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Goals of ENCODE

Annotate the human genome

Disseminate data to researchers
everywhere
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5 examples of how we use
ENCODE data to help in our
research on human diseases
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1. Discovering the causes of
undiagnosed genetic diseases
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Childhood genetic disorders

1.5-3% of kids worldwide are born with 1 or more of:
* Intellectual disability
* developmental delay
* heart defects
 craniofacial and skeletal abnormalities
* severe autism
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The vast majority of these problems have genetic causes
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Diagnostic challenges for childhood genetic disorders
Inaccurate or undetermined causes (i.e., diagnoses) are a
major hardship:

Years of expensive, invasive, and futile testing
Impossible to predict disease progression, symptoms
Treatment decisions are complicated

Slows research into developing new therapies
Impacts family planning

Results in feelings of parental guilt and lack of control

Thus, identifying the root genetic causes is essential
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HudsonAlpha Pediatric Genetics Project

Sequence whole genomes of 500 children with developmental/
intellectual delay of unknown etiology (and both parents’ genomes t00)
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Exome results so far

Exome sequencing completed for 171 families

Definitive genetic diagnosis in 25% of the

children
Pitt-Hopkins syndrome
Dravet syndrome
Rett syndrome
Rubinstein-Taybi syndrome
Noonan-like syndrome
Many never-described causes

" Diagnositc Variant
®Variant of Uncertain Significance
" Uninformative

>20% of families receive uncertain genetic findings that
will likely be definitively diagnostic in the future
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Whole genome sequencing of trios

lllumina X Ten sequencers: $ of 30X WGS = $ of exome

We have completed WGS of 30 trios in our Childhood
Genetics Project

Results:

Diagnostic rate is higher

|dentified at least 3 cases where regulatory mutations were
the causes

We relied heavily on ENCODE data to identify functional
regulatory segments
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Annotating genetic variants

Problem:

HUGE number of sequence variants in each individual
Most are not important

How to find which variants have an effect on:
The molecular/biochemical function of the gene
The organism
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CADD

Combined Annotation Dependent Depletion
Greg Cooper and Jay Shendure

TECHNICAL REPORTS

nature

gCIlCthS

A general framework for estimating the relative
pathogenicity of human genetic variants

Martin Kircher>>, Daniela M Witten?5, Preti Jain>4, Brian ] O’Roak!%, Gregory M Cooper> & Jay Shendure!

Nature Genetics 46, 310-315 (2014)

b HUDSONALPHA

INSTITUTE FOR BIOTECHNOLOGY Richard M. Myers

12




CADD integrates many features to give a
single pathogenicity score
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Typical vs pathogenic CADD scores
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Promoter mutations that cause B-thalassemia
Enhancer mutations that cause pancreatic agenesis
Enhancer mutations that cause limb defects
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Use the CADD webserver!

http://cadd.gs.washington.edu

Combined Annotation Dependent Depletion (CADD)

Home CADD scores are freely available for all non-commercial applications. If you are planning on using them in a commercial application, please contact us.
News Please upload a VCF file containing up to 100,000 variants
Information Please provide a (preferentially gzip-compressed) VCF file of your variants. For information on the VCF format see http://vcftools.sourceforge.net/specs.html. It is sufficient to provide the first 5 columns of a VCF file

without header, as all other information than CHROM, POS, REF, ALT will be ignored anyway. The maximum accepted file size is set at 2MB (>100,000 variants for 5 column compressed VCF). If you try to upload files
larger than 2MB, you will receive an error ("Connection reset"). You will be able to retrieve your variants faster, if you upload them in smaller sets. The file that will be provided for download is a gzip-compressed tab-

Downloads separated text file. Make sure that your browser does not alter the file extension (.tsv.gz) during download; otherwise your operating system will not be able to automatically pick the right programs for opening the
output. If you need more variants, we suggest downloading the full set of variants. To learn about differences between versions, please check the release notes.

score va"ants Choose File | no file selected
Contact viz2 o
Include underlying annotation in output (not only the scores)

Upload variants

© University of Washington and Hudson-Alpha Institute for Biotechnology 2013-2014. All rights reserved

Terms and Conditions and the Online Privacy Statement of the University of Washington apply.
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2. Understanding renal cell
carcinoma

ENCODE data were instrumental in
helping us identify regions of the genome
that are ~100% accurate diagnostic
markers for kidney cancer

(and even for prognosis of different
subtypes)
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Genomic signatures of renal cell carcinoma

Brittany Lasseigne, Jim Brooks, Myers Lab

Lasseigne et al. BMC Medicine 2014, 12:235 »
http://www.biomedcentral.com/1741-7015/12/235
BMC Medicine
RESEARCH ARTICLE Open Access

DNA methylation profiling reveals novel
diagnostic biomarkers in renal cell carcinoma

Brittany N Lasseigne'”, Todd C Burwell’, Mohini A Patil*, Devin M Absher’, James D Brooks’
and Richard M Myers'~

We measured DNA methylation and copy number variants in 135
kidney tumors and matched non-tumor kidney tissues
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Top 20 DNA methylation markers

All subtypes
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DNA methylation patterns are highly accurate at
predicting patients with renal cell carcinoma

ROC curves of DNA methylation results from 135 tumor

and matched non-tumor samples from RCC patients Apply these assays to urine or

blood as a routine screening for
early detection of kidney cancer
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Integrating genomic signatures
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Methylation Score

Example: MSH4 gene
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3. Using ENCODE TF data to
prioritize cancer genetics and
functional genomics data
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Using ENCODE data to find cancer regulators

Genomic assays often reveal thousands
of dysregulation events in cancer

These widespread genomic changes may
be regulated by a few key transcription
factors
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Differentially expressed genes in cancer are

enriched for particular

(

Fs

Genes differentially expressed in
prostate cancer compared to normal
prostate tissue are enriched for EZH2,

(adjusted p-value < 0.05) and actual
binding events (from ENCODE ChIP

0N a SUZ12, and CTPB2 binding sites
; alis é ] : ] ; M P data)
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Intersect transcription factor binding sites from the ENCODE Project
with genomic regions specifically unmethylated in basal breast cancer
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Master regulators (?) of different breast cancer subtypes

Intersect gene regulatory regions containing subtype-associated methylation
with binding sites of 149 transcription factors in ENCODE datasets

Significantly enriched
binding sites:
Transcription Fold
Factor Enrichment
Estrogen 6.9
Receptor
FOXA1l 8.1
GATA3 10.3
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Master regulators (?) of different breast cancer subtypes

Intersect gene regulatory regions containing subtype-associated methylation
with binding sites of 149 transcription factors in ENCODE datasets

Significantly enriched
binding sites:
Transcription Fold
Factor Enrichment
= Estrogen 6.9
= = Receptor
== FOXA1 8.1
- GATA3 10.3
= S=— o=
4 Transcription Fold
— Factor Enrichment
STAT3 4.8
GR 4.2
(glucocorticoid
receptor)

Percent
Methylated
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4. Using RNA-seq to identify drug
targets
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Transcript fusions in cancer

e = =T = == ==
| Gene A | Gene B
> , >

Breast Cancer Res Treat
DOI 10.1007/510549014-3019-2

PRECLINICAL STUDY

Recurrent read-through fusion transcripts in breast cancer

Katherine E. Varley - Jason Gertz - Brian S. Roberts - Nicholas S. Davis -

Kevin M. Bowling - Marie K. Kirby - Amy S. Nesmith - Patsy G. Oliver -
William E. Grizzle - Andres Forero - Donald J. Buchsbaum - Albert F. LoBuglio -
Richard M. Myers

K-T Varley with collaborators at UAB Comprehensive Cancer Center
HUDSONALPHA
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3 fusion transcripts produce fusion proteins located
In the cell membrane
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Potential therapeutic: Use drug-antibody
complexes to direct a cellular toxin
exclusively to cancer cells

ADC binds
to receptor - \\

ADC-receptor
complex is
internalized
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i Cytotoxic
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released
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5. Which TF binding events are
functionally important?
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Using expression assays to identify
functional transcription elements

(especially long-distance ones)

Dan Savic, Brian Roberts, Chris Partridge, Barak Cohen, Greg CooperJay Gertz, Rick Myers

Test thousands of ENCODE-identified putative
elements (based on TF binding, chromatin marks,
etc.) in an ultra-high throughput reporter assay
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Massively parallel reporter assay
Cis-Regulatory Element sequencing (CRE-seq)
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Barcode abundance (sequence count)
is a proxy for test sequence activity
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Findings

RNAP2 at promoter-distal TF sites
IS a very strong mark of active
regulatory elements
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3. Using genomics to predict which
patients will respond to various treatments
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Clinical trial of a novel combination of drugs
iIn ER+ breast cancer

Gene expression patterns in responders and non-responders during
clinical trial of Letrozole (anti-estrogen) and Avastin (anti-angiogenesis)

e i [

Responders

responders

Low
Mean
High

K-T Varley, Andres
Forero, Al LoBuglio, Don
Buchsbaum, Rick Myers

145 genes g-value < 0.05
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