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@» Linking who, what, and how iIn
the human microbiome

What are the
biomolecular networks driving
emergent phenotypes
In the microbiome and their
influences on human health?
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hi» Meta’omic taxonomic profiling with MetaPhlAn:
leveraging 1,000s of microbial genomes
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- Blast reads agains the marker genes
- Assign, count, normalize reads
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Bacteroides uniformis
Bacteroides vulgatus
Bacteroides stercoris
Bacteroides eggerthii
Parabacteroides merdae

Alistipes shahii

Dialister invisus

Eubacterium siraeum
| Eubacterium rectale
Butyrivibrio crossotus

Prevotella copri
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Alistipes putredinis
Bacteroides caccae
Bacteroides xylanisolvens
Bacteroides ovatus
Bacteroides unclassified
Ruminococcus bromii
Faecalibacterium prausnitzii




A map

of diversity
in the human
microbiome
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Streptococcus dominates
the oral cavity with
S. mitis > 75% in the
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hi» Meta'omic functional profiling with ShortBRED:
the Short Better REad Database creator
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Reconstructing the gut metabolism
from metagenomics data

Manually compiled set of pathway modules that captures microbial ‘food chain’
120 modules

Host tissues .
f Fermentable oo — Sugar fermentation
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ho» Meta’omic ecological profiling with CCREPE:
identifying co-occurring microbial consortia
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Borenstein Lab

Comparing Co-Occurrence and Predlctedm
Interactions in the Gut Microbiome

Metagenomics Full genomes
(124 hosts) (154 species)
Species abundance Reverse ecology
. - Nutritional Nutritional

Overlap Complementarity
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L Multi'omic data integration is necessary to understand
biomolecular function in the microbiome

Signaling
molecules
Species/strains Cell types
- il L‘\Qi

Epigenetics
Genes + variants
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L Multi'omic data integration is necessary to understand
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biomolecular function in the microbiome
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DOC The microbiome in IBD: a group of

complex microbial diseases

* The gut microbiota varies in IBD

— Diversity is almost certainly reduced
(Manichanh 2006, Ott 2006, Frank 2007, Sokol 2008, Nishikawa 2009, Willing 2010; contrast Lepage 2009)

— Specific clades are often over/under enriched
(Baumgart 2007, Frank 2007, Willing 2010, Joossens 2011, Frank 2011, Lepage 2011)

— IBD subsets — colitis, ileal CD, etc. — are differentially affected
(Sokol 2008, Willing 2010, Joosens 2011, Lepage 2011)

Like disease alleles,
infectious disease €==» one microbe,
complex disease €= many microbes

* Which structural changes might be functional?

— (If any)
— (In each subset)
— And which are instead associated with treatment/environment?

* And why: which specific microbial functions are
iInvolved in these changes?
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during IBC

% How is the gut microbiome disrupted
 and its treatment?
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Dimension 2 (14.33%)

% How is the gut microbiome disrupted

during IBD and its treatment?
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LW PICRUSLt: Inferring community metagenomic potential
from marker gene sequencing
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ey \Which functions of the gut microbiome
f are disrupted by IBD?

* Qver six times as many microbial metabolic

processes disrupted in IBD as microbes

— If there’s a transit strike, everyone working for the MBTA is disrupted,
not everyone named Smith or Jones
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» Gaps in knowledge and methods
for microbiome functional ‘omics:

Tools to make meta’omics as easy as microarray analysis

— Web for data organization and acquisition, desktop for visualization and manipulation,
cloud for democratized scalability

Systematic, cross-species microbial protein function cataloging
Quantitative models of community metabolic and regulatory networks

Exhaustive identification of microbe-microbe and host-microbe
interaction mechanisms

— Small molecule signals, bioactive metabolites, secreted and cell surface peptides...
Detailed, temporally-resolved "microbiogeography”

In vitro models of human-associated microbial communities for controlled
gene and microbe “knock out” and “knock in” experiments

Standards for reproducibility of all aspects human microbiome
experiments and analysis to ensure translation-quality results
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2 Why shotgun metagenomics and
f metatranscriptomics?

* Currently the simplest and most cost-effective way to
assess microbiome biomolecular function
— ~3-8x per-sample cost of 16S amplicon sequencing
— Strain level identification of microbes
— Readily accesses bacteria, archaea, viruses, and eukaryotes

— Exposes not just who's there, but
genetic potential, synteny, regulation, and variation

— Leverages analysis methods from single-organism DNA/RNA-seq

« What's the bad news?

— ~3-8x per-sample cost of 16S amplicon sequencing
— Requires samples with greater biomass

— Sensitive to samples with greater host contamination
— Can require more complex informatics
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