

NCBI Data Analyses (aka Pre-computes)

Emily L. Harris, PhD, MPH NHGRI

GENETIC ASSOCIATION INFORMATION NETWORK

Purpose

- Provide basic results
 - Preliminary scientific results for investigators
 - Quality check for shared data
- Promote broad data use

 Protect against claims on genotype/ allele frequency data and phenotypegenotype associations

Each study
For each SNP
For each target trait/condition
For multi-SNP analyses
Cross-study analyses

Analysis Ideas for each SNP

- Genotype call accuracy (clusters)
- Allele frequencies
- Genotype frequencies
- Tests of Hardy-Weinberg equilibrium
- Stratified on ascertainment status
 - Case-control design: Cases, controls
 - Family designs: Probands, unrelated individuals

Analysis Ideas for each Target Trait/Condition

- Association with each SNP genotype
 - Unadjusted measure of association (e.g., unadjusted odds ratio)
 - Statistical significance, with correction for multiple tests
 - By SNP
 - Genome-wide visual representation

Visual Representation: Genome-wide

Visual Representation: A More Detailed Look

🖉 GaP Chromosome Browser - Microsoft Internet Explorer	
Eile Edit View Favorites Tools Help	1
📙 🕞 Back 👻 ⊘ 👻 😰 🏠 🎽 Links 🍯 i 🎽 Address 🚳 http://www.ncbi.nlm.nih.gov/SNP/GaP.cgi?rm=plotFrame&test_id=43&chr=1&from=194000000&to=196000000&method_id	=38¢ 💌
-log10(p-value) N/A < 2	<u></u>
Chromosome 1 💌 From 194000000 To 196000000 P-value 0.001 💌 Reset Go 📎 🔀	
🗹 Age-related macula 🔽 Age-relate 1 1 2 11 1 1 1 1 1 1 1 2 12 12 12 12 12	ā 🗌
1853883 1 195148223 1.08e-22 2/88 0.314 0.3618597 NA Tested Traits	
3790414 1 195186922 2.51e-06 22/88 0.111 0.1349457 NA Tested Traits	
7531555 1 195195933 4.87e-06 23/88 0.108 0.1892842 NA Tested Traits	
12731209 1 195213762 3.35e-08 20/88 0.045 0.06132307 NA Tested Traits	
1759016 1 195219121 2.07e-09 11/88 0.225 0.4517761 NA Tested Traits	
10922152 1 195229629 2.63e-17 7/88 0.297 0.3117582 NA Tested Traits	
10922153 1 195245238 2.63e-17 6/88 0.297 0.3117582 NA Tested Traits	
6660000 1 105047000 2 706.17 0 00 0 007 0 0117500 NA Toctod Traite	
MapViewer	
$\boxed{\blacksquare} \text{ Total SNP} $	
	•
	~
Done	1.

Analysis Ideas for Multi-SNP Analyses

- Pairwise linkage disequilibrium
 - By pairs of SNPs
 - Visual representation
- Stratified on ascertainment status
 - Case-control design: Cases, controls
 - Family designs: Probands, unrelated individuals

Analysis Ideas for Multi-SNP Analyses

 Haplotyping for chromosomal regions that surround SNPs with significant associations

What else would be useful?

- ⇒ Cross-study analyses?
- \Rightarrow

 \Box

Questions: Analysis

- How many/which genetic models should we test?
- How important to consider multiple testing for p-values in the pre-computed analyses, given that it is a public, unpublished resource?
- ⇒ What multiple testing corrections should be included for the pre-computed analyses?

Questions: Links to genomic information

For SNPs with a significant association

- Should we include in the report information about location of each SNP within a known gene?
- Should we annotate the genome with these significant associations?

Availability

- Results initially available only through the controlled access process for approved users to download
- After the 9-month protected period for a specific project, results available on the GAIN public web site

Thanks!

NCBI Al Graeff Matt Mailman Jim Ostell Steve Sherry NHGRI Lisa Brooks Teri Manolio Laura Lyman Rodriguez

GWA data availability

- dbGaP NCBI
- CGEMS NCI
- NINDS Open Access Repository

Genome-wide SNP genotyping

- Initial genome wide genotyping in:
 - 276 PD
 - 276 Stroke
 - 276 ALS
 - 276 Controls

FROM NINDS OPEN ACCESS REPOSITORY

- 200 African Americans M.E. & A.Z. NIA
- 109k exon-centric assay (phase I)
- 317k HapMap assay (phase II)
- >99.8% call rate, >450,000,000 unique genotypes, >99.9% reproducibility (over 19,000,000 replicate genotypes)

Genome-wide genotyping in Parkinson's disease and neurologically normal controls: first stage analysis and public release of data

Hon-Chung Fung, Sonja Scholz, Mar Matarin, Javier Simón-Sánchez, Dena Hernandez, Angela Britton, J. Raphael Gibbs, Carl Langefeld, Matt L Stiegert, Jennifer Schymick, Michael S Okun, Ronald J Mandel, Hubert H Fernandez, Kelly D Foote, Ramón L Rodríguez, Elizabeth Peckham, Fabienne Wavrant De Vrieze, Katrina Gwinn-Hardy, John A Hardy, Andrew Singleton

Summarv

Background Several genes underlying rare monogenic forms of Parkinson's disease have been identified over the past Lancet Neurol 2006; 5:911-16 decade. Despite evidence for a role for genetics in sporadic Parkinson's disease, few common genetic variants have Publiched Online been unequivocally linked to this disorder. We sought to identify any common genetic variability exerting a large September 27, 2006 effect in risk for Parkinson's disease in a population cohort and to produce publicly available genome-wide genotype data that can be openly mined by interested researchers and readily augmented by genotyping of additional repository subjects.

DOI:10.1016/S1474-4422(06)70578-6 See Reflection and Reaction page 896

> @ [↑]

Human Molecular Genetics, 2006, Vol. 16, No. 1 1 - 14doi:10.1093/hmg/ddl436 Advance Access published on xxx

Genome-wide SNP assay reveals structural genomic variation, extended homozygosity and cell-line induced alterations in normal individuals

Javier Simon-Sanchez^{1,2,†}, Sonja Scholz^{1,†}, Hon-Chung Fung^{3,†}, Mar Matarin^{1,†}, Dena Hernandez¹, J. Raphael Gibbs⁴, Angela Britton¹, Fabienne Wavrant de Vrieze³, Elizabeth Peckham⁵, Katrina Gwinn-Hardy⁶, Anthony Crawley⁶, Judith C. Keen⁷, Josefina Nash⁷, Digamber Borgaonkar³, John Hardy³ and Andrew Singleton^{1,*}

¹Molecular Genetics Unit, ²Laboratory of Neurogenetics and ³Computational Biology Core, National Institute on Aging, ⁴Human Motor Control Section and ⁵Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, ⁶Unidad de Genética Molecular, Departamento de Genómica y Proteómica, Instituto de Biomedicina de Valencia-CSIC, 46010, Valencia, Spain and ⁷Coriell Institute for Medical Research, Camden, NJ, USA

Received July 31, 2006; Revised and Accepted November 11, 2006

Genome-wide SNP genotyping

PD and control genotype data posted publicly

downloaded by >300 unique visitors.

Stroke and ALS data available Jan 2007.

Allows entire data download or search for specific SNPs

http://ccr.coriell.org/ninds/