#### **GENOMIC MEDICINE**

Alan E. Guttmacher, M.D. National Human Genome Research Institute

> National Institutes of Health March 29, 2007



#### Genetic Medicine

• Is based on understanding the impact of single genes on disease...





 Is based on understanding the impact of our <u>entire genome</u> <u>and</u> environmental factors on disease <u>and</u> health ...



- 1. Heart disease (28.5% of deaths in '02)
- 2. Cancer (22.8%)
- 3. Cerebrovascular diseases (6.7%)
- 4. Chronic lower respiratory dis. (5.1%)
- ? 5. Injury (4.4%)
- 6. Diabetes (3.0%)
- 7. Pneumonia/Influenza (2.7%)
- 8. Alzheimer disease (2.4%)
- 9. Kidney disease (1.7%)
- 10. Septicemia (1.4%)



• Is built on the foundation of the Human Genome Project...



### The Human Genome Project

- An international government project that ended ahead of schedule!
- And under budget!!
- And from its start earmarked funds for consideration of its ethical, legal, and social implications (ELSI) - the greatest funding ever devoted to bioethics





But, Why Should a Busy PA Care about Exactly How Many Genes Humans Have?

• That's ~22,000 potential drug targets!



Another Fun Fact: Between Them, How Many Human Genes Do <u>All</u> Current Drugs Target?

- ~500
- ~1,000
- •~5,000
- ~10,000
- ~20,000
- ~22,000



Another Fun Fact: Between Them, How Many Human Genes Do <u>All</u> Current Drugs Target?

- ~1,000
- •~5,000
- ~10,000
- ~20,000
- ~22,000



# The Human Genome Project

# FINISHED over three years ago, on APRIL 14, 2003...





# POST-GENOME ERA

#### WELCOME TO THE GENOME ERA

All of the original goals of the human genome project have been accomplished

• So, what's next?

NATIONAL

Human Genome Research Institute





#### **Genomics to Biology**



Genomics to Biology: Elucidating the Structure and Function of Genomes
Comprehensively identify the structural & functional components encoded in the human genome

- Elucidate the organization of genetic networks & protein pathways
- Develop a detailed understanding of the heritable variation in the human genome
- Understand evolutionary variation across species & the mechanisms underlying it
- Develop policy options that facilitate the widespread use of genome information in both research & clinical settings

# International HapMap Project

#### www.hapmap.org

# Current research: Analyzing genetic variation between individuals and populations



NATIONAL HUMAN GENOME RESEARCH INSTITUTE

But, Why Does Variation in the Genome Matter to a Busy PA? We have always treated our patients as representatives of some category of humanity, e.g., "57 yo white male" However, none of us has actually ever seen a category of humanity in clinic • All patients are individuals

• Genomic Medicine provides the tools to treat each patient as the individual he or she actually is

This will <u>markedly</u> improve patient care



**Genomics to Health** 



#### Genomics to Health: Translating Genome-Based Knowledge Into Health Benefits

- Develop robust strategies to identify genetic contributions to disease and drug response
- Develop strategies to identify gene variants that contribute to good health & disease resistance
- Develop genome-based approaches to prediction of disease susceptibility & drug response, early detection of disease, & molecular taxonomy of disease states
- Use new understanding of genes & pathways to develop powerful new therapeutic approaches
- Explore how genetic risk information is conveyed in clinical settings to improve health outcomes and reduce costs
- Develop genomics-based tools that improve the health of all



Glazier et al., Science 298:2345-9, 2002

National Human Genome Research Institute Whole Genome Association Approach to Common Disease: The 2002 View

- Identify all 10 million common SNPs
- Collect 1000 cases and 1000 controls
- Genotype all DNAs for all SNPs
- That adds up to 20 billion genotypes
- At 50 cents a genotype, that's \$10 billion for each disease

National Human Genome Research Institute Whole Genome Association Approach to Common Disease: The 2007 View (The HapMap Era)

- Identify optimum set of ~500,000 (or more) variants
- Collect 1000 cases and 1000 controls
  - Genotype all DNAs for all SNPs
- That adds up to 201 billion genotypes

And, a genotype now costs 50 cents 1/12 of a penny, so that's about \$10 billion \$800,000 for each disease

#### The First HapMap Success Story: Age-Related Macular Degeneration

#### **Complement Factor H Polymorphism in Age-Related Macular Degeneration**

Robert J. Klein,<sup>1</sup> Caroline Zeiss,<sup>2\*</sup> Emily Y. Chew,<sup>3\*</sup> Jen-Yue Tsai,<sup>4\*</sup> Richard S. Sackler,<sup>1</sup> Chad Haynes,<sup>1</sup> Alice K. Henning,<sup>5</sup> John Paul SanGiovanni,<sup>3</sup> Shrikant M. Mane,<sup>6</sup> Susan T. Mayne,<sup>7</sup> Michael B. Bracken,<sup>7</sup> Frederick L. Ferris,<sup>3</sup> Jurg Ott,<sup>1</sup> Colin Barnstable,<sup>2</sup> Josephine Hoh<sup>7†</sup>



A Tyrosine to Histidine variant in codon 402 of the Complement Factor H gene accounts for approximately half of the attributable risk of AMD in older adults

#### The First HapMap Success Story: Age-Related Macular Degeneration

#### **Complement Factor H Polymorphism in Age-Related Macular Degeneration**

Robert J. Klein,<sup>1</sup> Caroline Zeiss,<sup>2\*</sup> Emily Y. Chew,<sup>3\*</sup> Jen-Yue Tsai,<sup>4\*</sup> Richard S. Sackler,<sup>1</sup> Chad Haynes,<sup>1</sup> Alice K. Henning,<sup>5</sup> John Paul SanGiovanni,<sup>3</sup> Shrikant M. Mane,<sup>6</sup> Susan T. Mayne,<sup>7</sup> Michael B. Bracken,<sup>7</sup> Frederick L. Ferris,<sup>3</sup> Jurg Ott,<sup>1</sup> Colin Barnstable,<sup>2</sup> Josephine Hoh<sup>7†</sup>



Three genes appear to account for approximately <u>74%</u> of the attributable risk of AMD in older adults – and we did not even view this as a particularly "genetic" disorder...

But, Before We Get Too Carried RESEARCH INSTITUTE Away with All This New, Sexy Stuff...

> • Let's makes sure we utilize properly the tools we already have...

• Family History!

NATIONAL HUMAN GENOME



In the Genome Era, Why Is Family History Important to a Busy PA?

• Bruce will tell you more this afternoon..., but...

# Family History Changes Population Screening Guidelines

- Visual Impairment
- Hearing Impairment
- Thyroid Disease
- Thromboembolism
- Hypertension
- Diabetes
- Coronary Artery Disease
- Dyslipidemia

- Breast Cancer
- Colon Cancer
- Prostate Cancer
- Liver Cancer
- Hip Dysplasia
- Iron Def Anemia
- Osteoporosis
- Cardiomyopathy

# Family History Changes Management of Common Disease

- Coronary Heart Disease
- Hypertension
- Heart Failure
- Emphysema & COPD
- Syncope
- Pancreatitis
- Diabetes

- Thromboembolism
- Thyroid Cancer
- Breast Cancer
- Colon Cancer
- Urticaria
- Developmental Delay
- Pancreatitis

#### U.S. Surgeon General's Family History Initiative















#### THANKSGIVING IS THE ANNUAL NATIONAL FAMILY HISTORY DAY



#### Once we finish the family history, let's eat!



#### Genomic Medicine/Health Care



 Will change medicine by...
 Creating a fundamental understanding of the biology of many diseases, even many "nongenetic" ones

 Leading to defining disorders by biology of causation, rather than by symptoms



 Will change medicine by...
 – providing knowledge of individual genetic predispositions via microarray and other technologies



• Knowledge of individual genetic predispositions will allow:

- Individualized screening



- Knowledge of individual genetic predispositions will allow:
  - Individualized screening
  - Individualized behavior changes, e.g., informed dietary and lifestyle choices



- Knowledge of individual genetic predispositions will allow:
  - Individualized screening
  - Individualized behavior changes
  - Presymptomatic medical therapies,
     e.g., antihypertensive agents before
     hypertension develops, anti schizophrenia agents before
     schizophrenia develops



 Will change medicine by...
 –Creating pharmacogenomics, including:

-The right drug, at the right dosage, at the right time

-New drug targets



**Genomics to Society** 



#### Genomics to Society: Promoting the Use of Genomics to Maximize Benefits and Minin Harms

- Develop policy options regarding the uses of genomics in medical & non-medical settings
- Understand the relationship between genomics, race and ethnicity, and the consequences of uncovering these relationships
- Understand the consequences of uncovering the genomic contribution to human traits and behaviors
- Assess how to define the ethical boundaries for uses of genomics

Why is the Relationship NATIONAL HUMAN GENOME **RESEARCH INSTITUTE** between Genes and Race and Ethnicity Important to a Busy • Vence will tell you this afternoon, but...

**PA**?



June 4, 2003

No trace of race; Genome Sequencing Project proves nothing biological separates peoples



October 1, 2002

#### For Sale: A DNA Test To Measure Racial Mix

A company in Sarasota, Fla., is offering a DNA test that it says will measure customers' racial ancestry and their ancestral proportions if they are of a mixed race.





2007

#### AN ACT

To prohibit discrimination on the basis of genetic information with respect to health insurance and employment.

1 Be it enacted by the Senate and House of Representa-

2 tives of the United States of America in Congress assembled,

3 SECTION 1. SHORT TITLE; TABLE OF CONTENTS.

4 (a) SHORT TITLE.—This Act may be cited as the

5 "Genetic Information Nondiscrimination Act of 2903".



#### But, Why Should a Busy PA Care about GINA?

#### Betty's Story in 2017 (Betty is an 8-year old you will see in your office at 2:30 on Monday)

National Human Genome Research Institute

- Betty completes the Surgeon General's family history tool at age 18, learns of uncles with early heart disease
- She consults her Physician Assistant, who suggests complete genome sequencing for \$1000
- She inquires about the risk of genetic discrimination, but federal legislation has outlawed this



#### Betty's Story in 2017

- She is found to have three gene variants that well validated studies have conclusively shown to increase risk of early heart attack 5-fold
- She and her PA design a program of prevention based on diet, exercise, and medication precisely targeted to her genetic situation



#### Betty's Story Continues...

- Betty does well until age 75
- She develops left arm pain that she assumes is due to gardening, but her PA knows her higher risk and diagnoses an acute MI
- Referring to her genome sequence, the drugs that will work best to treat her are chosen
- She survives and is alive and well in the 22<sup>nd</sup> century



# Personalized Medicine: Could the Dream Become a Nightmare?



### Betty's Story Gone Wrong

- The Surgeon General's Family History Initiative never really takes off and her pediatrician is too busy to ask about family history, so Betty never learns about her family history
- Betty is offered genome sequencing, but after seeing her brother lose his health insurance from this information, she declines
- Betty eats an unhealthy diet, gains weight, and develops hypertension



### Betty's Story Gone Wrong

- While tests to predict which drug would be most effective for Betty have been proposed, they have never been validated, and are not reimbursed
- Betty's hypertension is treated with a drug that causes a hypersensitivity reaction, so she stops treatment
- After 10 years of uncontrolled hypertension, Betty develops left arm pain at age 45



### Betty's Story Gone Wrong

- Her PA, unaware of her high risk, assumes this is musculoskeletal and prescribes rest
- Betty returns to the ER the next day in cardiogenic shock
- The absence of her genome sequence information prevents optimal choice of therapy
- Betty dies in the ER



#### **Executive Summary**

• Will all this genomic medicine stuff really make any difference?

National Human Genome Research Institute

### **Executive Summary**

"Our age may be known to history as the age of genetic health care, a time when many of the most feared illnesses were overcome."

> - President Bush April 10, 2002



#### **Executive Summary**

"It is now conceivable that our children's children will know the term cancer only as a constellation of stars."

> - President Clinton June 26, 2000