

TCGA computational histopathology pipeline reveals subtypes and their molecular signature

Hang Chang, Ju Han, Cemal Bilgin, Gerald Fontenay, Alexander Borowski, Joe Gray, Paul Spellman, and

Bahram Parvin

Lawrence Berkeley Laboratory

Computational histopathology pipeline captures molecular basis for each morphometric subtype

BERKELEY LAB

Use case and target for analysis in the second seco

BERKELEY I

- Glioblastoma multiforme (GBM)
 - Curated by removing tissue sections with artifacts (e.g., fold in tissue, pen mark, scanning anamoly)
 - Sample size
 - 380 tissue sections selected out of 447
 - 146 patients selected out of 152
- Challenges?
 - Technical and biological variations, very large datasets
- Approach
 - Development of robust and efficient image analysis algorithms
 - Computing morphometric features and meta-features
 - Subtyping based on selected features or reduced dimensionality (e.g., PCA, MDS)
 - Molecular association with morphometric subtypes

New algorithm enhances nuclear segmentation in the presence of technical variations

Seed detection provides shape signature and local statistics

Cell-by-cell segmentation result

Cell-by-cell segmentation result

Representation

.....

AE

Normalization across all tissue sections

What are subtypes based on cellularity and nuclear size at the patient level

What is the distribution of each subtype and how well each subtype predicts survival as a function of treatment?

What are the molecular basis of each subtype?

- Gene selection
 - Univariate or multivariate methods
 - Pathway or subnetwork enrichment analysis

	Name	Overlapping Entities	-	p-value	
Subtype1	Focal Adhesion Regulation Actin Cytoskeleton	CAV1,MET,ERBB4,KIT,PDGFRA,RASA4 0.00		0.000208	
	Regulation	MET,ERBB4,KIT,PDGFRA,SGCE,RASA4,PDLIM3		0.000555	
	Gap Junction Regulation Adherens Junction	MET,ERBB4,KIT,NPY2R,PDGFRA,RASA4 0.0082		0.008248	
	Regulation	DAAM2,MET,ERBB4,KIT,PDGFRA,CDH6		0.011068	
	KIT -> STAT signaling	КІТ		0.017364	
	HGFR -> STAT signaling	MET 0.023089		0.023089	
	PDGFR -> STAT signaling	PDGFRA		0.025939	
	HGFR -> FOXO3A signaling	MET		0.054015	
Subtype3	Name	Overlapping Entities			p-value
	CCR1 -> STAT signaling	CCL4,CCL3			0.003127
	CCR5 -> TP53 signaling	CCL4,CCL3			0.004022
	Gap Junction Regulation	GNAO1,CCL4,HRH1,KIT,CCL3,CALCRL,ADCY2,FGF12,RASA4		0.008737	
	KIT -> STAT signaling	KIT			0.033533
Subtype4	Name	Overlapping Entities	p-value		
	IL11R -> STAT3 signaling	IL11RA	0.018322		
	ThromboxaneR -> CREB				
	signaling	RASGRP1,GNG4	0.026307		
	EphrinR -> actin signaling	EFNB3,SGCE,EPB41L2	0.02702		

Can tumor composition be characterized?

 Since tumor is heterogeneous, can we query for subtypes at the block levels and learn about tumor composition?

What are the tumor histology subtypes?

Does heterogeneity play a role in survival as a result of a more intense therapy ?

Another view: Are cellularity and nuclear size correlated? And outcome?

High cellularity and low nuclear size are better predictive of a more aggressive therapy

rrrr

BERKELEY

AE

Conclusion

- There are many ways to slice through the data and metadata
 - Cellularity, nuclear size
 - Heterogeneity
- Different indices lead to alternative subtypings
 - Alternative biological interpretation is possible
- Genomic association has the potential to reveal new insight
- Web site: tcga.lbl.gov
 - "Google map" like viewing of tissue sections with segmentation results overlaid