SOMatic Tutorial

Camden Jansen Mortazavi Lab csjansen@uci.edu

Presentation outline

- Background on Self-Organizing Maps (SOMs)
- In-depth description of SOM training
- Using SOMatic to build your own SOM
- How to use the SOMatic viewer

Data sets above 3 dimensions cannot be visualized easily

Principal component analysis (PCA) attempts to reduce the dimensions in a data set

- Principal Component Analysis
 - A linear transformation to a new coordinate system
 - Every dimension of this new system contains a decreasing amount of the variance.
- Pros
 - Can reduce a data set to fewer dimensions in a mathematically robust way (same result every time)
- Cons
 - Assumes a linear space
 - Loses spatial information with each dimension that you drop.

Self-organizing maps (SOMs) can reduce the dimensions in a data set in a non-linear way

ENCODE Consortium, 2012

Each slice of a SOM represents a different experiment

Each hexagon (unit) represents a cluster of genomic segments/genes/GO terms

SOMs can be mined to find interesting regions

Mortazavi, 2013

Build your training matrix Data1 Data2 chromHMM-derived genome segmentation segment Data1 Data2 DataN chrA:a-b rpkm₁₁ rpkm₁₂ rpkm_{1N} chrN:k-z rpkmi rpkm_{i2} **rpkm**_{iN} ...

Mortazavi, 2013

chrA:a-b

- Build your training matrix
- Initialize map with genome segments at random
- Reorganize segments randomly
- Each time step:
 - Take a vector from the matrix

segment Data1 Data2 DataN chrA:a-b rpkm11 rpkm12 rpkm1N						rpkm.
chrA:a-b rpkm₁1 rpkm₁2 rpkm₁N rpkm₁2 rpkm₁N	segment	Data1	Data2	DataN	\longrightarrow	i prim _{i l}
····	chrA:a-b	rpkm ₁₁	rpkm ₁₂	 rpkm₁ℕ		rpkm _{i2}
				 		•••
	chrN:k-z	rokm	rokm ₂	 rokm _{iN}		rokm

- Build your training matrixInitialize map with genome segments
- Reorganize segments randomly
- Each time step:

at random

- Take a vector from the matrix
- Find the unit that's closest

- Build your training matrix
- Initialize map with genome segments at random
- Reorganize segments randomly
- Each time step:
 - Take a vector from the matrix
 - Find the unit that's closest
 - Pull that unit and units around it closer to the vector

- Build your training matrix
- Initialize map with genome segments at random
- Reorganize segments randomly
- Each time step:
 - Take a vector from the matrix
 - Find the unit that's closest
 - Pull that unit and units around it closer to the vector
 - Reduce radius/learning rate

SOMatic: a tool for generating SOMs

- Build to be very general
 - Works for any coordinate system
 - Genome Coordinates (ChIP-seq, DNase-seq, ATAC-seq)
 - Genes (RNA-seq)
- Automatically, builds a website to explore your data space

Requirements

- SOMatic has only been built/tested in a Linux environment
 - g++ version>2.8.2
 - Can be checked by running: g++ --version
- The SOMatic viewer needs to be placed on a web server
 - Has only been tested on an Apache server
 - Version > 2.4.10
 - Directory listings must be turned on.
 - This is done by adding "Indexes" to the options for the Directory in your httpd.conf file.
 - Example: </Directory "/var/www/html"> Options Indexes AllowOverride None Require all granted </Directory>

Downloading/Installing SOMatic

- Download the latest version: \$ wget http://crick.bio.uci.edu/SOMatic/SOMatic_Latest.tgz
- Installing:
 - Be sure that gcc version>2.8.2 is loaded by running:
 \$ g++ --version
 - Untar the SOMatic folder and go inside the bin directory: \$ tar -zxf SOMatic_Latest.tgz \$ cd SOMatic/bin
 - Run make:
 \$ make

Required files

Segments

RP	ΚM	S
1 \ 1	1 \/ 7 \	-

v										
chr10:100036400-100037199	0.011	0.014	0.036	0.014	0.000	0.003	0.001	0.011	0.003	0.006
chr10:100037200-100038399	6.016	0.048	0.040	0.021	0.002	0.001	0.003	0.021	0.003	0.004
chr10:100038400-100039199	0.010	0.037	4.040	0.016	0.001	0.002	0.005	0.027	4.004	0.011
chr10:100039200-100039799	0.012	0.019	0.043	0.016	0.000	0.001	0.000	0.039	0.003	0.006
chr10:100039800-100040799	0.006	0.007	0.020	0.006	4.000	7.002	0.000	0.017	0.001	7.004
chr10:100040800-100041399	0.010	0.005	0.029	0.016	0.000	0.000	0.000	7.021	0.002	0.004
chr10:100041400-100041999	7.001	0.003	0.014	0.003	0.000	0.003	4.002	0.004	0.002	0.000
chr10:100042000-100044799	0.000	0.000	0.004	0.000	0.000	0.002	0.000	0.000	0.003	0.000

- There is an example training matrix at SOMatic/examples/example.matrix
- Sample List
 - Rows in this file correspond to the RPKMs in the columns of the Training Matrix
 - There is an example sample list at SOMatic/examples/sample.list

LiverH3k04me3 Esb4H3k4me3 ErythroblH3k04me1 TestisH3k27me3 Gleer4e2H3k04me3 MegakaryoH3k27me3 Ch12H3k36me3 MegakaryoH3k36me3 Esb4H3k27me3 MelH3k04me1 LiverH3k04me1 ThymusH3k04me3

First step: buildsite.sh

Usage: buildsite.sh [required options] Required Options: -SOMName <SOM name> -Matrix <Training Matrix File Location> -Rows <Number of rows you'd like in your SOM> -Cols <Number of Columns you'd like in your SOM> -SampleList <File with list of samples> -Timesteps <Number of timesteps for your SOM> -Trials <Number of trials you'd like to run. The best SOM will be chosen>

- To test the program, go to SOMatic/scripts and run the following:
 \$./buildsite.sh -SOMName ExampleWebsite -Matrix ../examples/ example.matrix -Rows 30 -Cols 50 -SampleList ../examples/sample.list -Timesteps 4000000 -Trials 3
- This program runs the following steps of building your SOM automatically on the order of hours:
 - Training/Scoring SOM
 - Generating maps/summary
 - Building website

(Optional) Add gene overlay

- If your training matrix uses genome segments (i.e. from ATAC-seq or DNase-seq), you can add a gene overlay in order to see which genes are in your unit of interest. This also allows you to add a GO term overlay and GO maps in the next step.
- We use the same algorithm for gene association as GREAT.

Usage: getgenes [required options] [options] Required Options: -SOMName: SOM name -Rows: Number of rows you'd like in your SOM -Cols: Number of columns you'd like in your SOM -GTFFile: Gene annotations file. See below for file format. Options: [choices] <default> -Method: GREAT algorithm of choice. [TwoClosest] <TwoClosest> -AddToChrom: If your gtf file uses a different format for it's chromosomes, this option allows you to add text to all the chromosomes in the gtf file. <>

(Optional) Add gene overlay

• For this tutorial, start in the SOMatic directory, download the gtf file from Ensembl, and unzip it:

\$ wget ftp://ftp.ensembl.org/pub/release-80/gtf/mus_musculus/ Mus_musculus.GRCm38.80.gtf.gz

\$ gzip –d Mus_musculus.GRCm38.80.gtf.gz

• This will allow us to run the following in the SOMatic/scripts directory:

\$./getgenes.sh -SOMName ExampleWebsite -Rows 30 -Cols 50 -GTFFile ../Mus_musculus.GRCm38.80.gtf -AddToChrom chr

(Optional) Add GO overlay

- To see GO enrichments, run one of the two following scripts
- If your training matrix uses genome segments (i.e. from ATAC-seq or DNase-seq), you should use:

• If your training matrix uses genes (i.e. from RNA-seq), you should use:

Usage: getGOGene.sh [required options] [options]

(Optional) Add GO overlay

• For this tutorial, start in the SOMatic directory, download the gene2go and gene_info files from ncbi, and unzip them:

\$ wget ftp://ftp.ncbi.nih.gov/gene/DATA/gene2go.gz \$ gzip -d gene2go.gz \$ wget ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/ Mammalia/ Mus_musculus.gene_info.gz \$ gzip -d Mus_musculus.gene_info.gz \$ wget http://geneontology.org/ontology/go.obo

• This will allow us to run the following in the SOMatic/scripts directory:

\$./getGOGenomic.sh -SOMName ExampleWebsite -Rows 30 -Cols 50 -Gene2GO ../gene2go -GeneInfo ../Mus_musculus.gene_info -GOFile ../ go.obo

SOMatic Viewer

Follow along at http://crick.bio.uci.edu/SOMatic/ ExampleWebsite

Samples appear on the left under the samples tab

Selected SOMs appear on the right

Selected units appear below tabbed area

View info in unit

ErythrobIH3k04me1 1 6 0.02359 <u>View Segment View genes View GO Terms</u> 1 5 0.02583 <u>View Segment View genes View GO Terms</u>

Groups tab allows for grouping of maps

Groups tab allows for grouping of maps

Groups allow setting maps to the same scale and viewing an average map

GO tab displays map GO enrichments calculated by binomial

Acknowledgments

- Mortazavi lab:
 - Dr. Ali Mortazavi
 - Ricardo Ramirez
 - Dr. Weihua Zeng
 - Rabi Murad
 - Dr. Eddie Park
 - Marissa Macchietto
 - Mandy Jiang
 - Nicole El-Ali
- HudsonAlpha-led ENCODE production group
- □ HPC
- SOMatic URL: http://crick.bio.uci.edu/SOMatic

