National Advisory Council for Human Genome Research Concept Clearance for Genomic Technology Development February 12-13, 2018

Novel Nucleic Acid Sequencing Technology Development

Purpose:

The purpose of this initiative is to reissue a series of requests for applications (RFAs) to support development of novel nucleic acid sequencing technologies for DNA and direct RNA sequencing. Advances in genomics and more broadly in biomedical research have been greatly facilitated by significant and sustained DNA sequencing throughput increases and cost decreases. The goal is to achieve longer read lengths, greater accuracy and lower costs with the anticipation that advances in any of these three areas will make significant contributions to the mission of NHGRI and beyond, including to many genomic technology development goals. Advancing sequencing technologies is critical for enabling innovative research that enhances our understanding of human biology and disease.

Background:

Major contributions by NHGRI have been in the technology development domain. Those efforts have been so transformative that it is hard to remember genomics without, for example, a reference human genome, inexpensive short-read sequencing (exemplified by the \$1000 genome), defined common human haplotypes, single molecule and nanopore sequencing, and many more significant technical advances. Current and future strategic goals in genome sciences and genomic medicine necessitate continued technological innovation in sequencing technology development, and specifically in novel sequencing approaches and methodologies.

NHGRI has supported sequencing technology development since the inception of the institute, through programs such as the NHGRI Advanced Sequencing Technology Program (the \$1000 Genome Program). Most recently we issued Requests for Applications (RFAs) addressing Novel Nucleic Acid Sequencing Technology Development (RFA-HG-15-031 (R21), -032(R01), -033 (R43/R44) and -039(R44)). Two years of awards have been made (14 total, Appendix 1) with FY18 awards pending. The current novel nucleic acid sequencing technology development RFA will end soon, with the last awards being made FY18. NHGRI would like to continue to support this fruitful area of technology development by reissuing this RFA in 2018 for funding in FY19-21.

Proposed Scope and Objectives:

The initiative will support novel chemistries and instrumentation for DNA and direct RNA sequencing by continuing the novel nucleic acid sequencing technology development program. Novel methodologies and very substantial advances beyond existing approaches (at least 10-fold better) will be encouraged. The initiative will invest in nucleic acid sequencing technologies with emphasis on data quality, while not abandoning cost, emphasize entirely new approaches, and continue to broaden the focus with opportune investments in direct RNA sequencing. A significant expectation will be that the methods proposed would, if successful, propel forward and transform the field of genomics.

The specific components of this initiative will include:

- Development of new DNA sequencing technologies.
- Development of new direct RNA sequencing technologies.
- Substantial advances to existing nucleic acid sequencing technologies.

Examples of potential research topics include:

- Novel chemistries, physics or instrumentation for entirely new ways to perform nucleic acid sequencing.
- Exhaustive and quantitative sequencing of every DNA and/or RNA molecule in a sample.
- Very long reads (e.g., ≥150 Kb) with accuracy and error structure sufficient to de novo assemble human genomes.
- Direct determination of modified bases during sequencing.
- Direct RNA sequencing of full length transcripts without a cDNA intermediate.
- Orders of magnitude improvements to existing sequencing technologies.

The broad range of priorities and opportunities in sequencing technology development leads NHGRI to adopt an approach that encourages investigators to pursue their best ideas, and makes an accompanying investment in foundational sequencing technologies.

Relationship to Ongoing Activities:

Technology Development for genomics is a significant and signature effort by NHGRI. The proposed initiative will uniquely focus on novel nucleic acid sequencing technologies. Parallel efforts have also been encouraged through Novel Genomic Technology Development PARs (PAR-14, 15, 16 & 17). Some applications in both of these areas are also received through the Parent R01 and R21 along with the Omnibus SBIR and STTR FOAs. The RFAs stimulate additional sustained work in this area, with a strong focus on the significance, innovation and approach needed to catalyze advances in this field.

Commercial interests are developing novel sequencing technologies. To the extent possible we will attempt to avoid overlap with those efforts, and leverage those efforts wherever possible. Commercial efforts in these areas will be encouraged via the Small Business Innovation Research (SBIR) and Small Business Technology Transfer Research (STTR) programs of NHGRI.

Mechanism of Support:

RFAs for R01 (Research Project Grant) and R21 (Exploratory/Developmental Research Grants) grants provide more support than is typical for these activity codes. For R01s we will allow direct costs of up to \$700,000 per year, with a maximum project period of 4 years. For R21s we will allow costs of up to \$200,000 per year and no more than \$400,000 for the entire budget period, with a maximum project period of 3 years. Because the nature and scope of the proposed research will vary from application to application, it is anticipated that the size and duration of each award will also vary, and will also be informed through the peer review and Council advisory processes. Parallel RFAs will be published for small business grants for the R43 and R44 SBIR Project Grant mechanisms.

Funding Anticipated:

NHGRI intends to commit \$2,000,000 in total costs in additional RPG funding/year for three years (FY19-21) to support R01 and R21 applications. We anticipate funding 3-5 novel nucleic acid sequencing technology development awards (R01 and R21) per year in each of three years. Additional yearly receipt dates will allow for amended applications, stimulate new applications across the funding period, and allow R21 funded work that leads to R01 applications. In addition, a predictable funding source is likely to stimulate new work in this area of sequencing technology development. Sufficient funds are necessary to catalyze efforts towards developing novel nucleic acid sequencing technologies.

SBIR funds (R43 and R44 mechanisms) come from a separate dedicated budget and will be in addition to the funds set aside for R01/R21 applications.

Funding note

To optimize the mix of sequencing technologies supported, NHGRI will need the flexibility to build a balanced portfolio at the time of funding each RFA, which may entail funding across the score range.

Appendix 1: Novel Sequencing Technology Development awards (FY16-FY17)

Academic

Project	Actv	PI Name(s) All	Title	Awarded 1st year (\$)
HG005115-09	R01	GUNDLACH, JENS	High Accuracy Nanopore Sequencing	794,407
HG009180-01	R01	LINDSAY, STUART	Recognition Tunneling for Single Molecule RNA Sequencing	512,738
HG009186-01	R01	WANUNU, MENI	Direct picogram DNA and RNA sequencing using nanopore Zero-mode waveguides	711,477
HG009188-01	R01	COLLINS, PHILIP; BOYANOV, BOYAN; WEISS, GREGORY A	DNA Sequencing Using Single Molecule Electronics	584,552
HG009189-01	R01	SHEPARD, KENNETH L; DRNDIC, MARIJA	Enzyme-less DNA base discrimination using solid-state nanopores with high-frequency integrated detection electronics	461,366
HG009190-01A1	R01	TIMP, WINSTON	Nanopore based profiling of epigenetic state	784,452
HG009187-01A1	R21	BESTOR, TIMOTHY H	Comprehensive Single Molecule Enhanced Detection of Modified Cytosines in Mammalian Genomes	320,000
HG009576-01	R21	ZHANG, SHENGLONG; LI, WENJIA	Development of LC/MS-Based Direct RNA Sequencing with Concomitant Basecalling and Modification Analysis Capability	177,750
Total				

Small Business

			Achieving Single Nucleotide Resolution to Enable DNA Flossing Through	
HG009184-01	R43	SCHIBEL, ANNA	Alpha-Hemolysin	224,980
HG009196-01	R43	ERVIN, ERIC	Nanopore Enabled Exonuclease Sequencing	224,997
	D42		Methods to enable direct DNA convension without emplification	222.465
HG009573-01	R43	RECZEK, ELIZABETH	Methods to enable direct RNA sequencing without amplification	223,465
HG009578-01	R43	ALDEN, JONATHAN	Epigenetic fingerprinting of label-free DNA using a solid-state nanopore	279,974
			Amplification-Free Target Enrichment and Direct Sequencing of Large	
HG009580-01	R43	DAPPRICH, JOHANNES	Chromosomal Segments	276,252
			Commercialization of a low-cost user-friendly DNA preparation kit that	
			produces chromosome-span contiguity from conventional short-read	
HG009584-01	R44	SELVARAJ, SIDDARTH	sequencing for a wide range of applications	848,530

Total 2,078,198