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The recently completed human genome sequence represents an

enormous opportunity to understand biology and accelerate the

development of new therapeutics. However, it also presents

equally large logistical, scientific and paradigmatic challenges to

efficiently translate the enormous cache of sequence data into

functional information that will be the precursor of new drug

development. Small-molecule chemical biology applied on a

genomic scale promises to speed this translation to novel

therapeutics.
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Abbreviations
CFTR cystic fibrosis transmembrane conductance regulator

FXR farnesoid X receptor

GPCR G-protein-coupled receptor

HDAC histone deacetylase

HGP Human Genome Project

siRNA small inhibitory RNA

Introduction
The official completion of the Human Genome Project

(HGP) in April 2003 was a landmark event in the history

of biology [1,2]. However, with celebrations of this accom-

plishment came realization that the research community

is now faced with the exciting but daunting task of

identifying, and assigning function and therapeutic poten-

tial to, all �30 000 genes in the human genome. A plan for

beginning to accomplish this is part of a recently pub-

lished vision statement for the future of genome research

[3]. This review discusses a potentially important role for

chemical biology in accomplishing these goals.

The genome era
The National Research Council report that first proposed

the HGP in 1988 clearly envisioned benefits to human

health as an expected outcome [4], and subsequent

research plans have reaffirmed this view [5]. However,

the perceived value of the human genome sequence has

followed an undulating course [6–8]. The problem of

translating gene sequences into tangible improvements

in human health was initially thought to be relatively

straightforward. In the commercial sector, optimism

derived from the early success of recombinant protein

therapeutics such as human insulin and erythropoietin,

and led to ephemeral market success for companies that

aimed to capitalize on the genome sequence. As it

became apparent that new drugs would not be quickly

forthcoming from the HGP, interest shifted to companies

offering ‘functional genomics’ technologies that promised

to identify therapeutically important genes for drug

development. Many of these techniques found utility

in limited classes of gene products [9,10], but none has

proven to be the generally useful divination tool that was

hoped for. This is perhaps not surprising, since definition

of a gene’s function and therapeutic potential rarely

results from a single approach. The variety of tools and

time required to translate a novel gene discovery into a

drug has led to suggestions that the HGP will actually

slow therapeutic development in the short term [11].

Thus, despite much prognostication that drug develop-

ment and medicine will be changed dramatically by the

HGP, this has for the most part yet to occur [12].

Although access to whole genomes has not yet translated

into major therapeutic advances, it has made possible

fundamentally new approaches to basic biological

research. Where data were traditionally gathered in a

hypothesis-driven fashion, much data are now collected

systematically for later mining; where experiments pre-

viously focused on single genes, many now examine

entire networks; and where previously research focused

on the identification of novel genes, much work now

focuses on determining the function of genes, now that

the bounded set of gene products in genomes is becoming

defined. Currently, relatively little biological information

is known about most genes identified by human genome

sequencing [13], and very few genes that confer suscep-

tibility to common diseases (e.g. cardiovascular disease,

diabetes, Alzheimer’s disease) are known. Bioinformatic

querying and comparison of genomes and has identified

important novel human genes [14,15], as well as con-

served regions that are candidates for yet-undefined

protein coding and regulatory sequences [15]. Experi-

mental whole-genome querying has become increasingly

common with tools such as RNA interference and tar-

geted mutagenesis, particularly in organisms with smaller

genomes such as yeast [16], Caenorhabditis elegans [17],

and Drosophila melanogaster [18�]. In human genetics, the

impact of the genomic view is evident in genetic linkage

studies, in which a comprehensive list of genes in a
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linkage region can now be quickly defined, candidates

prioritized, and etiologic gene identified [19], a process

that previously required months to years [20]. We have

truly entered the Genome Era, and this can and should

change how biological research is done.

The genome translation problem
Though the number of human genes is estimated at

�30 000, it is likely that the number of gene products

encoded by the human genome is greater than this by at

least two to threefold, because of alternative splicing,

intergenic recombination, RNA editing and posttransla-

tional modifications [13]. The number of human gene

products that will represent therapeutic targets has been

the subject of much debate in the literature, and has

ranged from <1000 [21] to >10 000 [22], depending on

what criteria are used. Ideally, experimental determina-

tion of the function of as many gene products as possible

will result in the most complete set of potential targets for

therapeutic development. However, the number of gene

products to be evaluated is so large, and the kinds of data

required to validate a target so diverse, that an agenda for

functionation of the genome analogous to the HGP itself

is needed to accomplish the genome-wide prioritization

of gene products appropriate for intervention.

The success of the HGP in scientific and organizational

terms provides a template for how this might be achieved.

Two strengths of the HGP were its comprehensiveness,

and its commitment to open access to the sequence as a

research tool without encumbrance [6]. Similar principles,

applied to the development and distribution of research

tools for determining the function and therapeutic poten-

tial of genes, would empower the biomedical research

community as did the sequence itself. Tools for this

‘genome functionation toolbox’ would include a subset

of those routinely used to investigate the function of

novel genes. Applicable tools would be well validated in

individual gene studies, flexible and applicable to a broad

range of gene classes, producible by high-throughput

methods, and outside the reach of individual investi-

gators due to lack of expertise or resources. Nucleic-

acid-based tools that meet these criteria might include

whole-genome transcriptome [23,24] and proteome [25]

characterization, and initiatives to develop small inhibi-

tory RNAs (siRNAs) [26] and knockout mice [27] for

every gene.

Small organic molecules have several potential advan-

tages as tools for genome functionation. Unlike nucleic-

acid-based methods, small molecules most often affect

the function of a protein directly, rather than acting

indirectly via DNA or RNA. Small molecules can aug-

ment or diminish gene product activity, whereas genetic

methods are used most often to increase or decrease the

quantity of gene product present. Small molecules can be

routinely made to be cell penetrant, whereas analogous

nucleic acid tools (e.g. antisense or siRNA) are often

limited by lack of cell permeability. In addition, small

molecules can selectively affect one of several functions

of a gene product [28��], and can be used in experiments

on extracts, cells or whole organisms, at any stage of an

organism’s lifespan; the versatility of genetic methods is

limited in these regards. Perhaps most importantly for the

study of dynamic systems, the onset and duration of gene

function perturbation can be chosen precisely and

repeated if desired; this is difficult or impossible with

genetic methods. Finally, the diversity of small-molecule

chemical space is commensurate to the scope of biological

protein-folding space encoded by the human genome.

Nucleic-acid-based tools are generally limited to a single

dimension of diversity defined by their primary sequence;

biologically active small molecules, by contrast, have a

much broader range of chemical composition and char-

acteristics. Estimates of ‘chemical space’ have ranged

above 1060 molecules [29].

Use of small molecules as genome functionation tools has

several potential drawbacks, however. It has been sug-

gested that only certain classes of gene products are

capable of binding drug-like molecules to produce

important biological or therapeutic effects; collectively

these genes have been referred to as the ‘druggable

genome’ [21]. If true, this would suggest that a small-

molecule approach would not be equally effective for all

classes of gene products, something that is essential to

whole-genome analysis. The division of the genome into

‘druggable’ and ‘non-druggable’ is, however, based prin-

cipally on extrapolation from currently developed drugs

and compound libraries rather than on empirical evi-

dence about the genome. Recent success in modulating

distinctly non-traditional drug targets using small mole-

cules suggests that the true druggable genome may be

larger than is commonly believed [30]. For small mole-

cules to be used as broadly as nucleic acid methods in

genome functionation, they must be as broadly available;

however, access to small-molecule libraries and screen-

ing is currently very limited in most academic institu-

tions. Furthermore, many biologists and geneticists in

the public sector are less familiar with the concept and

use of small molecules for gene function studies than are

their colleagues in the pharmaceutical sector, for whom

these methods are routine [31]. However, in the past

several years, several collaborative biology–chemistry

facilities have been initiated in academic institutions,

suggesting that there is increasing appreciation of the

utility of small molecules in these settings ([32], http://

iccb.med.harvard.edu/screening/faq_hts_facility.htm). It

is nonetheless true that for small molecules to be used

routinely in the functionation of genomes, new infra-

structure for screening would be needed, and project-

driven collaborations between academic biologists and

chemists would need to become routine, as they are now

in the pharmaceutical sector.
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Using small molecules to functionate the
genome
Several groups over the past two years have demonstrated

the promise of small molecules to define function of novel

genes and elucidate biological pathways. For example,

the nuclear farnesoid X receptor (FXR) is in a gene family

amenable to small-molecule manipulation, but its signal-

ing has remained difficult to define because its native bile

acid ligands have multiple signaling effects. Downes et al.
[33��] identified a novel high-affinity agonist of FXR that

has distinct transcriptional effects from its natural bile

acid ligands, thus allowing chemical dissection of the

FXR signaling pathway. This study is typical of recent

‘chemical genetics’ approaches to function, in that it

utilized combinatorial chemistry (in this case, around a

natural product scaffold), microarray profiling of com-

pound effects, and structural biology information to pro-

duce novel insights of potential therapeutic importance

that had not been possible with the use of genetic

methods or natural ligands.

Other studies have identified small-molecule modulators

of less conventional targets. The cystic fibrosis transmem-

brane conductance regulator (CFTR) is a cAMP-acti-

vated Cl– channel, mutations in which cause cystic

fibrosis by altering channel synthesis, maturation or

intrinsic function. Such defects would not be thought

of as typically ‘druggable’, but several classes of com-

pounds that appear to activate CFTR by direct interac-

tion have been found, including some that have activity

on mutant channels [30]. Inhibitors of the channel with

potential utility for secretory diarrhea have also been

identified [34]. Chen et al. [35�] identified small-molecule

agonists and antagonists of Smoothened (Smo), a protein

that mediates Hedgehog signaling during development

and tumorigenesis. Smo has been intensively studied via

molecular and genetic methods in several species [36],

but elucidation of its mechanisms of activation and cou-

pling to downstream signaling proteins has been difficult

and has been greatly facilitated by these compounds.

Other recent studies have emphasized the capacity of

small molecules to influence only a subset of functions of

their targets. Haggarty et al. [37�] identified a novel

compound, tubacin, that inhibits only one of the two

actions of its target, HDAC6, using cellular and transcrip-

tional readouts.Inhibitorsofhistonedeacetylases(HDACs)

have been suggested as clinical treatments for cancer and

neurodegenerative disorders [38], but broad-spectrum

HDAC inhibitors such as trichostatin also inhibit tubulin

acetylation, making interpretation of the cellular effects

of non-specific HDAC inhibitors complex; development

of agents such as tubacin will allow determination of the

functional effects of selective inhibition of the deacetyla-

tion actions of HDAC6. A similar theme was developed in

earlier work from the Schreiber group, in which a com-

pound was discovered via diversity-oriented synthesis

and small-molecule microarray binding that modulated

only a subset of functions of the yeast protein Ure2p

[28��]. The compound, uretupamine, regulated only the

glucose-response arm of signaling through Ure2p without

affecting nitrogen source response, making its effects

more specific than those obtained upon deletion or inhi-

bition of the URE2 gene.

These studies illustrate an important utility of small

molecules — modulating specific functions of multifunc-

tional proteins — that makes them particularly suited to

the task of assigning function to novel genes. One of the

more surprising findings of the HGP was that humans

have only �30 000 genes, the same number as the mouse

and only two to three times the number of the fruit fly

D. melanogaster or roundworm C. elegans. It appears that

many human genes may produce more than one protein,

and that many human proteins may subserve more than

one function, allowing a relatively constant number of

genes to support increasing organismal complexity. The

implication for efforts to determine gene function is that

manipulations at the genetic level may produce a multi-

plicity of effects, whereas small molecules may affect only

one of several cellular phenotypes for which a gene is

responsible [39].

Several investigators have expanded the utility of small

molecules for defining novel biology by altering the cell

line or target being screened. In an example of the former,

‘synthetic lethal’ screens have identified compounds with

activity against cell lines altered in their expression of

particular cancer-related genes, but not against their nor-

mal isogenic cell counterparts, leading to the expectation

that these compounds will have increased specificity for

neoplastic cells [40,41]. In a related approach, sequence

changes have been made in drug targets rendering them

unable to bind their normal ligands, and small molecules

identified that bind only the mutated target. This process,

which has been referred to as ‘orthogonal chemical genet-

ics’ [42] has produced important insights into physiologi-

cal functions of G-protein-coupled receptors (GPCRs)

[43��], nuclear receptors [44] and kinases [45��], and

extends the concept of screening ligand-binding domain

mutated targets to identify allosteric modulators of recep-

tors [46]. In another example of target modification,

Mallet et al. [47�] expressed an engineered version of

caspase-3 having FKBP-binding domains in transgenic

mice, which allowed induction of caspase-3 activation

and in vivo hepatocyte apoptosis upon addition of a

small-molecule derivative of the semisynthetic FK506

dimer FK1012.

Finally, small molecules offer promise in defining biolog-

ical pathways by their combination with genomic read-

outs such as DNA microarrays. Identification of pathways

operative in the mechanism of action of pharmaceutical

compounds by microarray analysis is now routine [48].
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Extension of this approach to compounds in the public

sector, and a mechanism to compare results of small-

molecule perturbations in a common database, will be

critical to realize the power of genomic profiling of small-

molecule compounds. Taken one step further, genome-

wide transcriptional readouts of series of related com-

pounds could begin to allow inference of compound

action and novel transcript function on the basis of

patterns of gene regulation elicited by related small

molecules with known, or even unknown, targets ([49];

SL Schreiber, personal communication). By comparing

the patterns of gene and protein alteration produced by

related molecules, pathways targeted by the compounds

and the pharmacophores within them could begin to be

distinguished. Applied on a large scale, this approach

could become a powerful tool for defining signaling net-

works within living cells.

Conclusion
Chemistry and molecular genetics were closely allied

disciplines at the time of the discovery of the structure

of the DNA double helix, 50 years ago this year [50]. In

fact, many of those who were instrumental in creating the

new field of molecular biology were trained as chemists,

among them Sydney Brenner, Linus Pauling, Rosalind

Franklin and Max Perutz. Though close collaboration

among chemists and biologists has long been the rule

in the pharmaceutical industry, academic departments of

genetics, biology and chemistry have been less closely

allied in recent years. With the completion of the sequenc-

ing of the human genome, these fields are again finding

fertile ground for collaboration as well as common themes

of study in areas of structural/sequence diversity and

informatics. As powerful modulators of gene function,

small molecules will have an outsized role to play in

realization of the promise of the Human Genome Project

for biology and medicine.
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