Luke Ward Manolis Kellis lab, MIT July 18, 2013

- 1. Regulatory annotations of the human genome: an overview
- 2. Using regulatory annotations to interpret GWAS
 - a. Locus level
 - b. Systems level
- 3. Beyond GWAS
 - a. Molecular variability
 - b. Empowering rare-variant and pathway analysis

- 1. Regulatory annotations of the human genome: an overview
- 2. Using regulatory annotations to interpret GWAS
 - a. Locus level
 - b. Systems level
- 3. Beyond GWAS
 - a. Molecular variability
 - b. Empowering rare-variant and pathway analysis

There are lots of noncoding regulatory mechanisms for disease genetics

Noncoding element disrupted	Molecular function and effect of mutations.	Disease association			
Splice-junction and splicing-enhancer	Splicing is constitutive for some transcripts and highly tissue-specific for others, relying on both	Splicing regulatory variants are implicated in several diseases.			
	canonical sequences at the exon-intron junction as well as weakly-specified sequence motifs	A recent analysis suggests that the majority of disease-causing point mutations in OMIM			
	distributed throughout the transcript.	may exert their effects through splicing.			
	missense mutations, resulting in aberrantly included introns or skipped exons, sometimes	Alternative splice site variants in the WT1 gene are involved in Frasier Syndrome (FS)			
	resulting in nonsense-mediated decay (NMD).	Skipping of exon 7 of the SMN gene is involved in spinal muscular atrophy (SMA)			
Sequences regulating translation, stability, and localization	Sequences in the 5 ¹ -untranslated regions (UTRs) of mRNAs can influence translation regulation, such as upstream OREs, premature AUG or AUC codons, and palindromic	Loss-of-function mutations in the 5'-UTR of CDKN2A predispose individuals to melanoma.			
	sequences that form inhibitory stem loops. Sequence motifs in the 3 ¹ -UTR are recognized by microRNAs and RNA-binding proteins (RBPs).	A rare mutation that creates a binding site for the miRNA hs-miR-189 in the transcript of the gene SLITRK1 is associated with Tourette's syndrome.			
Genes encoding trans-regulatory RNA	Non-coding RNAs participate in a panoply of regulatory functions, ranging from the well- understood transfer and ribosomal RNA to the recently-discovered long non-coding RNAs.	Both rare and common mutations in the gene <i>RMRP</i> encoding an RNA component of the mitochondrial RNA processing ribonuclease have been associated with cartilage-hair hypoplasia			
		Non-coding RNA mutations can cause many other diseases.			
Promoter	Promoter regions are an essential component of transcription initiation and the assembly of RNA polymerase and associated regulators. Mutations can affect binding of activators or repressors, chromatin state, nucleosome positioning, and also looping contacts of promoters	Mutations in the promoter of the HIV1-progression associated gene CCR5, are correlated with expression of the receptor it encodes and bind differentially to at least three transcription factors			
	with distal regulatory elements.	APOE promoter mutations are associated with Alzheimer's disease			
	Genes with coding disease mutations can also harbor independently-associated regulatory variants that correlate with expression, are bound by proteins in an allele-specific manner, and disrupt or create regulatory motifs	Heme oxygenase-1 (HO-1) promoter mutations lead to expression changes and are associated with many diseases			
Enhancer	Enhancers are distal regulatory elements that often lie 10,000 to 100,000 nucleotides from the start of their target gene. Mutations within them can disrupt sequence motifs for sequence- specific transcription factors, chromatin regulators, and nucleosome positioning signals.	The role of distal enhancers in disease was suggested even before GWAS by many Mendelian disorders for which some patients had translocations or other structural variants far from the promoter			
	Structural variants including inversions and translocations can disrupt their regulatory activity by moving them away from their targets, disrupting local chromatin conformation, or creating interactions with insulators or repressors that can hinder their action. While it is thought that looping interactions with promoter regions play a role, the rules of enhancer-gene targeting are	In one early study, point mutations were mapped in an unlinked locus in the intron of a neighboring gene, a million nucleotides away from the developmental gene Shh; this distal locus acted as an enhancer of Shh and recapitulated the polydactyly phenotype in mouse.			
	still poorly understood.	A number of GWAS hits have been validated as functional enhancers; for example, common variants associated with cancer susceptibility map to a gene desert on chromosome 8, with one SNP demonstrated to disrupt a TCF7L2 binding site and to inhibit long-range activation of the oncogene MYC.			
Synonymous mutations within protein-coding sequences	All of the aforementioned regulatory elements can also be encoded within the protein-coding exons themselves. Thus, synonymous mutations within protein-coding regions may be associated with non-coding functions, acting pre-transcriptionally at the DNA level, or post- transcriptionally at the RNA level.	A synonymous variant in the dopamine receptor gene <i>DRD2</i> associated with schizophrenia and alcoholism has been shown to modulate receptor production through differences in mRNA folding and stability.			

What we can model with regulatory annotations

Goal: A systems-level understanding of genomes and gene regulation:

- <u>The regulators</u>: Transcription factors, microRNAs, sequence specificities
- The regions: enhancers, promoters, and their tissue-specificity
- <u>The targets</u>: TFs \rightarrow targets, regulators \rightarrow enhancers, enhancers \rightarrow genes
- <u>The grammars</u>: Interplay of multiple TFs \rightarrow prediction of gene expression
- → The parts list = Building blocks of gene regulatory networks

Our tools: Comparative genomics & large-scale experimental datasets.

- Evolutionary signatures for coding/non-coding genes, microRNAs, motifs
- <u>Chromatin signatures</u> for regulatory regions and their tissue specificity
- <u>Activity signatures</u> for linking regulators \rightarrow enhancers \rightarrow target genes
- Predictive models for gene function, gene expression, chromatin state
- →Integrative models = Define roles in development, health, disease

Measuring constraint at individual nucleotides

- Reveal individual transcription factor binding sites
- Within motif instances reveal position-specific bias
- More species: motif consensus directly revealed

Chromatin signatures for genome annotation

Epigenomics Roadmap: 90 reference epigenomes

Interpret GWAS, global effects, reveal relevant cell types

Chromatin state dynamics reveal linking/regulators

Inactive/poised Promoter

Weak/poised enhancer

Weak/poised enhancer

Transcriptional transition

Transcriptional elongation

Strong enhancer Strong enhancer

Weak transcribed Polycomb-repressed Heterochrom: low signal

Insulator

- Single annotation track for each cell type
- Summarize cell-type activity at a glance
- Study activity pattern across tissues

Multi-cell activity profiles connect enhancers

Multi-cell activity profiles connect enhancers

Coordinated activity reveals activators/repressors

Enhancer activity

Activity signatures for each TF

• Enhancer networks: Regulator \rightarrow enhancer \rightarrow target gene

Experimental validation of motif activity in tissue-specific enhancers

- 1. Regulatory annotations of the human genome: an overview
- 2. Using regulatory annotations to interpret GWAS
 - a. Locus level
 - b. Systems level
- 3. Beyond GWAS
 - a. Molecular variability
 - b. Empowering rare-variant and pathway analysis

Faced with resolution-limiting LD, annotations can help

Ward and Kellis, 2012

Mechanistic predictions for top disease-associated SNPs

Disrupt activator Ets-1 motif

- ➔ Loss of GM-specific activation
- ➔ Loss of enhancer function
- → Loss of HLA-DRB1 expression

Creation of repressor Gfi1 motif

- → Gain K562-specific repression
- ➔ Loss of enhancer function
- → Loss of CCDC162 expression

HaploReg: systematic regulatory mining of variants (compbio.mit.edu/HaploReg)

Query SNP: rs17145713 and variants with $r^2 >= 0.95$

chr	pos (hg19)	LD	variant	Ref	Alt	ASN freq	CEU YRI freq free	GERF q cons	SiPhy cons	Promoter histone marks	Enhancer histone marks	DNAse	Proteins bound	Motifs changed	GENCODE genes	RefSeq genes	dbSNP func annot
7	72842724	1	7:72480660	GAC	G	0	0.15 0					PANC-1			5.4kb 5' of FZD9	5.4kb 5' of FZD9	
7	72856430	1	rs1178979	Т	С	0.13	0.18 0.3					CLL		GATA	BAZ1B	BAZ1B	intronic
7	72857049	1	rs1178977	А	G	0.14	0.18 0.3							AREB6,DEC	BAZ1B	BAZ1B	intronic
7	72857713	1	rs34604283	CA	С	0.13	0.1 0.2					8 cell types		Sox	BAZ1B	BAZ1B	intronic
7	72868522	1	rs1306476	А	G	0.12	0.18 0.36	6				ر اس			BAZ1B	BAZ1B	intronic
7	72883106	1	rs62465144	Т	С	0.14	0.18 0.29	9				HMEC, iPS, A549, H1	-hESC,H7-hES	C,HA-h,HN	IPCEpiC, HRE	BAZ1B	intronic
7	72885810	1	rs6976930	G	А	0.14	0.18 0.39)							BAZ1B	BAZ1B	intronic
7	72904810	1	rs17145713	С	Т	0.14	0.18 0.3							ATF3	BAZ1B	BAZ1B	intronic
7	72939244	1	rs11983997	G	С	0.13	0.18 0.26	3			GM12878, K562	GM12864,GM12878,K562			2.6kb 5' of BAZ1E	2.6kb 3' of BAZ1B	1
7	72977249	1	rs34594435	С	Т	0.12	0.18 0.03	3			K562	СМК	KAP1,SETDB1		4.9kb 5' of BCL7B	5.2kb 3' of BCL7B	
7	72988069	1	rs35659126	С	Т	0.13	0.18 0.08	3							TBL2	TBL2	intronic
7	72989141	1	rs34550818	С	CA	0.11	0.12 0						POL2		TBL2	TBL2	intronic
7	72989390	1	rs11974409	Α	G	0.13	0.18 0.14	4							TBL2	TBL2	intronic
7	72998952	1	rs9638180	А	G	0.12	0.18 0.08	3						Zbtb3	5.8kb 5' of TBL2	5.9kb 3' of TBL2	
7	72999105	1	rs9638182	Т	G	0.12	0.18 0.14	4							6kb 5' of TBL2	6.1kb 3' of TBL2	
7	73007943	1	rs1051921	G	Α	0.12	0.18 0.08	3				4 cell types	POL2		MLXIPL	MLXIPL	3'-UTR

- Start with any list of SNPs or select a GWA study
 - Mine publically available ENCODE+Roadmap data for hit LD blocks
 - Hundreds of assays, dozens of cells, conservation, motifs
 - Integration with published eQTL from GTEx portal (future: ASE)
 - Report systems-level enrichments (future: R tools)

- 1. Regulatory annotations of the human genome: an overview
- 2. Using regulatory annotations to interpret GWAS
 - a. Locus level
 - b. Systems level
- 3. Beyond GWAS
 - a. Molecular variability
 - b. Empowering rare-variant and pathway analysis

- Disease-associated SNPs enriched for enhancers in relevant cell types
- E.g. lupus SNP in GM enhancer disrupts Ets1 predicted activator

PITRM1 gene

Scale chr10:

ADHD SNP rs2764980

Intergenic brain-specificpromoter

HaploReg view of ADHD SNP rs17658378

Query SNP: rs17658378 and variants with r² >= 0.8

•	:hr	pos (hg19)	LD (r²) (LD D') Va	ariant	Ref	Alt	AFR freq	AMR freq	ASN freq	EUR freq	SiPhy cons	Pror hist	noter one m	arks	Enhancer histone marks	DNAse	Proteins bound	eQTL tissues	Motifs changed	GENCODE genes	dbSNP func annot
8	3	116394075	1 1	1 <u>rs</u>	17658378	Α	G	0.02	0.13	0.00	0.09		BN.S	N, BN.	TL, BN.AC	9 cell types				4 altered motifs	27kb 3' of TRPS1	
egulato	gulatory chromatin states (Roadmap)								Re	Regulatory motifs altered						rs17658378 / TRPS1 From Lasky-Su et al (PMID 2008), who do not						
Cell ID	Cel	l description				State	a (25-s	tate HI	лм)		_	-								conside	r it one of	the
BN.SN	Bra	in Substantia Nigra				6_Ts	sD2								Match on:					conside		the
N.ITL	Bra	in Inferior Tempora	I Lobe			6_Ts	sD2			PW	м	Stra	nd Re	f Alt	Ref: CTTGTTC	TCTTTCCCAGGCCATAGCGGC	TATCAGGAAC	TTGTAGCCATCT	GGGGGTCAG	intoract	ing loci	
BN.AC	Bra	in Anterior Caudate	9			6_Ts	sD2								Alt: CTTGTTC	TCTTTCCCAGGCCATAGCGGC	IGTCAGGAAC	TTGTAGCCATCT	GGGGGTCAG	interes		
8R.H35	Bre	ast vHMEC.Donor	RM035			11_E	nhWk1	<u> </u>												TDDC1 ;		ic hac
PS.18	IPS	-18 Cell Line				12_E	.nhWk2	2		PU.	1_disc1	-	-3	3.3 -21.	6	AWGRGGA	AGT			INFJII	s a 17, 10cc	12 1192
11.BMP4DN	1 H1	BMP4 Derived Mes	endoden	m Culture	ed Cells	12_E	.nhWk2	2				- 0				NHASTTCCBY	HWHN			hoon a	cociated h	
SN.CC	Bra	in Cingulate Gyrus				12_E	.nhWk2	2		PU.	1_know	n3 -	11	.7 9.8						Deen as	sociated b	y UWAS
/FK.2	Per	IIS Foreskin Keratir	locyte Pr	imary Ce	lis.Donor skinu	12 12_E	nnvvk2	2		Pbx	3 disc3	_	6.6	5 11.2		TIGGYYVNNNBNSC	YGYCMVT			with we	hight fluctu	ation
IUES6	HUE	S6 Cell Line		450		12_6	nnvvk2	2								0000000				with we	eignit nuctu	ation
SN.HM150	Bra	in Hippocampus Mi	dale.Don	101 150		12_5	nnvvk _é	<u>'</u>		SET	DB1_di	sc1 +	2.3	9.9		CRNDGM	HIBMIGGRAR	WKGIAGIYY			2011000	and
BN.AG	Bra	in Angular Gyrus				12_E	nhWk	2		Znf	143_dise	:3 +	9.9) 11.2		GST	VBBSBGGGVV	NBGBRGB			22911880)	anu
										- i										major d (PMID 2	lepressive 22472876)	disorder

T1D enrichment relative to randomized cell types

T1D/RA-enriched enhancers spread across genome

- High concentration of loci in MHC, high overlap
- Yet: many distinct regions, 1000s of distinct loci

- 1. Regulatory annotations of the human genome: an overview
- 2. Using regulatory annotations to interpret GWAS
 - a. Locus level
 - b. Systems level
- 3. Beyond GWAS
 - a. Molecular variability
 - b. Empowering rare-variant and pathway analysis

Beyond GWAS: Molecular variability

eQTLs: The GTEx Project

17 GTEx tissues w/ close Roadmap match

GTEX tissues

Current Roadmap tissues

1	Adipose	Adipose nuclei (E54)
2	Blood	Peripheral blood mononuclear primary cells (E87)
3	Brain - Midbrain - Substantia nigra	Brain - midbrain - substantia nigra (E61)
4	Brain - Cortex - Frontal Cortex (BA9)	Brain - cerebral cortex - mid frontal lobe (E60)
	Brain - Cerebellar Hemisphere	Brain - cerebral cortex - inferior temporal lobe (E59)
5	Brain - Cerebellum	Brain - cerebral cortex - angular gyrus (E56)
	Brain - Cortex - Anterior cingulate cortex (BA24)	Brain - cerebral cortex - cingulate gyrus (E58)
	Brain - Cortex	
	Brain - Cerebrum - Subcortical - Hippocampus	
6	Brain - Cerebrum - Subcortical - Caudate (basal ganglia)	Brain - cerebrum - basal ganglia - anterior caudate (E57)
	Brain - Cerebrum - Subcortical - Basal ganglia - Putamen	Brain - cerebrum - hippocampus (E25)
	Brain - Cerebrum - Subcortical - Basal ganglia - Nucleus accumbens	
7	Heart	Heart - left ventricle (E82)
<i>′</i>	heart	Heart - fetal heart (E04)
8	Lung	Lung - fetal lung (E06)
9	Muscle - Skeletal	Muscle - skeletal muscle (E47, E48, E89)
10	Deperade	Pancreas (E85)
10	Pancreas	Pancreatic islets (E86)
		Penis foreskin fibroblast (E19, E20)
11	Skin	Penis foreskin keratinocyte (E21, E42)
		Penis foreskin melanocyte (E22, E33, E44)

- Expected to increase with additional coverage
- Expression correlation metric for unbiased matching

Example of functional overlap

Genotyped SNPs in monocyte DNAse peaks

- 25 eQTLs in blood from GTEx lie within monocyte DNase peaks from ENCODE
- Significantly more than expected by chance
- Even after correcting for TSS distance and tissue³¹
 → eQTLs identify likely regulatory elements

Functional characterization of eQTLs

- 1. Functional roles: specific region, motif, link, ASE
- 2. Exploit GTEx matrix for systems biology studies
- 3. Disease roles: modules, tissues, genome-wide

Enhancer-gene links supported by eQTL-gene links

Validation rationale:

- Expression Quantitative Trait Loci (eQTLs) provide independent SNP-to-gene links
- Do they agree with activity-based links?

Example: Lymphoblastoid (GM) cells study

- Expression/genotype across 60 individuals (Montgomery et al, Nature 2010)
- **120** eQTLs are eligible for enhancer-gene linking based on our datasets
- **51** actually linked (43%) using predictions
 - → 4-fold enrichment (10% exp. by chance)
- Expression Sequence variant level of gene Activity at distal position
- Independent validation of links.
- Relevance to disease datasets.

GTEx eQTLs enable us to define multi-tissue expression modules in individuals

- Regulators and motifs affect gene expression patterns
- Exploit multi-tissue multi-individual nature of dataset

Expression modules enriched in relevant GO terms

Across individuals, genes change between modules

→ Use module membership prob. as quantitative traits

Identify SNPs underlying module changes: netQTLs

Single-tissue expression patterns only a partial picture

Ex2: Mod19(lymph only)⇔Mod12(mesdoerm-wide)

Multiple SNPs associated with different PCs of variation

Ex3: ZFP57 three modules, three PCs, multiple SNPs

ZFP57 shows distinct expression patterns across indiv.
ZNF-KRAB regulator, transient neonatal diabetes mellitus

EWAS: Global association of brain enhancers with AD

750 subjects, initially cognitively normal, Alzheimer's diagnosed by pathology. (Bennett)

Majority of AD-associated GWAS SNPs are meQTLs

Rank	ad.rsid	Gene	Description	meQTL P-value	meQTL SNP	meQTL Gene	SNP state
1	rs11767557	EPHA1	Ephrene A receptor 1	1.12E-13	rs12703526	cg18997129	24_Quies3
2	rs1532278	CLU	Clusterin	6.68E-125	rs17057441	cg18814083	22_Quies1
3	rs3865444	CD33	Myeloid transmembrane receptor	1.13E-10	rs12971624	cg11581627	22_Quies1
4	rs561655	PICALM	Phosphatidylinositol binding clathrin assembly protein	7.11E-77	rs17817919	cg24166175	22_Quies1
5	rs610932	MS4A2	Immunoglobulin receptor subunit	1.37E-33	rs562028	cg16954525	22_Quies1
6	rs6701713	CR1	Complement Receptor 1	1.39E-21	rs3849266	cg19373649	22_Quies1
7	rs7561528	BIN1	Bridging Integrator Nucleocytoplasmic adaptor protein	3.73E-176	rs4663104	cg02887598	2_TssF
8	rs9349407	CD2AP	Actin Cytoskeleton Regulating Scaffold	7.12E-63	rs2275446	cg16361253	22_Quies1

- Importance of mapping intermediate phenotypes
- Genetic ⇔ Molecular ⇔ Cellular ⇔ Neural ⇔ Disease

- 1. Regulatory annotations of the human genome: an overview
- 2. Using regulatory annotations to interpret GWAS
 - a. Locus level
 - b. Systems level
- 3. Beyond GWAS
 - a. Molecular variability
 - b. Empowering rare-variant and pathway analysis

Pathway analysis of GWAS relies on accurately linking cis-regulatory regions to their targets

eQTLs reveal that closest isn't always best

- 1877 GWAS SNPs are within r2>=0.8 of the best GTEx eQTL for a gene/tissue combination
- Only 345/1810 (19%) of phenotype-associated GTEx eQTLs show agreement between their strongest eQTL-linked gene(s) and their physically closest or overlapping gene(s)

eQTLs for improved target gene prediction of regulatory GWAS SNPs

- rs919129 (myocardial infarction) is 25 kb from proximity-based target FBN.
 Strongest eQTL target is a novel lincRNA 191 kb away, RP11-506F22.2
- Alters a TBX5 motif instance (role in heart development)

Regulatory motifs altered										
PWM	Strand	Ref	Alt	Match on: Ref: AAGTGCAAAAAGGAGGTATGGGAGAATGTGTGAGI Alt: AAGTGCAAAAAGGAGGTATGGGAGAATGT A TGAGI						
TBX5_3	+	6.7	-5.3	MAGGTGTGAR						

Activity, eQTL, and conformation methods agree on links

Linking as another way to improve GWAS analysis

Current methods

Regulatory genomics informed methods

Annotating rare variants: for burden tests on WGS data

Regions implicated in disease via linkage in family studies

Annotating rare variants: for clinical interpretation pipelines

- 1. Regulatory annotations of the human genome: an overview
- 2. Using regulatory annotations to interpret GWAS
 - a. Locus level
 - b. Systems level
- 3. Beyond GWAS
 - a. Molecular variability
 - b. Empowering rare-variant and pathway analysis

The (very) big picture

Feedback from environment / disease state

Acknowledgements

Kellis lab:

- Manolis Kellis
- Pouya Kheradpour
- Jason Ernst
- Benjamin Iriarte
- Abhishek Sarkar
- Matthew Eaton
- Wouter Meuleman
- Anshul Kundaje
- Jianrong Wang
- **ENCODE Project Consortium**

Roadmap Epigenome Mapping Consortium GTEx Project Consortium

Luke Ward Manolis Kellis lab, MIT July 18, 2013