

Drosophila modENCODE integrative analysis and insights into human disease

Manolis Kellis

Broad Institute of MIT and Harvard MIT Computer Science & Artificial Intelligence Laboratory

Data Analysis Center

Acknowledgements

	Fly	Worm						
Transcripts (Celniker/Waterston)	Joe Carlson Jane Landolin Ben Booth Brenton Graveley Ben Brown	Mark Gerstein LaDeana Hillier Kevin Yip, Ashish Agarwal Lukas Habegger						
Chromatin (Karpen/Lieb)	Peter Park, Peter Kharchenko, Jason Ernst, Matthew Eaton	Shirley Liu Hyunjin (Gene) Shin						
TFs (White/Snyder)	Casey Brown Nicolas Negre	Mark Gerstein Lucas Lochovsky Kevin Yip						
Nucleosomes (Henikoff)	Steve Henikoff	Steve Henikoff						
smRNAs/3'UTRs (Lai/Piano)	Eric Lai (smRNAs) Nicolas Robine	Kris Gunsalus (3'UTRs) Arun Manoharan Marco Mangone						
Origins (MacAlpine)	MacAlpine Mathew Eaton	N/A						
Statistics/Infrastructure (Bickel/Gerstein)	Ben Brown and Kevin Yip and Nathan Boley							
Conservation/Submissions	Lincoln Stein, Gos Micklem, DCC							

Overview of Drosophila modENCODE assays

Epigenetics/Transcription Regulation

Replication

Transcription/Splicing

Drosophila modENCODE datasets

					Ce	ll lin	es			Dev	Sta	ges ²	:		
Category	Annotation Types	Assay	Num. Expts	BG3	CI.8+	KC167	S2-DRSC	Others ¹	Embryo	Larva	Pupa	AdultM	AdultF	Tissue	Factors ^{3,7}
Transcriptio	n/Splicing														
	gene transcripts, cell type- and tissue-specific expression	RNA tiling array (polyA+, total RNA)	74	+	+	+	+	22	12	6	6	3	3		
[adding and non-adding games	Total RNA-seq	12	+	+	+	+		12						
-	transcrints splice junctions	RNA-seq (polyA+)	36	+	+	+	+		12	9	3	3	3		
Gene	danseripts, sprice junctions	cDNA sequencing	3204 ⁴				+								
Expression	splicing regulatory targets	RNAi/RNA-seq	27				+								26 splicing factors: B52, BL, CG17838, CG30122, CG7878, CG7971, CG9373, CG9983, GLO, HEPH, HRB87F, MSI, MUB, QKR58E-2, RBP1, RBP1-like, RSF1, SC35, SF1, SQD, SRP54, TRA2, UPF1, XL6, YTR, YU
	TSS	CAGE (polyA+)	1						1						
	155	RACE-seq (total RNA)	87274						1			1	1		
Short ncRNAs	ncRNAs	small RNA-seq	76	+	+	+	+	17	9	4	4	4	3	21 ⁵	2 processing factors: AGO1, AGO2
Replication															
Pre-RC		ChIP-chip	2			+									2 replication factors: ORC2, MCM2-7
Factors	replication origins	ChIP-seq	5	+		+	+								2 replication factors: ORC2, MCM2-7
Repl. origins		BrdU-chip	3	+		+	+								
Timing	early/late domains	BrdU-chip	3	+		+	+								
Copy Number	differential replication	CGH	5				+		1					2 [®]	
Variation	unerentiarreplication	CNV-seq	3	+		+	+								
Epigenetics	/ Transcriptional Regulation														
Transcription Factors	TF binding sites, conserved binding	ChIP-chip	66		+	+	+		53	2			1		37 TFs & co-factors: BAB1, BRE1, CAD, CG8478, CHINMO, CNC, CTBP, D, DFD, DII, DISCO, EN, EVE, EXD, FTZ-F1, GRO, GATAE, GSB-N, H, HKB, INV, KNI, KR, JUMU, MBD-R2, PIWI, RUN, SENS, SBB, SIN3A, STAT92E, TRL, TTK, TLL, UBX, WDS, ZFH1
		ChIP-seq	5						2	1	2				2 TFs: CAD, ECR
Chromosomal Proteins	chromatin and chromosomal functions	ChIP-chip	115	+	÷	÷	÷		38	8	3	1	2		11 histone modifying enzymes: ASH1, HDAC3, HDAC4, HDAC6, HDACX, E(Z), JIL-1, NEJ, RPD3, SU(VAR)3-9, TRX 2 histone modification binding proteins: HP1A, PC 7 nucleosome remodeling: BRM, ISWI, Mi-2, NURF301, MRG15, SNR1, SPT16 5 insulators: BEAF-32, CP190, CTCF, SU(HW), MOD(MDG4) 7 others: CHRO(CHRIZ), HP1c, HP2, PCL, PSC, RNA Polymerase II, SCE/DRING
		ChIP-seq	28	3					19	5	2	1	1		5 histone modifying enzymes: HDAC4, HDACX, HDAC8, HDAC3, NEJ
												-			1 other: RNA Polymerase II
Histone Modification	active chromatin, enhancing regions, promoters	ChIP-chip	161	+	+	+	+		58	23	5	6	9	2	21 histone marks: H1, H2BUbiq, H3K18ac, H3K23ac, H3K27ac, H3K27me3, H3K36me1, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me1, H3K79me2, H3K9ac, H3K9me2, H3K9me3, H4, H4AcTetra, H4K16ac, H4K5ac, H4K8ac
		ChIP-seq	79						46	18	18 6 4 5 6 histone marks			6 histone marks: H3K27ac, H3K27me3, H3K4me1, H3K4me3, H3K9ac, H3K9me3	
Nucleosome Solubility and Turnover	nucleosome occupancy	DNA tiling array	35			+	+	4	6						6 NaCl fractions (mM): 80, 80-150, 150, 150-600, 600, 600 mM (pellet), mononucleosomes 6 CATCH-IT conditions: MET, 20 min, 40 min, 60 min, pulse, AHA 3 hr 2 histone variants: H3.3, H2Av

~1000 datasets with links to data download (2010)

Drosophila Data Set Submissions (June 2012)

PI	Project	Project Data Types								
S. Celniker	Transcriptome	mRNA, ncRNA, hnRNA; treatments	898							
E. Lai	Small RNAs	miRNA, siRNA, piRNA	75							
B. Oliver	Comparative Transcriptome	pseudoobscura vs. melanogaster	30							
S. Henikoff	Histone Variants	variants, nucleosome turnover	48							
G. Karpen	Chromatin	histone modifications, chromosomal proteins	593							
D. MacAlpine	Replication	complexes, origins, timing, differential replication	45							
K. White	Regulation	transcription factors	474							
		TOTAL:	2,163							

Combined increase in genome coverage

- Multiple coverage: 50% >4 annotations, 30% >8 annot

Annotation: New regions come to life

- Goal of modENCODE: Encyclopedia of DNA elements
- Expand annotation of coding, non-coding genome

Insights from integrative analysis

- 1. Annotate coding/non-coding genes
 - Peptides, structures, microRNAs, readthrough
- 2. Annotate chromatin regulatory regions
 - Enhancers, promoters, diversity of functions
- 3. Define regulator targets and networks
 - Hierarchy, TF/miRNA networks, HOT regions
- 4. Predictive models of gene regulation
 - − Functional nets → gene function/expression
- 5. Implications for human disease
 - Annotate non-coding SNPs, link to TFs/targets

Evidence of translational read-through in fly/human

New mechanism of post-transcriptional control.

- Hundreds of fly genes, handful of human genes.
- Enriched in brain proteins, ion channels.
- Initial experiments show potential ADAR role (Reenan Lab).
- Many questions remain
 - A-to-I editing of stop codon TAG|TGA|TAA \rightarrow TGG
 - Cryptic splice sites? RNA secondary structure?

Jungreis, Lin, et al, Genome Research 2011

Insights from integrative analysis

- 1. Annotate coding/non-coding genes
 - Peptides, structures, microRNAs, readthrough
- 2. Annotate chromatin regulatory regions
 - Enhancers, promoters, diversity of functions
- 3. Define regulator targets and networks
 - Hierarchy, TF/miRNA networks, HOT regions
- 4. Predictive models of gene regulation
 - − Functional nets → gene function/expression
- 5. Implications for human disease
 - Annotate non-coding SNPs, link to TFs/targets

Chromatin states for systematic genome annotation

Characteristic chromatin marks / domains

Examples of new / surprising elements

Promoter signatures H3K36me1 repl. origins

Nine intensity-based chromatin states

- 9 states captures most major chromatin types
- Summarize combinations and intensity of marks

30 discrete chromatin states in eu/heterochromatin

histone marks

enrichment

Insights from integrative analysis

- 1. Annotate coding/non-coding genes
 - Peptides, structures, microRNAs, readthrough
- 2. Annotate chromatin regulatory regions
 - Enhancers, promoters, diversity of functions
- 3. Define regulator targets and networks
 - Hierarchy, TF/miRNA networks, HOT regions
- 4. Predictive models of gene regulation
 - − Functional nets → gene function/expression
- 5. Implications for human disease
 - Annotate non-coding SNPs, link to TFs/targets

Binding, motifs reveal physical regulatory network

- Hierarchical network: master regulators, 94% down
- Feed-forward, cooperation, feedback through miRs

Hotspots, motifs, states, and origins

HOT regions **depleted** in known sequence motifs **Enriched** in specific states, ORC, new motifs

Interplay of TFs, motifs, and chromatin in human

Interplay of TFs, motifs, and chromatin in human

Insights from integrative analysis

- 1. Annotate coding/non-coding genes
 - Peptides, structures, microRNAs, readthrough
- 2. Annotate chromatin regulatory regions
 - Enhancers, promoters, diversity of functions

3. Define regulator targets and networks

– Hierarchy, TF/miRNA networks, HOT regions

4. Predictive models of gene regulation

− Functional nets → gene function/expression

5. Implications for human disease

Annotate non-coding SNPs, link to TFs/targets

Combined datasets derive functional regulatory net

- Not all binding is functional, not all targets are direct
- Motifs, ChIP, marks, expr as input feature to learning
- Unsupervised sum-rule & supervised using REDfly

Functional enrichments in integrative network

		Ν	letwork siz	e	True	oositive rate	e for predict	ions
Network nam	e Network description	<u>NumTFs</u>	<u>NTargets</u>	Edges/TG	Function	DevExpr	Tissues	PPI
motifNet	Conserved regulatory motifs in promoters	104	11,090	7	-11%	-4%	-18%	35%
boundNet	ChIP-inferred experimental TF binding sites	76	12,482	13	7%	12%	16%	16%
REDfly	Literature-based known regulatory network	82	88	3	37%	64%	43%	61%
FuncNet	Functional network with chrom/expr activity	576	9,436	24	19%	46%	19%	60%

- Combine TF binding, motifs, correlated TF/TG activity
- Reveal 'functional' edges, response determinants
- Functional net shows increased predictive value

Predicting new GO functional annotations for genes

- Shared activity and regulation -> shared function
- Tissue expression confirms functional predictions

Predicting stage-specific regulators of expression

Coordinated changes between TFs and their targets

Predictive power for gene expression levels

Example: predicting gro expression

Predict target expression as a function of TF levels

- vs. true, random net, TFs
 - Predictive in new cell types

Gene expression prediction for 1,500 genes!

- Linear regression model: Target_expr=F([TF₁_expr,...])
- Learn coefficients in 27 time-points, predict in other 3
- 'Unpredictable' genes are also less reproducible
- 'Predictable' genes: learned weights work in cell lines

Insights from integrative analysis

- 1. Annotate coding/non-coding genes
 - Peptides, structures, microRNAs, readthrough
- 2. Annotate chromatin regulatory regions
 - Enhancers, promoters, diversity of functions
- 3. Define regulator targets and networks
 - Hierarchy, TF/miRNA networks, HOT regions
- 4. Predictive models of gene regulation
 - − Functional nets → gene function/expression

5. Implications for human disease

Annotate non-coding SNPs, link to TFs/targets

ENCODE: Study nine marks in nine human cell lines

9 marks		9 human cel	l types	81 Chromatin Mark Tracks
H3K4me1		HUVEC	Umbilical vein endothelial	(2 ⁸¹ combinations)
H3K4me2		NHEK	Keratinocytes	DA129 H3K4me2 S DA129 H3K4me3 S DA129 H3K4me3 S DA12978 OTCF S DA12978 OTCF S DA12978 H3K8278 0 DA129 H3K878 0
H3K4me3		GM12878	Lymphoblastoid	24, 25, 13, 12, 27, ma 3 24, 25, 13, 12, 27, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14
H3K27ac		K562	Mvelogenous leukemia	1125 H3K4me2 5 1125 H3K4me2 5 1126 H3K4me2 5 1126 H3K4me2 5
H3K9ac	X	HenG2	Liver carcinoma	HTES H3X27m63 5 HTES H3X20me1 5 HTES H4X20me1 5 HTES H4X20me1 5 HTES H4X20me1 5 HTES H4X20me1 5 HEB Control 5 HEB COTCP 8
H3K27me3			Normal human lung fibroblast	HepO2 H3Kemo2 8
				HepC2 14120met 5 HepC2 14120met 5 MAEC CTCP' 5 MAEC CTCP' 5
H3K36me3		HMEC	Mammary epithelial cell	
CICF		HSMM	Skeletal muscle myoblasts	
+WCE		H1	Embryonic	15MM H3K4me1 5 15MM H3K4me2 5 15MM H3K4me3 5 15MM H3K9ac S
+RNA		Prod Porpota	ain ENCODE Chromotin Gra	INTEC / SICE/246 S

Brad Bernstein ENCODE Chromatin Group

h		
ν	•	

b.	State	CTCF	H3K27me3	H3K36me3	H4K20me1	H3K4me1	H3K4me2	H3K4me3	H3K27ac	H3K9ac	WCE	Median 0	H1 ES	ge Be	Median Length	+/-2kb TSS	Conserved non-exon	DNase (K562)	C-Myc (K562)	NF-kB (GM12878)	Transcript	Nuclear Lamin (NHLF)	Candidate state annotation
S	1	16	2	2	6	17	93	99	96	98	2	0.6	0.5	1.2	1.0	83	3.8	23.3	82.0	40.7	0.2	0.15	Active Promoter
Ŭ.	2	12	2	6	9	53	94	95	14	44	1	0.5	1.2	1.3	0.4	58	2.8	15.3	12.6	5.8	0.6	0.30	Weak Promoter
E	3	13	72	0	9	48	78	49	1	10	1	0.2	4.0	1.0	0.6	49	4.3	10.8	3.1	1.0	0.4	0.68	Inactive/poised Promoter
Š	4	11	1	15	11	96	99	75	97	86	4	0.7	0.1	1.1	0.6	23	2.7	23.1	31.8	49.0	1.3	0.05	Strong enhancer
.⊆	5	5	0	10	3	88	57	5	84	25	1	1.2	0.2	0.7	0.6	3	1.8	13.6	6.3	15.8	1.4	0.10	Strong enhancer
at	6	7	1	1	3	58	75	8	6	5	1	0.9	1.3	1.0	0.2	17	2.4	11.9	5.7	7.0	1.1	0.31	Weak/poised enhancer
2	7	2	1	2	1	56	3	0	6	2	1	1.9	1.2	1.1	0.4	4	1.5	5.1	0.6	2.4	1.3	0.20	Weak/poised enhancer
2	8	92	2	1	3	6	3	0	0	1	1	0.5	1.4	1.0	0.4	3	1.5	12.8	2.5	1.2	1.1	0.61	Insulator
Ę	9	5	0	43	43	37	11	2	9	4	1	0.7	1.3	1.0	0.8	4	1.1	4.5	0.7	0.8	2.4	0.02	Transcriptional transition
	10	1	0	47	3	0	0	0	0	0	1	4.3	0.6	1.2	3.0	1	0.9	0.3	0.0	0.0	2.5	0.11	Transcriptional elongation
	11	0	0	3	2	0	0	0	0	0	0	12.5	1.3	0.8	2.6	2	0.9	0.3	0.0	0.1	1.9	0.24	Weak transcribed
	12	1	27	0	2	0	0	0	0	0	0	4.1	0.3	0.7	2.8	5	1.4	0.3	0.0	0.1	0.8	0.63	Polycomb-repressed
— Г	13	0	0	0	0	0	0	0	0	0	0	71.4	1.0	1.0	10.0	1	0.9	0.1	0.0	0.0	0.7	1.30	Heterochrom; low signal
	14	22	28	19	41	6	5	26	5	13	37	0.1	0.9	1.2	0.6	3	0.4	1.9	0.3	0.2	0.4	1.44	Repetitive/CNV
	15	85	85	91	88	76	77	91	73	85	78	0.1	0.9	1.0	0.2	1	0.2	5.9	9.5	7.4	0.4	1.30	Repetitive/CNV
L			arom	atin N	Aark	Ohco	nuatio	n Erc		0	()	(%)	(fo		(kb)	(%)	Fund	tions	Lopri	chmo	nte (fold	· · ·

Chromatin Mark Observation Frequency (%) (%) (fold) (Kb) (%) Functional enrichments (fold)

Chromatin states dynamics across nine cell types

Transcriptional elongation

Weak transcribed Polycomb-repressed Heterochrom; low signal

Can study 9-cell activity pattern across ↓

Introducing multi-cell activity profiles

Coordinated activity reveals activators/repressors

Enhancer activity

Activity signatures for each TF

Enhancer networks: Regulator → enhancer → target gene

Revisiting diseaseassociated variants

Erythrocyte phenotypes (Ref. 38)

Rheumatoid arthritis (Ref. 40)

Hematological traits (Ref. 44)

Colorectal cancer (Ref. 46)

Blood pressure (Ref. 47)

Hematological parameters (Ber. 45)

Primary billary cirrhosis (Ref. 41)

Systemic lupus erythromatosus (Ref. 42)

Lipoprotein cholesterol/triglycerides (Ref.

Phenotype

Blood lipids (Ref. 39)

nts	Top Cell Typ	Total #SNPs from Study	#SNPs in en States 4 and	p-value	FDR	2	HI C	K562	GM12878	HepG2	HUVEC	HSMM	NULL
	K562	35	9	<10 ⁻⁷	0.02	- 1	9	17	4	0	0	1	2
	HepG2	101	13	<10 ⁻⁷	0.02	-	3	5	0	11	2	3	3
	GM12878	29	7	2.0 x 10 ⁻⁷	0.03		0	0	15	0	2	0	0
	GM12878	6	4	6.0 x 10 ⁻⁷	0.03		0	11	41	0	0	0	0
	GM12878	18	6	9.0 x 10 ⁻⁷	0.03		0	4	21	0	5	8	0
43)	HepG2	18	5	1.2 x 10 ⁻⁶	0.03	1	7	8	0	24	3	6	4
	K562	39	ħ	1.7 x 10 ⁻⁶	0.03	1	0	12	10	2	1	0	0
	K562	28	6	2.2 x 10 ⁻⁶	0.03		0	15	7	0	5	7	7
	HepG2	4	3	3.8 x 10 ⁻⁶	0.03	-	0	0	0	66	0	12	0
	K562	9	4	5.0 x 10 ⁻⁶	0.04	-	0	30	14	0	10	6	7
		-											

NHEK HMEC

2

8

3

3 3

3

12 12

5 11

4 3

- S

- Disease-associated SNPs enriched for enhancers in relevant cell types
- E.g. lupus SNP in GM enhancer disrupts Ets1 predicted activator

Mechanistic predictions for top disease-associated SNPs

Disrupt activator Ets-1 motif → Loss of GM-specific activation

- ➔ Loss of enhancer function
- → Loss of HLA-DRB1 expression

Creation of repressor Gfi1 motif
→ Gain K562-specific repression
→ Loss of enhancer function
→ Loss of CCDC162 expression

Detect SNPs that disrupt conserved regulatory motifs

- Functionally-associated SNPs enriched in states, constraint
 Drive it is a solution of the state of the state
- Prioritize candidates, increase resolution, disrupted motifs

Automating prediction of likely causal variants in LD → HaploReg (compbio.mit.edu/HaploReg)

Query SNP: rs17145713 and variants with $r^2 >= 0.95$

• Start with any list of SNPs or select a GWA study

- Mine publically available ENCODE data for significant hits
- Hundreds of assays, dozens of cells, conservation, motifs
- Report significant overlaps and link to info/browser

Ward and Kellis, NAR 2011

Insights from integrative analysis

- 1. Annotate coding/non-coding genes
 - Peptides, structures, microRNAs, readthrough
- 2. Annotate chromatin regulatory regions
 - Enhancers, promoters, diversity of functions
- 3. Define regulator targets and networks
 - Hierarchy, TF/miRNA networks, HOT regions
- 4. Predictive models of gene regulation
 - − Functional nets → gene function/expression
- 5. Implications for human disease
 - Annotate non-coding SNPs, link to TFs/targets

Interpreting complex disease: from regions to models

Challenge: from loci to mechanism, pathways, drug targets

Need: A systems-level understanding of genomes and gene regulation

- <u>The regulators</u>: Transcription factors, microRNAs, sequence specificities
- The regions: enhancers, promoters, and their tissue-specificity
- <u>The targets</u>: TFs→targets, regulators→enhancers, enhancers→genes
- <u>The grammars</u>: Interplay of multiple TFs \rightarrow prediction of gene expression
- → The parts list = Building blocks of genome/disease regulatory networks

Integrative Analysis of the **Caenorhabditis elegans Genome** by the modENCODE Project

Mark B. Gerstein,^{1,2,3}*† Zhi John Lu,^{1,2}* Eric L. Van Nostrand,⁴* Chao Cheng,^{1,2}* Bradley I. Arshinoff,^{5,6}* Tao Liu,^{7,8}* Kevin Y. Yip,^{1,2}* Rebecca Robilotto,¹* Andreas Rechtsteiner,⁹* Kohta Ikegami, 10* Pedro Alves, 1* Aurelien Chateigner, 11* Marc Perry, 5* Mitzi Morris, 12* Raymond K. Auerbach,¹* Xin Feng,^{5,22}* Jing Leng,¹* Anne Vielle,¹³* Wei Niu,^{14,15}* Kahn Rhrissorrakrai,¹²* Ashish Agarwal.^{2,3} Roger P. Alexander,^{1,2} Galt Barber,¹⁶ Cath Brdlik.4

Jennifer Brennan, 10 Jeremy Jean Sergio Contrino,¹¹ Luke O. Danne Andréa C. Dosé,18 Jiang Du,3 The Elise A. Feingold, 21 Reto Gassma Michelle Gutwein, 12 Mark S. Guye Stefan R. Henz, 29 Angie Hinrichs Judith Janette, 15 Morten Jensen, Vishal Khivansara, 23 Ekta Khurar Isabel Latorre, 13 Amber Leahev, Rebecca F. Lowdon,²¹ Yaniv Lublin Marco Mangone, 12 Sheldon McKa David M. Miller III,27 Andrew Mu Taryn Phippen,⁹ Elicia A. Prestor Joel Rozowsky,1,2 Kim Rutherford Andrea Sboner, 1,2 Paul Scheid, 12 Cindie Slightam, 35 Richard Smith Teruaki Takasaki,⁹ Dionne Vafead Christina M. Whittle, 10 Beijing W Xingliang Zhou,¹⁰ modENCODE Kristin C. Gunsalus, 12,37† Gos Mi LaDeana W. Hillier, 20 + Steven He Lincoln Stein, 5,6,34 | Jason D. Lieb

We systematically generated larg Caenorhabditis elegans, a key m across a developmental time cou sites, and maps of chromatin or gene models, including alternati hierarchical networks of chromosomal locations patterns of chromatin arms and centers, with Integrating data types, gene expression. Overa

Model Organisms and Human Health

ence Ex

IN THIS ISSUE OF SCIENCE, WE HIGHLIGHT THE IMPRESSIVE EFFORTS TO DESCRIBE AND ANALYZE the genomes of the two organisms-the fly Drosophila melanogaster and the nematode worm Caenorhabditis elegans-that serve as the best models for understanding the biology of all animals, including humans. Hundreds of scientists have collaborated in these two major studies, which have moved us far beyond the complete descriptions of the DNA molecules that make up the fly and worm genomes published a little more than a decade ago, an accomplishment that seemed amazing then. As summarized in the Perspective on p. 1758, the new findings reveal essentially all of the tens of thousands of RNA and protein molecules that each of these organisms produces, as well as how their genetic information is packaged. Extensive Web-based databases built on these data are freely available to everyone, greatly accelerating future discoveries. Strange as it may seem, this research,

aimed at reaching a deep molecular understanding of how the bodies of a fly and a worm are formed and maintained, will be critical for improving human health.

Bublished

Most of the government funding for biomedical research in the United States is distributed through the National Institutes of Health. Its budget of \$31 billion in 2010 reflects a widespread public appreciation that biomedical research will lead to great improvements in human health. Despite the many advances in our understanding of

Identification of Functional Elements and Regulatory Circuits by Drosophila modENCODE

The modENCODE Consortium,* Sushmita Roy, 1,2 | Jason Ernst, 1,2 | Peter V. Kharchenko,3 | Pouya Kheradpour,^{1,2}† Nicolas Negre,⁴† Matthew L. Eaton,⁵† Jane M. Landolin,⁶† Christopher A. Bristow,^{1,2}† Lijia Ma,⁴† Michael F. Lin,^{1,2}† Stefan Washietl,¹† Bradlew L. Arshinoff,^{7,18}† Ferhat Ay,^{1,33}† Patrick E. Meyer,^{1,30}† Nicolas Robine,⁸† Nicolas Robine,⁹† Luisa Di Stefano ^{1,31}† Eugene Berezikov,²³‡ Christopher D. Brown,⁴‡

e 12/22/2010

Bruce Alberts is Editorin-Chief of Science.

rr, 10 t Irwin Jungreis, 1,2 t olstorukov,³‡ Sebastian Will,¹‡ W. Booth,⁶ Angela N. Brooks,²⁸ Qi Dai,⁸ ⁵ Andrey A. Gorchakov, ¹¹ Tingting Gu, ¹⁵ Heather K. MacAlpine,⁵ John Malone,¹² Marc Perry,18 Sara K. Powell,5 a,¹⁹ Jeremy E. Sandler,⁶ Yuri B. Schwartz,³ a, jeleniy L. Sander, Turr D. Schwarz, rijke van Baren,²⁰ Kenneth H. Wan,⁶ ,¹⁷ Mark Guyer,¹⁷ Rebecca Lowdon,¹⁷ teven E. Brenner,^{28,32} Michael R. Brent,²⁰ ngeras, ^{13,16} Robert Grossman,⁴ t,³⁴ Mitzi I. Kuroda,¹¹ Terry Orr-Weaver,²² sakony,²⁶ Bing Ren,²⁶ Steven Russell,¹⁰ ewis,⁹ Gos Micklem,¹⁰ Brian Oliver,¹² ⁵§|| Gary H. Karpen,^{6,28}§|| Eric C. Lai,⁸§||

White,4§|| Manolis Kellis1,2||

ated into cellular and developmental a of DNA Elements (modENCODE) project tions, chromosomal proteins, transcription leosome properties across a developmental ed more than 700 data sets and discovered and chromatin elements, more than ne. Correlated activity patterns of these predicts putative new functions for genes, es gene-expression prediction. Our results mputational studies in Drosophila and tegration toward comprehensive genomic

Next steps: Fly vs. Worm vs. Human

Human-mouse-fly-worm orthologs

- Phylogenomics approaches
 - Species-specific gene-specific rates
 - Incomplete lineage sorting/deep coalescence
 - Unified models of Dup-Loss-Coalescense

Gene-tree species-tree reconciliation Deep coalescence of duplicates Javier Herrero, Jessica Wu, Matt Rasmussen, Mukul Bansal

Genotype-phenotype

Drosophila Population Genomics Project

- Population genomics of Drosophila
 - Trudy MacKay, Charles Langley et al
- Selective pressures ⇔ modENCODE
 - Purifying selection, positive selection, recombination hotspots vs. annotations
 - Understand deleterious mutations
- Trait-associated regions <> modENCODE
 - Help annotate trait-associated variants
 - Role of motifs, networks in observed phenotypes
- Systematic mutations and drug screening

Data Analysis Center

Acknowledgements

	Fly	Worm						
Transcripts (Celniker/Waterston)	Joe Carlson Jane Landolin Ben Booth Brenton Graveley Ben Brown	Mark Gerstein LaDeana Hillier Kevin Yip, Ashish Agarwal Lukas Habegger						
Chromatin (Karpen/Lieb)	Peter Park, Peter Kharchenko, Jason Ernst, Matthew Eaton	Shirley Liu Hyunjin (Gene) Shin						
TFs (White/Snyder)	Casey Brown Nicolas Negre	Mark Gerstein Lucas Lochovsky Kevin Yip						
Nucleosomes (Henikoff)	Steve Henikoff	Steve Henikoff						
smRNAs/3'UTRs (Lai/Piano)	Eric Lai (smRNAs) Nicolas Robine	Kris Gunsalus (3'UTRs) Arun Manoharan Marco Mangone						
Origins (MacAlpine)	MacAlpine Mathew Eaton	N/A						
Statistics/Infrastructure (Bickel/Gerstein)	Ben Brown and Kevin Yip and Nathan Boley							
Conservation/Submissions	Lincoln Stein, Gos Micklem, DCC							

Identification of Functional Elements and Regulatory Circuits by *Drosophila* modENCODE

The modENCODE Consortium,* Sushmita Roy,^{1,2}† Jason Ernst,^{1,2}† Peter V. Kharchenko,³† Pouya Kheradpour,^{1,2}[†] Nicolas Negre,⁴[†] Matthew L. Eaton,⁵[†] Jane M. Landolin,⁶[†] Christopher A. Bristow, ^{1,2}† Lijia Ma,⁴† Michael F. Lin,^{1,2}† Stefan Washietl,¹† Bradley I. Arshinoff,^{7,18}[†] Ferhat Ay,^{1,33}[†] Patrick E. Meyer,^{1,30}[†] Nicolas Robine,⁸[†] Nicole L. Washington,⁹[†] Luisa Di Stefano,^{1,31}[†] Eugene Berezikov,²³[‡] Christopher D. Brown,⁴[‡] Rogerio Candeias,¹[±] Joseph W. Carlson,⁶[±] Adrian Carr,¹⁰[±] Irwin Jungreis,^{1,2}[±] Daniel Marbach,^{1,2}[‡] Rachel Sealfon,^{1,2}[‡] Michael Y. Tolstorukov,³[‡] Sebastian Will,¹[‡] Artyom A. Alekseyenko,¹¹ Carlo Artieri,¹² Benjamin W. Booth,⁶ Angela N. Brooks,²⁸ Qi Dai,⁸ Carrie A. Davis,¹³ Michael O. Duff,¹⁴ Xin Feng,^{13,18,35} Andrey A. Gorchakov,¹¹ Tingting Gu,¹⁵ Jorja G. Henikoff,⁸ Philipp Kapranov,¹⁶ Renhua Li,¹⁷ Heather K. MacAlpine,⁵ John Malone,¹² Aki Minoda,⁶ Jared Nordman,²² Katsutomo Okamura,⁸ Marc Perry,¹⁸ Sara K. Powell,⁵ Nicole C. Riddle,¹⁵ Akiko Sakai,²⁹ Anastasia Samsonova,¹⁹ Jeremy E. Sandler,⁶ Yuri B. Schwartz,³ Noa Sher,²² Rebecca Spokony,⁴ David Sturgill,¹² Marijke van Baren,²⁰ Kenneth H. Wan,⁶ Li Yang,¹⁴ Charles Yu,⁶ Elise Feingold,¹⁷ Peter Good,¹⁷ Mark Guyer,¹⁷ Rebecca Lowdon,¹⁷ Kami Ahmad,²⁹ Justen Andrews,²¹ Bonnie Berger,^{1,2} Steven E. Brenner,^{28,32} Michael R. Brent,²⁰ Lucy Cherbas, ^{21,24} Sarah C. R. Elgin, ¹⁵ Thomas R. Gingeras, ^{13,16} Robert Grossman, ⁴ Roger A. Hoskins,⁶ Thomas C. Kaufman,²¹ William Kent,³⁴ Mitzi I. Kuroda,¹¹ Terry Orr-Weaver,²² Norbert Perrimon,¹⁹ Vincenzo Pirrotta,²⁷ James W. Posakony,²⁶ Bing Ren,²⁶ Steven Russell,¹⁰ Peter Cherbas,^{21,24} Brenton R. Graveley,¹⁴ Suzanna Lewis,⁹ Gos Micklem,¹⁰ Brian Oliver,¹² Peter J. Park,³ Susan E. Celniker,⁶§|| Steven Henikoff,²⁵§|| Gary H. Karpen,^{6,28}§|| Eric C. Lai,⁸§|| David M. MacAlpine,⁵§|| Lincoln D. Stein,¹⁸§|| Kevin P. White,⁴§|| Manolis Kellis^{1,2}||