

North Carolina Newborn Exome Sequencing for Universal Screening

An NSIGHT research study jointly funded by NHGRI and NICHD Project #5U19HD077632-03

THE UNIVERSITY

of NORTH CAROLINA

at CHAPEL HILL

Objectives

- Brief background about standard newborn screening (NBS) as a public health program
- Limitations to adding additional conditions to newborn screening
- The potential of using next-generation sequencing in NBS
- Ethical issues raised about using this technology in NBS
- Explain our research study examining the possibility and potential of using next-gen sequencing to improve the sensitivity and specificity of current NBS and to increase the number of conditions screened for in newborns
- Ways in which we are exploring these issues and helping parents make decisions about whether they would like to have their child participate

Newborn Screening

 Newborn screening ... is a public health program aimed at the early identification of conditions for which early and timely intervention can prevent or reduce associated mortality and morbidity

Newborn Screening Task Force Report, <u>Pediatrics</u> 106: 383-427 (2000)

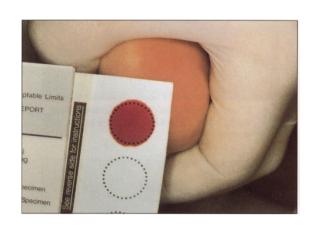
Untreated PKU

Prior to Newborn Screening

The Metabolic Basis of Inherited Disease, Stanbury et al . eds,

McGraw-Hill,1966

Treated PKU
After Newborn Screening


Me, You and PKU a rare disease, a wonderful life https://meupku.wordpress.com/

Recommended Uniform Screening Panel (RUSP)

- Effort to standardize conditions screened for by states across the US
- 2005 Task Force funded by HRSA recommended 29 conditions
- Advisory Committee on Heritable Disorders in Newborns and Children
 - http://www.hrsa.gov/advisorycommittees/mchbadvisory/heritabledisorders/
- New conditions can be "nominated"
- Limitations to adding new conditions include no screening tool available, screening tool too expensive, no treatment

Newborn Screening

- 32 conditions are now on the Recommended Uniform Screening Panel (RUSP)
 http://www.hrsa.gov/advisorycommittees/mchbadvisory/heritabledisorders/recommendedpanel/
- Molecular genetic testing is increasingly being used for second tier screening (e.g. CF, hemoglobinopathies) and to determine the severity or specific condition found on screening (e.g. MCADD, SCID, hearing loss)

Next Generation Sequencing in Newborn Screening

- Theoretically, barriers to adding any disorder to NBS panel may be overcome if there is a genetic etiology established for a condition
- **But**, as recognized early on by Wilson and Jungner: "The central idea of early disease detection and treatment is essentially simple. However, the path to its successful achievement is far from simple though sometimes it may appear deceptively easy"

Next-Generation Newborn Screening Ethical Issues

"Incidental" or "secondary" findings

http://newsmomsneed.marchofdimes.org

"Incidental Findings"

- Testing can identify things that are not related to the original intent of testing ("incidental" or "secondary" findings")
 - Example: Finding a mass in the brain (?tumor) when doing a CT scan in someone who was in a car accident and hit their head
- With next gen sequencing these can include mutations in genes such as those for breast or colon cancer, cardiac arrhythmias, intellectual disability, etc.....
- What should be reported back to patients/families?

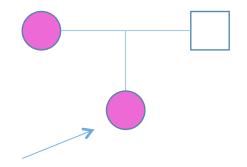
Next-Generation Newborn Screening Ethical Issues

"Incidental" or "secondary" findings

Protecting the autonomy of the child while balancing the rights of

parents to have information

http://www.myelin.org



Child's Autonomy

- Testing for adult onset conditions in infants
- "Pre-symptomatic genetic testing"
- The right of the child not to know this information
- Genetic discrimination
- Versus the rights of parents to have information about their child
- Carrier status for hemoglobinopathies has been shared for more than 30 years and CF carrier status revealed for some in standard NBS
- Research studies have not shown deleterious effects to children/ adults learning information but there have been few studies

Autosomal Dominant Conditions

- e.g. BRCA gene mutations
- Associated with increased risk of breast and ovarian cancer
- If identified in a child, likely inherited from a parent
- Is saving the life of a parent a "benefit" to the child?
- Some have argued that children should not have screening to provide genetic information about their parents

Next-Generation Newborn Screening Ethical Issues

- "Incidental" or "secondary" findings
- Expanding the concept of "benefit" of screening to the family in addition to the child
- Broadening the definition of "treatable"

Why screen for conditions that don't fulfill the definition of "treatable" in the traditional sense, such as those associated with intellectual disability?

- Ends the search for a cause (the "diagnostic odyssey")
- Avoids unnecessary and expensive testing
- Decreases the time to interventions (therapy services, etc.)
- Informs family of genetic risk information

U-19 RFA NIH: Genomic Sequencing and Newborn Screening Disorders NHGRI and NICHD - 2012

 ...invite applications that propose to explore the implications, challenges and opportunities associated with the possible use of genomic sequence information in the newborn period.

NC NEXUS Overarching Aims

- 1. Study how Next Generation Sequencing (NGS)-Newborn Screening (NBS) can extend the utility of current NBS.
- 2. Devise and evaluate a clinically oriented research framework for analysis of NGS-NBS.
- 3. Develop best practices for incorporating NGS-NBS into clinical care.

Three Groups of Children to be Studied

- Cohort 1: children ages 0-5 years with one of four conditions identified by current NBS
 - PKU
 - MCADD
 - CF
 - Hearing loss
- Cohort 2: Children with rare genetic disorders not tested for with current NBS
 - Primary ciliary dyskinesia
 - Mucopolysaccharidoses
 - Wilson disease
 - Adrenoleukodystrophy
- Cohort 3: Well-child group, prenatal recruitment

An age-based modified metric system

Adult-onset MCAD medically **NGS-NBS** actionable **Actionability** Tay Childhood on set entosa Adult-onset nonnon-medically medically actionable actionable 14 16 18 20 22 24 26 28 30+

Adulthood

Onset

Infancy Childhood Adolescence

An age-based modified metric system

Age of onset can be variable for many genetic conditions

Actionability may change over time as new treatments become available.

Actionability

Adult-onset MCAD medically **NGS-NBS** actionable Adult-onset non-Retinitis pigmentosa Childhood onset nonmedically medically actionable actionable

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30+
Infancy Childhood Adolescence Adulthood

Onset

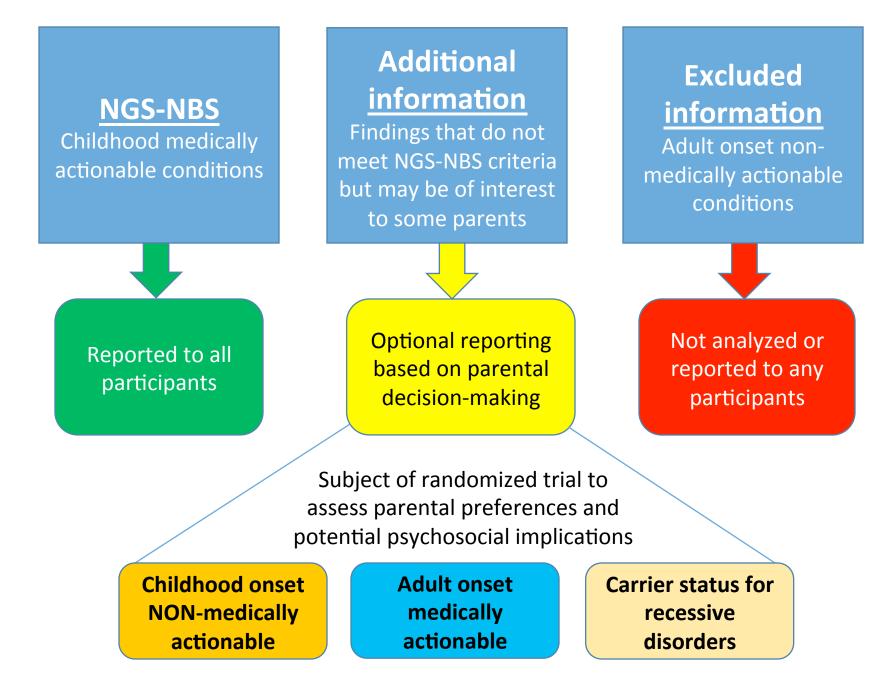
Actionability: scoring genes to determine conditions that are appropriate for a NGS-NBS versus those that fit in other categories

NGS-NBS

Childhood medically actionable conditions

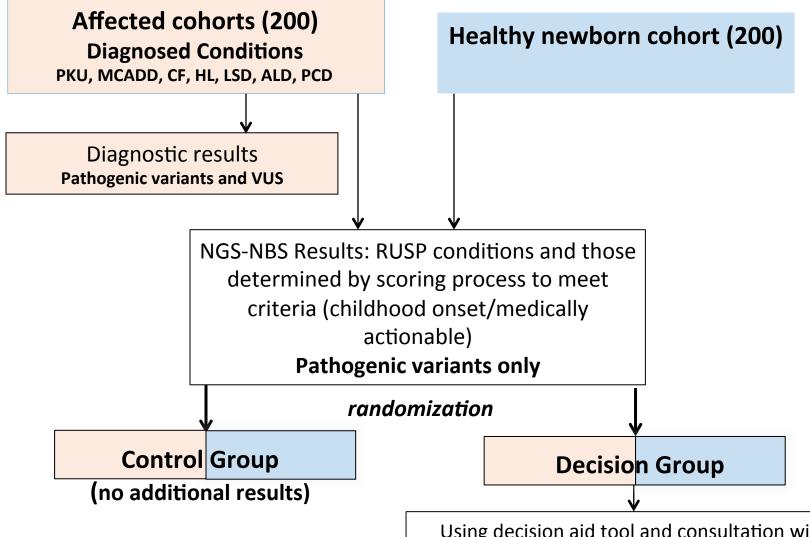
No genetic changes revealed through sequencing will be "incidental"

conditions currently on the recommended uniform screening panel (RUSP)


Conditions that fit a similar profile to RUSP

ALGORITHM

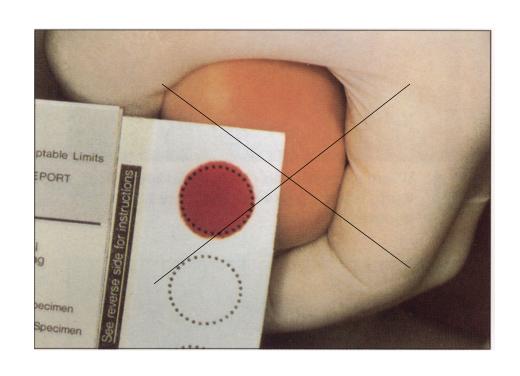
- Severity of outcome
- Likelihood of severe outcome
 - Efficacy of intervention
- Acceptability/burden of intervention
 - Knowledge base


NGS NBS Candidate Condition

- Multiple Endocrine Neoplasia type 2B
 - Caused by mutations in the RET gene
 - 100% develop medullary thyroid cancer in infancy or early childhood
 - High rate of metastases at time of diagnosis
 - 50% develop pheochromocytomas (adrenal tumors)
 - 50% have negative family history
 - Not suspected if there is no family history because it is rare (1/35,000 for all types of MEN type B) and there are no early signs or symptoms in infants
 - Benefit of identifying the genetic mutation:
 - Thyroid cancer can be prevented by removing the thyroid before tumors develop
 - Can monitor the occurrence of pheochromocytomas by biochemical screening of catecholamines
 - Knowing an individual's mutation affects their medical management

Not analyzed unless parents request it

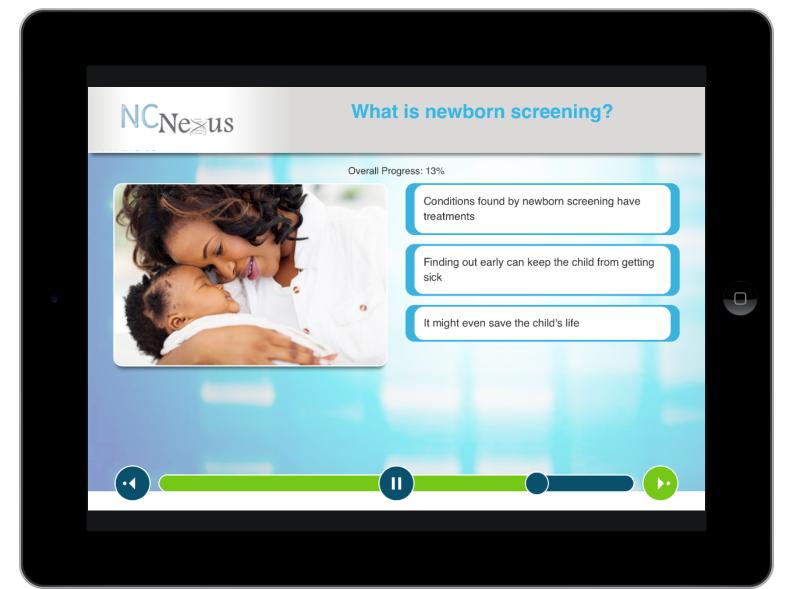
University of North Carolina (UNC) Project Overview



Using decision aid tool and consultation with geneticist/genetic counselor parents decide which additional categories of information to receive Childhood-onset non-medically actionable, Adult-onset medically actionable, Carrier status

Pathogenic variants only

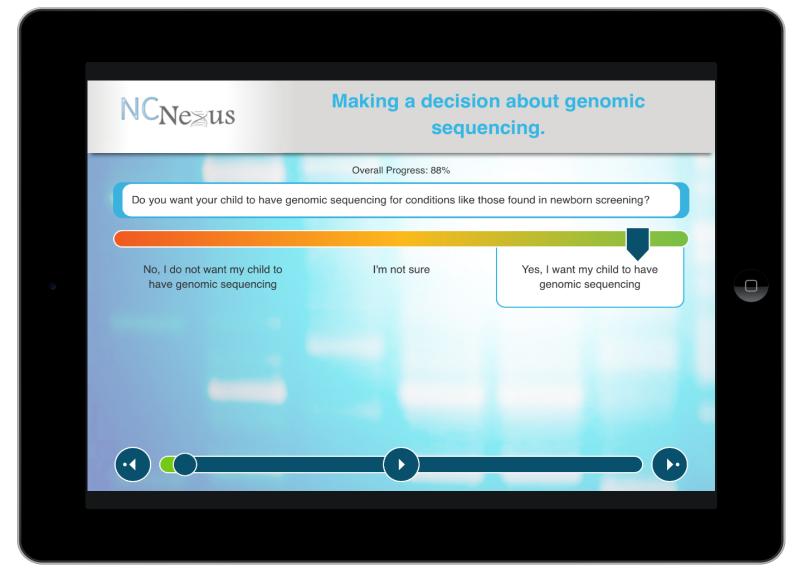
Using DNA from saliva



Scientific Objective for Project 3:

Develop best practices for incorporating next generation newborn screening into clinical care by exploring ethical, legal and social issues involved in informed decisionmaking and return of results

Decision Aid – contains 4 "sections"


Traditional Newborn Screening and Similar Conditions

Non-Medically Actionable Childhood Conditions

Medically Actionable Adult Onset Conditions

Carrier Status

Screenshot – Decision about Genomic Sequencing

NC NEXUS TEAM

Principal Investigators

- Cynthia Powell PI and Project 2 PI
- Jonathan Berg Pl and Project 1 Pl
- Don Bailey Project 3 RTI PI
- Chris Rini Project 3 UNC PI
- Megan Lewis Project 3 RTI Co-PI

Project Coordinator

Laura Milko

Co-Investigators

- Myra Roche Project 3 UNC
- Kirk Wilhelmsen Project 1

Other Investigators

- Muge Calikoglu Project 2
- James Evans Projects 1 and 3
- Piotr Mieczkowski Project 1 (HTSF)
- Phillips Owen RENCI/Project 1
- George Retsch-Bogart Project 2
- Pat Roush Project 2
- Neeta Vora Project 2
- Karen Weck-Taylor Project 1

NC NEXUS TEAM

Binning Committee

Joe Muenzer

Muge Calikoglu

Art Aylsworth

Carl Seashore

Christie Turcott

Dianne Frazier

Dan Nelson

Bradford Powell

Neeta Vora

Debra Skinner

Jessica Booker

Myra Roche

Kate Foreman

Julianne O'Daniel

Megan Lewis

Kristy Crooks

Chris Rini

Don Bailey

Jonathan Berg

Cynthia Powell

Tess Stohrer

Lacey Boshe

Rebecca Moultrie

Tasha Strande

Tania Fitzgerald

Zahra Saadat Girnary

Collaborators

Oliver Adunka

Craig Buchman

Zheng Fan

Dianne Frazier

Robert Greenwood

Michael Knowles

Margaret Leigh

Maimoona Zariwala

