The ICGC-TCGA DREAM Somatic Mutation Calling Challenge: Preliminary Results

May 12, 2014
Dr. Paul C. Boutros
Principal Investigator, Informatics & Biocomputing
Ontario Institute for Cancer Research
General Plan for Data-Analysis

Molecular profiles

Proteomics, genomics, metabolomics...

Data-Analysis

Results
Different Analysis; Same Conclusions?

Proteomics, genomics, metabolomics…

Data-Analysis

Results
In Late 2010... A Failed Validation

Subramanian & Simon, JNCI 2010
But When We Tried to Replicate...

Same dataset, same approach!
The Only Difference: Pre-Processing

<table>
<thead>
<tr>
<th>Dataset handling:</th>
<th>Algorithm:</th>
<th>Annotation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Separate</td>
<td>- RMA</td>
<td>- Default</td>
</tr>
<tr>
<td>- Merged</td>
<td>- GCRMA</td>
<td>- Alternative</td>
</tr>
<tr>
<td></td>
<td>- MAS5:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with log₂-transformation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>without log₂-transformation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- MBEI:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with log₂-transformation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>without log₂-transformation</td>
<td></td>
</tr>
</tbody>
</table>

Evaluate classifier

![Graph showing survival analysis with HR: 1.35 (1.10 - 1.86) and P: 0.003](image)
Agreement: 151/442 Patients
This holds for all tumour-types: breast cancer

74% of genes in 1+
16% of genes in 16+
0% of genes in 21+

Fox et al. submitted
I Have a DREAM

- SAGE Bionetworks/DREAM
- Next contest – Genomic Calling Methods
- Collaborative between OICR, TCGA, SAGE

Dr. Adam Margolin, Dr. Josh Stuart
Our Initial Goal: Find the Best WGS Analysis Methods

The focus is solely on accuracy, not speed, computational efficiency or other considerations.
Real Tumour Data

• 10 Tumour/Normal pairs
 – sequenced to ~50x/30x
 – 5 from pancreatic tumours
 – 5 from prostate tumours

• Raw & processed data available

• All clinical information, protocols, etc. available
But What About Ethics Approval?

• PHI, so ICGC Data Access Coordinating Organization application needed for real data

• We have provided a template to expedite ethics approvals

• We sought and received an opinion on the Challenge from the Western IRB
Simulated Tumour Data

• Start with a genome (cell line or germline)

• “burn in” SNVs & SVs using BAMSurgeon (Adam Ewing, UCSC)

• Take a subset of reads and introduce additional SNVs & SVs to create a tumour/normal pair

• 5 releases, **third is active now!**

• Increasing complexity, so good for “learning”
How Can You Get The Data?

• Register for the Challenge at Synapse
 – Complete an ICGC DACO Application

• Download using Annai’s GeneTorrent
 – No-cost to download

• Directly access in the Google Compute Engine (Google cloud)
 – $2,000 free computing
How will the Challenge be scored?

Challenge 1: tumour data

10 Real Tumour/Normal Pairs

- Several thousand candidates will be validated (up to 10k)
- Validation will include (at least) re-sequencing to ~300x coverage using AmpliSeq primers on an IonTorrent

Challenge 2: in silico data

5 Synthetic Tumour/Normal Pairs

- A complete ground-truth is known for each dataset
- We will calculate sensitivity, specificity and balanced-accuracy for each genome on a held out piece of the genome
In silico data:
- 5 T/N pairs
- For “play” and dry-runs
- Releases of increasing complexity
- Rapid scoring turn-around
- BAMs (Novoalign or BWA)

Real data:
- 10 T/N pairs (50x/30x)
- Two tumour-types:
 - 5 pancreatic
 - 5 prostate
- Lane-level FASTQs & BAMs
Initial Results

• So Far:
 o 268 registrants
 o 439 entries on 3 *in silico* genomes

• On-going post-challenge submissions as people try to understand the failures of their algorithms (a *living* benchmark!)

• Key discussions on scoring SVs and on improving BamSurgeon (the simulator)
Entries Broadly Reflect a Single ROC Curve
Surprisingly Large Chromosome-Bias
Different Determinants of Errors

False Positives
- Variant Allele Frequency
- Mapping Quality
- Normal Coverage
- Tumour Coverage

False Negatives
- Mapping Quality
- Normal Coverage
- Tumour Coverage
- Variant Allele Frequency
Surprisingly Strong Trinucleotide Effects
Coding Regions Had Lower Error Rates
Clearly Parameterization is Critical
In Summary: Results So Far

• Surprising trends in error-profiles:
 – Chromosomal Bias \rightarrow trinucleotide bias
 – Normal coverage is “more important”?

• Identification of best methods for mutation prediction
 – SNVs: MuTect (IS1 and IS2)
 – SVs: Delly (IS1), novoBreak (IS2)

• Creation of a community for rapid algorithm-development and benchmarking for cancer NGS

• Improvement of tumour-read simulation
Pilot Surveys

Natalie Fox (grad-student, mRNA)
Dr. Maud Starmans (post-doc, mRNA)
Dr. Amin Zia (post-doc, CNAs)
Dr. Pablo Hennings-Yeomans (post-doc, GRs)
Richard de Borja (Bioinformatician)
Robert Denroche (Bioinformatician)
Challenge Organizing Team

Sage/DREAM Organizers
- Gustavo Stolovitzky
- Stephen Friend
- Adam Margolin
- Thea Norman
- Christine Suver
- Christopher Bare
- Kristen Dang
- Bruce Hoff
- Mike Kellen
- Yin Hu

External Organizers
- Paul C. Boutros (OICR)
- Josh Stuart (UCSC)
- Lincoln Stein (OICR)
- Kyle Ellrott (UCSC)
- Adam Ewing (UCSC)
- Katie Houlanah (OICR)
- Cristian Caloian (OICR)
- Takafumi Yamaguchi (OICR)
- Andre Masella (OICR)

Data Contributors

Funding/Sponsoring/Publication Partners Include:
DO YOU WANT TO CHANGE THE ANALYSIS TENS OF THOUSANDS OF CANCER GENOMES?
CAN YOU SET NEW STANDARDS?

The ICGC-TCGA DREAM Somatic Mutation Calling Challenge

Registration open: NOW!

in silico data available: NOW!

Real data available: NOW!

Deadline #3: May 17!

ICGC-TCGA DREAM Somatic Mutation Calling Challenge

SMC Challenge Website: https://www.synapse.org/#!Challenges:DREAM