The role of economic modeling for study design and implementation Marc S. Williams, MD, FAAP, FACMG Geisinger Health System

Objectives

- Briefly describe economic modeling and its strengths and weaknesses
- Discuss potential applications for study design and implementation
- Present successful examples of application of modeling in genomics

What is economic modeling (add definition)

 In economics, a model is a theoretical construct representing economic processes by a set of variables and a set of logical and/or quantitative relationships between them. The economic model is a simplified framework designed to illustrate complex processes, often but not always using mathematical techniques.

Strengths and Weaknesses

- Doesn't require complete data
- Helps to identify which data elements are the most important to collect
- Can be run from different stakeholder perspectives

- Very sensitive to assumptions
- Rigorous modeling is very complex, resource intensive requiring significant expertise and experience
- To reflect the 'real world' models can become unmanageable

Examples (references at end)

The health system perspective

O Universal Lynch syndrome screening

- Hypothetical analysis to facilitate future decision making

 IL28B testing to inform use of protease inhibitor in Hepatitis C viral genotypes
 2 and 3
- Patient perspective

Pharmacogenomic testing to inform warfarin dosing

Generic approaches to modeling

 HLA-B*15:02 and carbamazepine
 Lynch syndrome

Universal Lynch syndrome screening

Comparison of Models

100 CRC cases protocol	total cost to test	incremental increase in cost	# LS cases found	increase in cases found versus protocol above	average cost per case detected	cost to find additional case of LS
IHC with <i>BRAF</i> and Methylation	\$35,203		3.28		\$10,730	
IHC with Methylation (no <i>BRAF</i>)	\$37,369	\$2,166	3.29	0.0076	\$11,363	285,807
IHC with <i>BRAF</i> (no Methylation)	\$38,338	\$969	3.34	0.0512	\$11,481	\$19,056
IHC straight to Sequencing	\$44,652	\$6,313	3.35	0.0039	\$13,355	\$1,604,113

IL28B and Protease inhibitors in HCV

- Routinely used in HCV viral genotype 1

 Economic analyses support cost-effectiveness
- HCV viral genotypes 2 and 3 more responsive to therapy • Standard therapy is dual therapy not including PI
- Patient *IL28B* genotype predicts response to treatment in all HCV viral genotypes

 \odot Very limited evidence in HCV genotypes 2 and 3

- Questions:
 - Could *IL28B* genotyping be used to select candidates for use of triple therapy?
 - How much improvement in sustained viral response is needed to cross a threshold of cost effectiveness?

Results

	SOC duration,	HCV cohort	Telaprevir recipients	Therapy cost, USD	Cost-effectiveness threshold, SVR rate		Threshold increase from SOC	
	weeks				cohort A	cohort B	cohort A	cohort B
[7]	24	Treatment Arm 1	All SNPs	46,294.49	≥94.85	≥97.67	7.91	11.11
[7]	24	Treatment Arm 2	All SNPs	44,334.71	≥80.92	≥83.70	9.06	12.80
[7]	24	Treatment Arm 3	TG/GG (rs8099917) or TT (rs12979860)	27,613.03	≥83.85	≥84.74	2.63	3.72
[14]	12	Treatment Arm 4a	TT (rs12979860)	14,050.81	≥61.71	≥62.02	1.66	2.17
[14]	24	Treatment Arm 5a	TT (rs12979860)	24,529.28	≥79.60	≥80.16	1.40	2.11
[14]	12	Treatment Arm 4b	CT or TT (rs12979860)	24,881.22	≥64.64	≥66.11	6.49	8.91
[14]	24	Treatment Arm 5b	CT or TT (rs12979860)	37,056.93	≥82.82	≥84.74	5.50	7.95

Administering triple therapy to patients with resistant *IL28B* genotype requires an improvement in SVR of slightly greater than 2% to cross cost-effectiveness threshold. Treating all patients requires an improvement of over 11%.

PGX informed Warfarin Dosing and Patient Perspective

- Used prospective trial data from Intermountain Healthcare
- Use a policy model approach to assess cost-effectiveness
- Testing vs. no testing arms essentially equivalent
- Prospective trial data showed that tested patients required 2-3 fewer INRs
- Patient-centered perspective would strongly favor testing based on reduced disruption of patient/family life

Generic Modeling

• Supplement to UF IGNITE grant

- Modeling cost-effectiveness analysis for pre-emptive genetic testing for a pharmacogenomics adverse event (HLA-B*15:02 and Carbamazepine)
- \circ International scope
- o Building generic model on the published Thai model.
- Using data from Singapore and Malaysia to compare results of customized model to generic model
- \circ Generic model is delivering results that are probably 'good enough'
- $\ensuremath{\circ}$ Manuscript in preparation

Generic Modeling

- Lynch syndrome implementation project
 - Using a business case model developed and tested at Intermountain Healthcare
 - Will populate model with local inputs from several different health care systems
 - Measure the impact of the model results on decision making at the institutional level
 - Proposal in revision for resubmission to NIH D&I study section

Conclusions

- Defining perspective is critically important
- Economic analysis tools can be used pragmatically to rationalize decision-making
- Tough to publish!!
- Just scratching the surface regarding application in genomic medicine

Shameless Plug

Economic Evaluation in Genomic Medicine

Vasilios Fragoulakis Christina Mitropoulou Marc S. Williams George P. Patrinos

References

- Gudgeon JM, Williams JL, Burt RW, Samowitz WS, Snow GL, Williams MS. Lynch Syndrome Screening Implementation: Business Analysis by a Healthcare System. Am J Manag Care 17:e288-300, 2011.
- Bock JA, Fairley KJ, Smith RE, Maeng DD, Pitcavage JM, Inverso NA, Williams MS. Cost-Effectiveness of IL28B Genotype-Guided Protease Inhibitor Triple Therapy versus Standard of Care Treatment in Patients with Hepatitis C Genotypes 2 or 3 Infection. Public Health Genomics 2014;17(5-6):306-19.
- Meckley LM, Gudgeon JM, Anderson JL, Williams MS, Veenstra DL. A Policy model to evaluate the benefits, risks and costs of Warfarin pharmacogenomic testing. Pharmacoeconomics 28(1):61-74, 2010.
- Gudgeon JM, Williams JL, Burt RW, Samowitz WS, Snow GL, Williams MS. Lynch Syndrome Screening Implementation: Business Analysis by a Healthcare System. Am J Manag Care 17:e288-300, 2011.
- Gudgeon JM, Belnap TW, Williams JL, Williams MS. Impact of Age Cut-offs on a Lynch Syndrome Screening Program. J Oncol Pract. 2013 Jul 1;9(4):175-9.