(Factor) Analyze This: PCA or EFA

SAM WOOLFORD PHD, PSTAT[®], CQE

SWOOLFORD@BENTLEY.EDU

FOR NIH

JULY 31, 2015

Overview Principal Components Analysis Exploratory Factor Analysis Example Similarities and Differences Confirmatory Factor Analysis

Typical Applications: PCA or EFA?

- Reduce a large number of variables to a smaller number of factors for further analysis
- Reallocate the variation in a large number of variables
- Create orthogonal representations of the original variables
 - Solve problems of multi-collinearity
- Identify underlying dimensions in the data (constructs)
- Regression with many correlated variables
- Create a hypothesis for a CFA analysis

Factor analysis is an exploratory technique for summarizing the information in observed variables into a smaller set of factors

Start with p correlated "quantitative" variables x_i, i=1,..., p
Each variable should be correlated with at least one other (>.3)

Conceptual foundation for factors (desirable)

- Assumes some underlying structure for the variables exists
 - Should be a homogeneous structure (e.g. gender)

Sample size

- 5-10 observations per variable
- More than 50 observations (200?)
- 2-5 variables per factor (3 or more for CFA)

Level of standardization

- Use correlation matrix
 - Standardized variables give equal importance to all variables as variances are all the same
- Use covariance matrix (data is mean centered)
 - Weight assigned to a variable in a factor is effected by the relative variance of the variable
 - Mean corrected data gives more importance to variables with greater variation

Measures of Adequacy

- Bartlettes test of sphericity
 - Tests that correlation matrix is not diagonal (signif. correlations exist)
- Measure of sampling adequacy (KMO statistic)
 - Predicts whether the data will factor well
 - Overall
 - >.6 is adequate; >.8 is good
 - Individual variables
 - Drop variables with values <.5
 - Delete the lowest first and then continue one at a time until all remaining variables have values >.5

Factors for Factor Extraction

- Partitioning of variable variance
 - Correlation represents shared variance among variables
 - Factor analysis groups variables with high correlation (i.e. shared variance)
 - Components of variable variance
 - Common variance variance shared with other variables (communality)
 - Unique variance variance associated with a specific variable and not explained by correlation with other variables
 - Error variance variance also unexplained by correlation with other variables due to factors such as measurement error or unreliability in data gathering
- Objective of analysis
 - Modeling total variance or common variance only

Principal components

- Assumes that all variation is common variation
 - Accounts for total variation
 - Assumes that the factors can represent the variation in the variables exactly
 - Unique and error variance is a small proportion of the total
 - Diagonal of correlation matrix is taken to be 1
- Objective is data reduction
 - Minimum number of factors that capture the maximum amount of total variation

Exploratory factor analysis

(Aka Common factor analysis or Principal factor analysis)

- Assumes that factors explain only the common shared variance among the variables
 - Unique and error variance is eliminated from the analysis
 - Accounts for the covariance among the variables
 - Diagonal of correlation matrix is taken to be the communalities
- Objective is to identify latent constructs represented in the original variables
 - Often used as a hypothesis generator for confirmatory factor analysis

Results from PCA and EFA may be similar

- When number of variables exceeds 30 or
- Communalities exceed .6 for most variables
- Can run both models and evaluate any differences

Confirmatory factor analysis

- Not an exploratory technique
- Requires hypotheses regarding factors and variables

Principal Components

Model

- Find a set of coefficients a_{ii} such that
 - $y_i = a_{i1}x_1 + ... + a_{ip}x_p$ for i=1,...,p
 - y₁,...,y_p are uncorrelated
 - Choose direction for y₁ to capture as much of the variation in the x's as possible
 - Choose direction for y₂ to capture as much of the remaining variability as possible while being orthogonal to y₁
 - All variance in x's is transferred to the factors
 - Note that if all the x's are independent then y₁ will be equal to the x with the largest variance and there will be one component for each variable
 - No error in model
 - High correlation (>.9) may cause computational issues

Principal Components

Analysis of factors

- Factor Retention
 - Variance of factor (eigenvalue or latent root) > 1
 - Percentage of variance > 60%
 - Scree test
- Factor Rotation
 - Given the communalities, there are multiple solutions for loadings that result in the same communality and correlation
 - "Correct" answer is dependent upon interpretability
 - Reallocates the variable variance among the factors
 - Shifts variance from earlier factors to later ones
 - Each rotation uses a different criteria to determine the model parameters
 - Orthogonal and non-orthogonal methods are available

Principal Components

Analysis of factors

- Factor Interpretation
 - Based on factor loadings of ±.5 or greater
 - Loadings represent correlations between observed variables and factor
 - Cut off depends on sample size
 - ±.7 or greater represents that the variable shares half or more of its variance with the factor
 - Communalities represent variance shared between observed variables and factor
 - May delete variables that have low communalities (<.5)
 - Need to evaluate interpretation of any large cross-loading

Model

- Total variance of variables is decomposed into two components
 - One component results from underlying unobserved construct(s)
 - The communality is the proportion of variance of a variable due to common underlying factors
 - One component is unique to the observed variable
- \circ Find a set of latent factors $\xi_1,...,\,\xi_m$ (m<p) such that
 - $x_i = \lambda_{i1} \xi_1 + ... + \lambda_{im} \xi_m + \varepsilon_i$ for i=1,...,p
 - \circ x_i and ξ_i are standardized (mean 0, variance 1)
 - \circ ε_i has mean 0 and are uncorrelated with ξ_i (for all i and j) and with ε_i (for i ≠ j)
 - Consider similarity to a regression equation where the independent variables are unknown
 - $^\circ\,$ Correlation between the x's are due to correlation between x's and ξ 's

Objective

- Identify a small number of common factors that linearly explain the correlation between the original variables
 - Goal is to predict the correlation matrix of the original variables with communalities on the diagonal
 - Residual correlations should be small
 - Equivalent to analyzing the covariance matrix
 - Principal axis factoring in SPSS
 - Different from principal components where the goal is to explain as much variance as possible in a few linear combinations of the original variables
- Exploratory if you don't have a hypothetical model
 - All variables load on all factors

Analysis of factors

- Factor Retention
 - Variance of factor (eigenvalue or latent root) > 1
 - Percentage of variance > 60%
 - Scree test
- Factor Rotation
 - Given the communalities, there are multiple solutions for loadings that result in the same communality and correlation
 - "Correct" answer is dependent upon interpretability
 - Reallocates the variable variance among the factors
 - Shifts variance from earlier factors to later ones
 - Each rotation uses a different criteria to determine the model parameters
 - Orthogonal and non-orthogonal methods are available

Analysis of factors

- Factor Interpretation
 - Based on factor loadings of ±.5 or greater
 - Loadings represent correlations between observed variables and factor
 - Cut off depends on sample size
 - ±.7 or greater represents that the variable shares half or more of its variance with the factor
 - Communalities represent variance shared between observed variables and factor
 - May delete variables that have low communalities (<.5)
 - Need to evaluate interpretation of any large cross-loading

Example

Data

• Prices for commodities in 23 cities in the US

- Bread
- Burger
- Milk
- Oranges
- Tomatoes
- Goal is to represent the cost of living in different cities in the US

Similarities and Differences

	ΡϹΑ	EFA
Similarities	 Correlated observed variables Sample size requirements Measures of adequacy Analysis of factors requires decisions regarding factor retention, rotation and interpretation 	
Differences	 Models total variance Models factors in terms of observed variables Objective is typically data reduction 	 Models common variance only Models observed variables in terms of factors Objective is typically to identify latent factors

Confirmatory Factor Analysis

Model

- Assumes that the factor structure is known (as opposed to exploratory)
 - Number of factors
 - Orthogonality of factors (correlated or not)
 - Indicators for each factor
- Goal is to empirically estimate and confirm the model
 - Often use exploratory factor analysis to help identify a potential structure
 - Use confirmatory factor analysis to verify it and estimate it
 - Like hypothesis testing (exploratory is hypothesis generating)

Confirmatory Factor Analysis

Estimation

- Equates the model covariance with the sample covariance to solve for model parameters
 - Can create requirements on number of observed variables per construct
 - Utilizes the covariance matrix (as opposed to the usual use of the correlation matrix in exploratory)
 - MLE requires observed data is multivariate normal
- Reference metrics
 - Need to fix the metric of the factor in order to estimate (standardized in effect does that-value is scale free)
 - Alternative is to set one of the loadings for each factor to 1
 - This has effect of setting the scale of the factor to be that of that indicator

Confirmatory Factor Analysis

Diagnostics

- Fit statistics
 - Some statistical some rules of thumb
- Parameter statistics
- Construct validity
 - Convergent and divergent validity
- Modification indices