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Clinical Case

61 year old woman referred for evaluation of chronic diarrhea
for 8 months. Symptoms originally started following
treatment with cephalosporin and quinolone antibiotics for
back surgery and pulmonary infection. During these 8
months she had several hospitalizations for intravenous
hydration. A colonoscopy showed “ischemic colitis” on
biopsies. Intermittently she was treated with variable success
with Metronidazole and Vancomycin. She had bowel
movements every 15 minutes with urgency and tenesmus.

She lost 27 kg of Weight and was confined to a wheelchair.
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Recurrent C. difficile Infection Syndrome
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Development of CDI
» Severe diarrhea, abdominal pain, nausea and fever

» C. difficile toxins induce inflammation and cell death
= CDI can cause pseudomembranous colitis
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Fecal Microbiota Transplantation:
Mechanisms
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Dr. Ben Eiseman (1917-2012)

* Chief of Surgery, Denver VA Hospital, 1953-
61

* Founding Chairman of Surgery, University of
Kentucky, 1961-67

* Founding Chairman of Surgery, Denver
General Hospital, 1967-77

* > 450 scientific articles

* 7 books

* Active Military Duty in 4 wars

* Rear Admiral (MC) USNR — retired 1974

* Active academic through 2012




Dr. Ben Eiseman (1917-2012)

“In the early days of oral antibiotics we were
plagued by frequent diarrhea in our patients
due presumably to killing off intestinal bacteria.
[ was Chief of Surgery at the VA and
simplistically considered merely reintroducing
normal organisms to counter such absence.
Those were days when if one had an idea, we
simply tried it. It seemed to work and I wrote
it up. It made a small splash...Best wishes.

Ben Eiseman Emeritus Professor of Surgery —
Now age 93 (2012).
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Analysis of 16S clone libraries of the fecal microbiota in patients with antibiotic-associated

# 2008 by the Infectious Diseases Society of America

diarrhea due to Clostridium difficile.
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FMT Results in Restoration of Gut Microbial Diversity
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Relative abundance
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FMT Results in Restoration of Gut Microbial Diversity
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FMT Results in Restoration of Gut Microbial Diversity
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What about the “Yuck” factor?




What about the “Yuck” factor?




What about the “Yuck” factor?

Standardized Full Spectrum Microbiota

. Rigorously tested volunteer donors
. Cryopreserved

. Virtually eliminated odor

* The same number of bacteria per dose

* Manufactured under GMP conditions at an

FDA registered facﬂity at the UMN




What about the “Yuck” factor?
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Potential Mechanisms of FMT in R-CDI

Microbiota Host

Bile Acids

Cholic Acid

C. dzﬁrz'ci]e

[lustration by Adam Alaniz )
* Sporulation

* Spore germination
* Vegetative growth
* Adhesion to epithelial cells

* Toxin production




Competitive Niche Exclusion
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[llustration by Adam Alaniz




Steady State:
1. Normal T cell population size
2. Great TCR Diversity

Lymphopenia-
inducing insult
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Recovery via LIP where all T cells
proliferate equally:

1.  Normal T cell population size
2. Limited TCR diversity

Recovery via LIP where some

T cells have a selective

advantage over others:

1. Normal T cell population size
2. Oligoclonal expansion

3. Greatly reduced TCR diversity
4. Potential autoimmunity

Recovery in presence of a functional thymus

Khoruts A and Fraser ]M (2005) /
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Nature Reviews | Microbiology

*Thuricin CD inhibits
vegetative growth of C. difficile
in an ex vivo colon infection
model

*Produced by B. thuringiensis

*Narrow activity spectrum
Rea et al., PNAS (2010)

Cotter et al. (2013)
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% Live or Dead

Lactobacillus delbrueckii ssp. Bulgaricus B-30892 inhibits
cytotoxicity and adhesion of C. difficile to Caco-2 cells
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LDB releases bioactive components that inhibit C.

difficile blocks toxin activity (mechanism?)

Banerjee, P, et al., (2009)




% Live or Dead

Lactobacillus delbrueckii ssp. Bulgaricus B-30892 inhibits
cytotoxicity and adhesion of C. difficile to Caco-2 cells
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LDB releases bioactive components that inhibit C.
difficile blocks toxin activity (mechanism?) and
adhesion to epithelial cells

Banerjee, P, et al., (2009)




% Live or Dead

Lactobacillus delbrueckii ssp. Bulgaricus B-30892 inhibits
cytotoxicity and adhesion of C. difficile to Caco-2 cells
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Immune-mediated colonization resistance

Microbiota

Innate and Adaptive Immunity

Mucous layer

Epithelial cell

[lustration by Adam Alaniz




Immunity against C. difficile

* Antimicrobial peptides
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o.-Defensins neutralize C. difficile toxin B Giesemann T, et al. (20008) /




Immunity against C. difficile
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o.-Defensins neutralize C. d{'l‘ﬁcile toxin B

Antimicrobial peptides
NOD1

MyD388

IL-1B

CXCL1

TLR5

Anti-C. difficile toxin IgG

Giesemann'T, et al. (20008)
Hasegawa M, et al. (2011)
Jarchum [, et al. (2012)
Hasegawa M, et al. (2012)
Jarchum [, et al., (2011)
Kyne L, et al. (2000)

Lowy I, et al. (2010) /




Bile Acids and Salts

Cholic Acid
Optionally added
n Iwer: determines
CAvs ChDxCA

Conjugation Site

y Removed by gut bacteria:
CA —DxCA
ChDxCA — LiCA

CA = cholic acid LiCA =lithocholic acid
DxCA= deoxycholic acid  ChDxCA =chenodeoxycholic acid
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Bile Acids and Salts
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Bile Acids and Salts

Chaolyiglycine
aom Chenodeoxycholylglycine
choleatencd) Deoxycholyiglycine
Lithocholylglycine
Ursodeoxycholylglycine

Sulfolithocholylglycine -

+ 50,
Sulfolithocholyltauring <————

Cholyltaurine
\ E Chenodeoxycholyltaurine
: Deoxycholyliauring
Secondary R-C-N-{CH,),50
firom primary |4 i (crunsen Lithocholyhtaurine
- o ) Lithocholie Ursodeaxycholyltaurine

Hofmann, AF (2008)




Microbiota Alter Bile Acid Composition

Feces

Colon

Cecum

Feces

Caolan

Cecum

CONV-R Mice
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Sayin et al., Cell Metab (2013)
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Metabolism of Bile Salts in Mice Influences Spore
Germination in Clostridium difficile

Jennifer L. Giel'”, Joseph A. Sorg?, Abraham L. Sonenshein?, Jun Zhu'*

1 Department of Microbiclogy, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America, 2 Department of Maolecular Biclogy
and Micrebiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
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Bile salts in C. difficile spore germination
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Bile salts in C. difficile spore germination
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Germination Factor is:
* small

* heat-stable

* water-soluble

* sensitive to cholestyramine

Giel, JL (2010) )




CFU recovery (%)

Bile salts in C. difficile spore germination
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Fecal bile acids pre- and post-FMT
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Pre- and post-FMT untargeted
metabolomics
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ID [M-H] Formula Identity Effect of FMT
I 407.2798 C24H4005 cholic acid (CA) !
I1 391.2848 C.:H4O, chenodeoxycholic acid (CDCA) 1
11 391.2848 C24H400y4 deoxycholic acid (DCA) T
IV 375.2899 C:4H4003 lithocholic acid (LCA) }
v 391.2848 C::HaOy isodeoxvcholic acid (1soDCA) T
@9 CacHesNO-S taurocholic acid (TCA) )
VII 498.2889 CocHasNOGS taurochenodeoxvycholic acid (TCDCA) 1
VIII 464.2817 CsH4:NOg glycocholic acid (GCA) l
IX 448.3063 C::Hi:NOs glycoochenodeoxvycholic acid (GCDCA) 1










Current Directions Include:

e Further Development of Standardized Full—Spectrurn

Microbiota for Therap eutic Transplantation

* Expansion of GMP Manufacturing of Full—Spectrurn

Microbiota

® Mechanism-based Development of Disease Targeted

Microbiota Therapeutics




Gaps and Challenges
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