HERV-H and
LTR7 account for more than 43% of
LTRs that are present at H1- andME-spe-
cific lncRNA gene promoters. A gene
ontology analysis of coding genes near
H1-specific HERV-H/LTR7 sites revealed
an enrichment of POU5F1-targeted
genes (p value = 4 3 10!15), which is
consistent with a previous study showing
that NANOG and POU5F1 preferentially
bind to repetitive elements (Kunarso
et al., 2010). We did not find significant
enrichment of LTR subclasses for other
lineage-restricted lncRNA genes. Repeti-
tive elements are known to be regulated
by DNA methylation and H3K9me3 in

ESCs (Leung and Lorincz, 2012). We do not find significant
enrichment of H3K9me3 around most HERV-H elements (data
not shown). By contrast, a subset of the H1-specific HERV-H
elements (n = 70) show hypomethylation in H1 and ME but
gain DNA methylation in other H1-derived cells (Figures 2B and
2E). Notably, the overall low level of DNA methylation in IMR90
reflects its globally hypomethylated genome, likely due to the
presence of partially methylated domains (PMDs) (Figures S2E
and S2F) (Lister et al., 2009). Additionally, by examining pub-
lished methylomes (Lister et al., 2011), we found that DNA
methylation at these regions was depleted upon reprogramming
of IMR90 or foreskin fibroblasts to iPSCs and was then reestab-
lished when the fibroblast-derived iPSCs were differentiated to
trophoblast-like lineage (Figure 2B). Together, these data sug-
gest that many noncoding RNA genes may be transcriptionally
regulated by endogenous retroviral sequences. Of particular in-
terest, the expression of HERV-H/LTR7 is closely correlated with
the state of pluripotency and may be regulated by DNA
methylation.

Dynamic DNA Methylation and Chromatin Modifications
at Promoters of Lineage-Restricted Transcripts
Previous studies have shown that the promoters for somatic-tis-
sue-specific genes are often CG poor and lack CpG islands
(CGIs), in contrast to those for housekeeping genes, which
are CG rich and predominantly contain CGIs (Barrera et al.,

1136 Cell 153, 1134–1148, May 23, 2013 ª2013 Elsevier Inc.

	  
Idea:	  We	  need	  a	  way	  to	  summarize	  the	  combinatorial	  pa?erns	  of	  
mul-ple	  histone	  marks	  
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ChromHMM	  

“ChromHMM	  is	  a	  Java	  program	  for	  the	  learning	  
and	  analysis	  chroma-n	  states	  using	  a	  

mul-variate	  Hidden	  Markov	  Model	  that	  
explicitly	  models	  the	  observed	  combina-on	  of	  

marks”	  

h1p://compbio.mit.edu/ChromHMM/	  
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ChromHMM	  and	  	  Chroma-n	  States	  
•  Chroma<n	  states	  are	  defined	  based	  on	  different	  combina-ons	  of	  

histone	  modifica-ons	  and	  correspond	  to	  different	  func-onal	  
regions	  

•  The	  goal	  is	  to	  segment	  the	  genome	  into	  biologically	  meaningful	  
units.	  
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ChromHMM	  and	  segmenta-on	  
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ChromHMM	  in	  prac-ce:	  gather	  the	  
ingredients	  

•  Required:	  
1.  Java	  virtual	  machine	  (h?p://java.com/)	  
2.  ChromHMM	  sohware	  (

h?p://compbio.mit.edu/ChromHMM/ChromHMM.zip)	  
3.  Aligned	  ChIP-‐seq	  files	  for	  different	  histone	  modifica-ons	  for	  

example	  from	  the	  ENCODE	  portal	  (
h?ps://www.encodeproject.org/)	  

	  
•  Op-onally,	  if	  we	  want	  to	  use	  it	  on	  your	  data:	  

1.  Raw	  or	  aligned	  reads	  for	  different	  histone	  modifica-ons	  
2.  A	  fast	  aligner	  aligner	  like	  Bow-e	  (

h?p://bow-e-‐bio.sourceforge.net/bow-e2)	  or	  BWA	  (
h?p://bio-‐bwa.sourceforge.net/)	  

3.  Bedtools	  (h?ps://github.com/arq5x/bedtools2)	  
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The	  Workflow	  

1.  Get	  ChIP-‐seq	  raw	  reads	  for	  different	  histone	  
modifica-ons	  

2.  Align	  the	  	  reads	  to	  a	  reference	  genome	  
3.  Convert	  aligned	  reads	  in	  bed	  format	  
4.  Create	  Binned	  and	  Binarized	  Tracks	  	  
5.  Train	  the	  model	  	  
6.  Infer	  the	  states	  	  
7.  Interpreta-on	  	  
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Align	  the	  reads	  

•  Star-ng	  from	  a	  file	  containing	  raw	  reads	  (usually	  	  a	  
fastq	  file)	  	  you	  need	  to	  align	  them	  	  to	  a	  reference	  
genome	  to	  get	  a	  .bam	  file	  (binary	  aligned	  file).	  You	  can	  
use	  Bow-e	  or	  BWA	  (links	  in	  slide	  #11).	  

•  Or	  you	  can	  download	  many	  aligned	  samples	  from	  the	  
encode	  portal	  h?ps://www.encodeproject.org/	  

fastq	   Aligner	   .bam	  
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Convert	  aligned	  reads	  to	  bed	  format	  

•  ChromHMM	  needs	  the	  aligned	  reads	  in	  .bed	  
format	  

.bam	   bedtools	   .bed	  

bedtools bamtobed -i cell1_mark1.bam > ~/
data/cell1_mark1.bed 
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Create	  Binned	  and	  Binarized	  Tracks	  	  

•  ChromHMM	  	  quan-fy	  the	  presence	  or	  
absence	  of	  each	  mark	  in	  bins	  of	  fixed	  size	  
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NANOG, POU5F1, and a reduced but significant level of SOX2.
We then investigated a cohort of long noncoding RNA (lncRNA)
genes and detected significant levels of transcripts for 2,175
known and 281 unannotated lncRNA genes in at least one cell
type (Figures 2A and S2A). Using the same entropy-based
approach, we found 930 lncRNA genes defined as lineage
restricted (Figure S2C), which constitute 37.9% of total ex-
pressed lncRNA genes. By contrast, only 16.5% of expressed
coding genes are characterized as lineage restricted (Fig-
ure S2D). The above analysis defined a large number of coding
and noncoding genes that are differentially expressed in H1
and its derived cells. The lists of all lineage-restricted genes
are included in Table S1.

Intriguingly, the promoters of several lncRNA genes highly
expressed in H1 overlap with the long terminal repeat (LTR)-
containing retrotransposons (Figure 2B). This appears to be a
general phenomenon as we observed that significant percent-
ages of transcription start sites (TSSs) of lncRNA genes directly
fall into LTRs (Figure 2C). The percentages are notably higher for
H1- and ME-enriched lncRNA genes (30% and 31%, respec-
tively), which are in contrast to those of coding genes (<2%).
By quantifying the transcription levels of all major classes of
mappable repetitive elements, we found that the ERV1 (class I
endogenous retrovirus) elements are preferentially expressed
in H1 and ME, but not in other cell types (Figure 2D, top). Strik-
ingly, such lineage-specific expression occurs almost exclu-
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Figure 1. Generation of Comprehensive
Epigenome Reference Maps for hESCs and
Four hESC-Derived Lineages
(A) Schematic of hESC differentiation procedures

and a summary of the epigenomic data sets pro-

duced in this study.

(B) A snapshot of the UCSC genome browser

shows the DNAmethylation level (mCG/CG), RNA-

seq reads (+, Watson strand; !, Crick strand),

and ChIP-seq reads (RPKM) of 24 chromatin

marks in H1.

See also Figure S1.

sively at the ERV1 subfamily HERV-H
and its flanking LTR elements LTR7 (Fig-
ure 2D, bottom). Together, HERV-H and
LTR7 account for more than 43% of
LTRs that are present at H1- andME-spe-
cific lncRNA gene promoters. A gene
ontology analysis of coding genes near
H1-specific HERV-H/LTR7 sites revealed
an enrichment of POU5F1-targeted
genes (p value = 4 3 10!15), which is
consistent with a previous study showing
that NANOG and POU5F1 preferentially
bind to repetitive elements (Kunarso
et al., 2010). We did not find significant
enrichment of LTR subclasses for other
lineage-restricted lncRNA genes. Repeti-
tive elements are known to be regulated
by DNA methylation and H3K9me3 in

ESCs (Leung and Lorincz, 2012). We do not find significant
enrichment of H3K9me3 around most HERV-H elements (data
not shown). By contrast, a subset of the H1-specific HERV-H
elements (n = 70) show hypomethylation in H1 and ME but
gain DNA methylation in other H1-derived cells (Figures 2B and
2E). Notably, the overall low level of DNA methylation in IMR90
reflects its globally hypomethylated genome, likely due to the
presence of partially methylated domains (PMDs) (Figures S2E
and S2F) (Lister et al., 2009). Additionally, by examining pub-
lished methylomes (Lister et al., 2011), we found that DNA
methylation at these regions was depleted upon reprogramming
of IMR90 or foreskin fibroblasts to iPSCs and was then reestab-
lished when the fibroblast-derived iPSCs were differentiated to
trophoblast-like lineage (Figure 2B). Together, these data sug-
gest that many noncoding RNA genes may be transcriptionally
regulated by endogenous retroviral sequences. Of particular in-
terest, the expression of HERV-H/LTR7 is closely correlated with
the state of pluripotency and may be regulated by DNA
methylation.

Dynamic DNA Methylation and Chromatin Modifications
at Promoters of Lineage-Restricted Transcripts
Previous studies have shown that the promoters for somatic-tis-
sue-specific genes are often CG poor and lack CpG islands
(CGIs), in contrast to those for housekeeping genes, which
are CG rich and predominantly contain CGIs (Barrera et al.,

1136 Cell 153, 1134–1148, May 23, 2013 ª2013 Elsevier Inc.
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Create	  Binned	  and	  Binarized	  Tracks	  	  
•  java –mx4000M –jar ChromHMM.jar 
BinarizeBed –b 200  CHROMSIZES/hg18 ~/
data/ cellmarkfiletable.txt 
SAMPLEDATA_HG18

•  Inside	  the	  cellmarkfiletable.txt:	  
cell1 mark1 cell1_mark1.bed cell1_control.bed
cell1 mark2 cell1_mark2.bed cell1_control.bed
cell2 mark1 cell2_mark1.bed cell2_control.bed
cell2 mark2 cell2_mark2.bed cell2_control.bed
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Train	  the	  model	  and	  segment	  the	  
genome	  

java -mx1600M -jar ChromHMM.jar LearnModel 
SAMPLEDATA_HG18 OUTPUTSAMPLE 10 hg18 

Binarized	  
tracks	   LearnModel	  

Model	  
+	  

Segmenta-on	  
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Output	  of	  ChromHMM	  	  

•  ChromHMM	  generates	  a	  nice	  HTML	  report	  called	  
webpage_N.html	  	  (N	  is	  the	  number	  of	  states	  
used)	  with	  many	  useful	  informa-on	  :	  

1.  Model	  learned:	  transi-on	  and	  emission	  parameters	  

2.  Enriched	  func-onal	  categories	  

3.  Bed	  files	  to	  visualize	  the	  segmenta-on	  
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Transi-on	  and	  emission	  Parameters	  
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Enriched	  func-onal	  category	  
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Visualize	  the	  segmenta-on	  
•  Genome	  Browser:	  h?ps://genome.ucsc.edu/	  
•  IGV:	  h?ps://www.broadins-tute.org/igv/	  
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Further	  References	  

•  Other	  models	  are	  available	  to	  segment	  the	  
genome	  in	  chroma-n	  states:	  

1.  Segway:	  
h?p://pmgenomics.ca/hoffmanlab/proj/segway/	  

2.  Spectacle:	  h?ps://github.com/jiminsong/Spectacle	  

3.  DI-‐HMM	  (soon	  	  available)	  GC	  Yuan/M	  Kellis	  
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Ques-ons?	  

23	  


