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Somatic alterations in cellular DNA underlie almost all human 
cancers1. The prospect of targeted therapies2 and the development 
of high-resolution, genome-wide approaches3–8 are now spurring 
systematic efforts to characterize cancer genomes. Here we report 
a large-scale project to characterize copy-number alterations in 
primary lung adenocarcinomas. By analysis of a large collection 
of tumours (n 5 371) using dense single nucleotide polymorphism 
arrays, we identify a total of 57 significantly recurrent events. We 
find that 26 of 39 autosomal chromosome arms show consistent 
large-scale copy-number gain or loss, of which only a handful have 
been linked to a specific gene. We also identify 31 recurrent focal 
events, including 24 amplifications and 7 homozygous deletions. 
Only six of these focal events are currently associated with known 
mutations in lung carcinomas. The most common event, amp­
lification of chromosome 14q13.3, is found in 12% of samples. 
On the basis of genomic and functional analyses, we identify 
NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the 
minimal 14q13.3 amplification interval and encodes a lineage-
specific transcription factor, as a novel candidate proto-oncogene 
involved in a significant fraction of lung adenocarcinomas. More 
generally, our results indicate that many of the genes that are 
involved in lung adenocarcinoma remain to be discovered. 

A collection of 528 snap-frozen lung adenocarcinoma resection 
specimens, with at least 70% estimated tumour content, was selected 
by a panel of thoracic pathologists (Supplementary Table 1); samples 
were anonymized to protect patient privacy. Tumour and normal 

DNAs were hybridized to Affymetrix 250K Sty single nucleotide 
polymorphism (SNP) arrays. Genomic copy number for each of over 
238,000 probe sets was determined by calculating the intensity ratio 
between the tumour DNA and the average of a set of normal 
DNAs9,10. Segmented copy numbers for each tumour were inferred 
with the GLAD (gain and loss analysis of DNA) algorithm11 and 
normalized to a median of two copies. Each copy number profile 
was then subjected to quality control, resulting in 371 high-quality 
samples used for further analysis, of which 242 had matched normal 
samples (Methods). 

To identify regions of copy-number alteration, we applied GISTIC 
(genomic identification of significant targets in cancer)12, a statistical 
method that calculates a score that is based on both the amplitude and 
frequency of copy-number changes at each position in the genome, 
using permutation testing to determine significance (Methods). 

GISTIC identified 26 large-scale events and 31 focal events, 
reported below. Although the overall pattern is broadly consistent 
with the literature on lung cancer8,13–15, our sample size and resolu­
tion provide more power to accurately identify and localize both 
large-scale and focal chromosomal alterations. With respect to 
large-scale events, no single previous study has identified more than 
5 of the gains or 11 of the losses13,14 (Supplementary Table 2). With 
respect to focal events, three recent studies8,14,15 report a total of ,200 
events, including 23 of the 31 recurrent focal events observed in our 
study. The overlap among these three studies is limited to only four 
events (amplification of EGFR, CCNE1, MDM2 and 8p11, all seen 
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here; Supplementary Table 3 and Supplementary Results). A gen­
ome-wide view of segmented copy number reveals that most 
chromosomal arms undergo either amplification or deletion across 
a large proportion of the samples (Fig. 1a). The distinctive pattern of 
amplification and loss is also apparent when the median copy num­
ber for each chromosome arm is plotted (Supplementary Fig. 1 and 
Supplementary Table 4). In total, GISTIC identifies 26 large segments 
(at least half of a chromosome arm), 10 with significant gains and 16 
with significant losses (Fig. 1b and Supplementary Table 5). 

Visual inspection reveals that similar chromosomal patterns of 
copy number loss and gain across the genome are found in almost 
all samples, but that the samples show substantial differences in the 
amplitude of copy-number variation (Fig. 1a). When the samples are 

a b 

Deletion Neutral Amplification 

Figure 1 | Large-scale genomic events in lung adenocarcinoma. 
a, Smoothed copy number data for 371 lung adenocarcinoma samples 
(columns; ordered by degree of interchromosomal variation and divided 
into top, middle and bottom tertiles) is shown by genomic location (rows). 
The colour scale ranges from blue (deletion) through white (neutral; two 
copies in diploid specimens) to red (amplification). b, c, False-discovery 
rates (q values; green line is 0.25 cut-off for significance) and scores for each 
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partitioned into tertiles on the basis of overall variation in copy-
number amplitude, each shows similar regions of amplification 
and loss across the genome. The attenuation seen in many samples 
is consistent with admixture with euploid non-tumour DNA, which 
we estimate at 50%, 65% and 78% respectively in the three tertiles 
(Supplementary Results and Supplementary Fig. 2). The significant 
non-tumour admixture in these tumour samples also makes it 
difficult to assess genome-wide loss of heterozygosity (LOH). 
Because normal DNA admixture limits sensitivity, we report LOH 
only in the top tertile; we see both LOH associated with copy-number 
loss and copy-neutral LOH (chromosomes 17p and 19p) (Supple­
mentary Results, Supplementary Figs 3 and 4, and Supplementary 
Table 6). 
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alteration (x axis) are plotted at each genome position (y axis); dotted lines 
indicate the centromeres. Amplifications (red lines) and deletions (blue 
lines) are shown for large-scale events (b; $50% of a chromosome arm; copy 
number threshold 5 2.14 and 1.87) and focal events (c; copy number 
threshold 5 3.6 and 1.2). Open circles label known or presumed germline 
copy-number polymorphisms. 
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The most common genomic alteration in lung adenocarcinoma is 
copy-number gain of chromosome 5p, which is found in 60% of total 
samples and over 80% of the top tertile (Supplementary Table 5). 
Another 15 large-scale events are seen in at least 33% of all samples 
and over 40% of the top tertile. Together, the regions of common 
copy-number gain (,650 megabases (Mb)) and copy-number loss 
(,1,010 Mb) comprise more than half of the human genome 
(Supplementary Results and Supplementary Table 5). Despite their 
high frequency, few of these large-scale events have been clearly 
related to functional effects on specific genes. Loss of a chromosome 
arm is likely to act by uncovering an inactivated tumour suppressor 
gene, yet such mutations have been well-established in lung adeno­
carcinoma in only three of the sixteen deleted chromosome arms 
(CDKN2A on 9p, TP53 on 17p and STK11 on 19p)16–18. We tested 
for correlations between the large-scale lesions and clinical para­
meters, but none was significant after correction for multiple hypo­
thesis testing (Supplementary Results and Supplementary Table 7). 

Focal deletions may help pinpoint tumour suppressor genes, par­
ticularly on chromosome arms that show frequent copy-number loss. 
At a threshold set to detect homozygous deletions in the presence of 
stromal contamination, GISTIC analysis identified seven focal can­
didate regions (Fig. 1c and Supplementary Table 8). The most sig­
nificant focal deletions, detected in 3% of all samples and 6.5% of the 
top tertile, encompass CDKN2A/CDKN2B, two well-documented 
tumour suppressor genes on chromosome 9p21 (Fig. 1c, Table 1 
and Supplementary Table 8). The protein products of CDKN2A 
and CDKN2B inhibit two cyclin-dependent kinases, Cdk4 and 
Cdk6, the genes of which both reside in frequently amplified regions 
(see below). Two other deleted regions also encompass known 
tumour suppressor genes, PTEN and RB1 (Supplementary Table 8). 

Three additional deletion regions each localize to a single gene. 
Deletions of the 59 untranslated region of PTPRD, encoding a tyr­
osine phosphatase, occur in 4% of the top tertile. Although PTPRD 
deletions have been reported in lung adenocarcinoma cell lines8,19,20, 
this is the first observation in primary human lung adenocarcinomas. 
Homozygous deletions of PDE4D occur in 1.6% of the top tertile and 
typically remove several hundred kilobases and affect multiple exons 
(Supplementary Fig. 5). These deletions may be significant for lung 

Table 1 | Top focal regions of amplification and deletion 

biology because PDE4D encodes the major phosphodiesterase 
responsible for degrading cyclic AMP in airway epithelial cells21. 
Another single-gene deletion occurs within AUTS2, a gene of 
unknown function in chromosome 7q11.22 (Table 1 and Supple­
mentary Table 8). We cannot exclude the possibility that some recur­
rent copy-number losses are due to genomic fragility unrelated to 
carcinogenesis; the presence of point mutations would provide addi­
tional support for a role in cancer. 

We therefore sequenced all exons of AUTS2, PDE4D and PTPRD, 
as each of these genes showed single-gene deletions but no mutations 
have been reported in primary tumours. Although we did not detect 
somatic mutations in AUTS2 or PDE4D, we identified validated 
somatic PTPRD mutations in 11 of 188 samples sequenced. 
Notably, three of the mutations encode predicted inactivating 
changes in the tyrosine phosphatase domain (Supplementary Table 
9 and Supplementary Fig. 6). These results implicate PTPRD as a 
probable cancer-associated gene, although further studies are needed 
to establish a causative role in cancer via gain or loss of function. 

We focused above on homozygous deletions, but note that this 
approach will miss important genes. Notably, the TP53 locus is 
known to be mutated in ,50% of lung adenocarcinomas but shows 
no homozygous deletions in our data. 

We next focused on focal amplification events, for which it may be 
easier to pinpoint target genes. At a threshold designed to identify 
high-copy amplification, the GISTIC analysis identified 24 recurrent 
genomic segments with maximum copy number ranging from about 
4- to 16-fold (Fig. 1c, Table 1 and Supplementary Table 10). The 
amplification events are seen in 1–7% of all samples (1–12% in the 
top tertile). Each of these events is seen in at least two samples and all 
but eight are seen in at least five samples. In the 13 most significant 
amplifications (q , 0.01), the regions can be localized to relatively 
small genomic segments containing 15 or fewer genes. Although 14 of 
the 24 regions of recurrent amplification contain a known proto­
oncogene (Supplementary Table 10), only three of these genes 
(EGFR, KRAS and ERBB2) have been previously reported to be 
mutated in lung adenocarcinoma (Supplementary Results). The 
remaining 11 genes are clear targets for re-sequencing in lung 
tumours. 

Cytoband* q value Peak region (Mb)* Max/Min inferred Number Known proto-oncogene/ New candidate(s) 
copy no. of genes*{ tumour suppressor gene in region*{ 

Amplifications 
14q13.3 2.26 3 10

229 
35.61–36.09 13.7 2 – NKX2-1, MBIP 

12q15 1.78 3 10
215 

67.48–68.02 9.7 3 MDM2 – 
8q24.21 9.06 3 10

213 
129.18–129.34 10.3 0 MYC1 – 

7p11.2 9.97 3 10
211 

54.65–55.52 8.7 3 EGFR – 
8q21.13 1.13 3 10

27 
80.66–82.55 10.4 8 – – 

12q14.1 1.29 3 10
27 

56.23–56.54 10.4  15  CDK4 – 
12p12.1 2.83 3 10

27 
24.99–25.78 10.4 6 KRAS – 

19q12 1.60 3 10
26 

34.79–35.42 6.7 5 CCNE1 – 
17q12 2.34 3 10

25 
34.80–35.18 16.1  12  ERBB2 – 

11q13.3 5.17 3 10
25 

68.52–69.36 6.5 9 CCND1 – 
5p15.33 0.000279 0.75–1.62 4.2  10  TERT – 
22q11.21 0.001461 19.06–20.13 6.6  15  – – 
5p15.31 0.007472 8.88–10.51 5.6 7 – – 
1q21.2 0.028766 143.48–149.41 4.6  86  ARNT – 
20q13.32 0.0445 55.52–56.30 4.4 6 – – 
5p14.3 0.064673 19.72–23.09 3.8 2 – – 
6p21.1 0.078061 43.76–44.12 7.7 2 – VEGFA 
Deletions – 
9p21.3 3.35 3 10

213 
21.80–22.19 0.7 3 CDKN2A/ CDKN2B – 

9p23 0.001149 9.41–10.40 0.4 1 – PTPRD | |  

5q11.2 0.005202 58.40–59.06 0.6 1 – PDE4D 
7q11.22 0.025552 69.50–69.62 0.7 1 – AUTS2 
10q23.31 0.065006 89.67–89.95 0.5 1 PTEN – 

* Based on hg17 human genome assembly.
 
{ RefSeq genes only.
 
{ Known tumour suppressor genes and proto-oncogenes defined as found in either COSMIC30, CGP Census31 or other evidence; if there is more than one known proto-oncogene in the region, only
 
one is listed (priority for listing is, in order: known lung adenocarcinoma mutation; known lung cancer mutation; other known mutation (by COSMIC frequency); listing in CGP Census).
 
1 MYC is near, but not within, the peak region.
 
| |  Single gene deletions previously seen, this study provides new mutations as well.
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cycle genes such as CDK4, CDK6 and CCND1 suggests an important 
role for these genes (Table 1 and Supplementary Table 10). 

Notably, the most common focal amplification does not include 
any known proto-oncogenes: chromosome 14q13.3 is amplified in 
6% of the samples overall and 12% of the samples in the top tertile 
(Fig. 1c, Table 1 and Supplementary Table 10; q , 10228). Although 
previous studies have reported amplification of 14q13 in lung cancer 
cell lines14 and the region is mentioned in studies of primary lung 
tumours8,15, the target gene in this region had not been identified. 
With our large sample size, we are able to narrow the critical region to 
a 480-kilobase interval containing only two known genes, MBIP and 
NKX2-1 (Fig. 2a, b, Table 1 and Supplementary Table 10). Data for a 
single tumour with a small region of high-level amplification, com­
prising MBIP and NKX2-1, exclude the neighbouring gene, NKX2-8 
(Fig. 2c). 
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b cWe confirmed the amplification of the region by fluorescence in 
situ hybridization (FISH) and quantitative polymerase chain reaction 
(qPCR; data not shown). FISH analysis was performed with a bac­
terial artificial chromosome (BAC) probe containing NKX2-1 and 
NKX2-8 (Fig. 2c) on an independent set of 330 lung adenocarcinoma 
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samples from tissue microarrays. High-level amplification of the 
chromosome 14q13.3 region was seen in 12% (40 out of 330) of these 
lung tumours. The FISH studies revealed amplification up to an 
estimated 100-fold (Fig. 2d and Supplementary Fig. 7); the lower 

4 

2 

amplification estimated on the SNP arrays (up to 14-fold) probably 
reflects signal saturation, stromal admixture and tumour heterogen­ d 
eity. No significant difference in patient survival after surgical resec­
tion and long-term follow-up was observed between tumours with 
amplified or non-amplified NKX2-1 (Supplementary Fig. 8 and 
Supplementary Table 11). Exon-based sequencing in 384 lung adeno­
carcinoma DNA samples showed no somatic mutations in either 
NKX2-1 or MBIP (Supplementary Results), indicating that any onco­
genic function might be exerted by the wild-type gene. 

We used RNA interference (RNAi) to test the roles of both MBIP 
and NKX2-1 with respect to cell survival and oncogenic properties. 
Expression of two different short hairpin RNAs (shRNAs) targeting 
NKX2-1 significantly reduced the levels of NKX2-1 protein in NCI­
H2009 cells (Fig. 3a) and NCI-H661 cells (data not shown)—NSCLC 
lines that carry 14q amplifications14. No NKX2-1 protein was 

35.6 35.8 36.0 36.2 36.4 

Position (Mb) 

Our data localize the amplification peak on chromosome 5p to the 
telomerase catalytic subunit gene, TERT. Although broad amplifica­
tion of chromosome 5p has been described in non-small-cell lung 
cancer (NSCLC)13,22,23, the target of 5p amplification has not been 
determined. In our data set, eight tumours with amplicons in chro­
mosome 5p15 delineate a region containing ten genes, including 
TERT (Table 1 and Supplementary Table 10), suggesting that 
TERT may be the target of the amplification and thereby contributes 
to cellular immortalization. 

Chromosome 6p21.1 shows focal amplification in four samples in 
a region containing two genes, one of which (VEGFA) encodes vas­
cular endothelial growth factor (Table 1 and Supplementary Table 
10). This amplification suggests a possible mechanism for increased 
angiogenesis and for the reported response to angiogenic inhibitors 
such as the anti-VEGF antibody bevacizumab in lung adenocarci­
noma24,25. Similarly, amplification of regions including several cell 

RNAi-based MBIP knockdown neither decreased colony formation 
in NCI-H2009 cells (Fig. 3d, e) or in NCI-H661 cells (Supplementary 
Fig. 11a, b), nor reduced cell viability (Supplementary Fig. 11c, d). It 
thus seems that NKX2-1, but not MBIP, is essential for the survival 
and tumorigenic properties of lung adenocarcinoma cell lines that 
express NKX2-1. 

Systematic understanding of the molecular basis of a particular 
type of cancer will require at least three steps: comprehensive 
characterization of recurrent genomic aberrations (including copy-
number changes, nucleotide sequence changes, chromosomal 
rearrangements and epigenetic alterations); elucidation of their 
biological role in cancer pathogenesis; and evaluation of their utility 
for diagnostics, prognostics and therapeutics. This study represents 
a step towards comprehensive genomic characterization of one of the 

detected in A549 cells that lack 14q amplification (Fig. 3a). 
RNAi-mediated inhibition of NKX2-1 expression substantially 

decreased the ability of NCI-H2009 cells to grow in an anchorage-
independent manner as measured by colony formation in soft 
agar (Fig. 3b), which may be due, in part, to a loss of cell viability. 
NCI-H661 cell viability was also impaired by NKX2-1 RNAi 
(Supplementary Fig. 9). NKX2-1 knockdown leads to a decrease in 
colony formation in lung adenocarcinoma lines (NCI-H1975 and 
HCC1171) that lack chromosome 14q13 amplification but express 
NKX2-1 (Supplementary Fig. 10), but has no effect on either soft agar 
colony formation or cell viability in A549 cells, which express little or 
no NKX2-1 protein (Fig. 3a, c). In contrast to the results for NKX2-1, 

Figure 2 | High-prevalence amplification of the MBIP/NKX2-1 locus on 
chromosome 14q. a, Copy number on chromosome 14q is shown for 371 
lung adenocarcinomas (columns; ordered by amplification) from 
centromere (top) to telomere (bottom). Colour scale as in Fig. 1. 
b, Magnified view of the amplified region from a; grey bars represent the 
absence of SNPs on the array. c, Raw copy number data (y axis) for one 
sample defining the minimally amplified region are plotted according to 
chromosome 14 position (x axis; scale in megabases). Genomic positions of 
MBIP, NKX2-1, NKX2-8 and the BAC used for FISH (red bar) are shown 
along the x axis. d, FISH for NKX2-1 (red) and a chromosome 14 reference 
probe (green) on a lung adenocarcinoma specimen with high-level 
amplification of the NKX2-1 probe. Nuclei are stained with 4,6-diamidino­
2-phenylindole (DAPI; blue). The yellow box shows a single nucleus. 
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METHODS SUMMARY 
DNA specimens were labelled and hybridized to the Affymetrix 250K Sty I array 
to obtain signal intensities and genotype calls. Loci identified by GISTIC analysis 
were further characterized by sequencing, genotype validation, tissue microarray 
FISH and functional studies. RNAi was performed by stable expression of shRNA 
lentiviral vectors targeting NKX2-1, MBIP or GFP in lung cancer cell lines, which 
were then used in soft agar and cell proliferation assays. Raw data and related files 
are available at http://www.broad.mit.edu/tsp. 

Full Methods and any associated references are available in the online version of 
the paper at www.nature.com/nature. 
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Figure 3 | NKX2-1 RNAi leads to reduced anchorage-independent growth 
and viability of NCI-H2009 cells but not A549 cells. a, Anti-NKX2-1 and 
control anti-vinculin immunoblots of lysates from NCI-H2009 and A549 
cells expressing shRNA against NKX2-1 (shNKX2-1a and shNKX2-1b) or 
GFP (shGFP) as control. b, Soft agar colony formation by NCI-H2009 cells is 
shown relative to the shGFP control as a mean percentage (6 standard 
deviation in triplicate samples; P 5 5.8 3 1026 when comparing shGFP to 
shNKX2-1a and P 5 5.1 3 1024 when comparing shGFP to shNKX2-1b). 
c, Colony formation assays as in b for A549 cells (P . 0.5). d, Anti-MBIP and 
anti-vinculin immunoblots of lysates from shRNA-expressing NCI-H2009 
cells. e, Colony formation of shMBIP NCI-H2009 cells relative to that of 
control shGFP cells (P 5 0.0344). 

most common cancers, lung adenocarcinoma. We define two main 
types of recurrent events in this disease: frequent, large-scale events 
and rare, focal events. Further efforts to identify the target genes of 
the frequent, large-scale events will probably involve systematic 
screens to produce orthogonal data sets (mutational, epigenetic, 
expression and loss-of-function phenotypes). 

Strikingly, the single most common focal event in lung adenocarci­
noma (amplification of 14q13.3) was not previously associated with a 
specific gene. We show here that the target gene is NKX2-1, a tran­
scription factor that has an essential role in the formation of type II 
pneumocytes, the cell type that lines the alveoli of the lung26,27 . Nkx2-1 
knockout mice fail to develop normal type II pneumocytes or alveoli 
and die of respiratory insufficiency at birth28, which highlights the 
importance of NKX2-1 in lung development. NKX2-1 shows hallmarks 
of a novel lineage-survival oncogene, similar to the MITF gene in 
melanoma7. The lineage-restricted amplification of such genes con­
trasts with the more ubiquitous amplifications seen for genes in cell 
cycle (for example, CDK4, CDK6, CCND1, CCNE1) and signal trans­
duction (for example, EGFR, ERBB2, KRAS) pathways. 

More generally, our results, together with other recent studies29, 
illustrate the power of systematic copy-number analysis with SNP 
arrays. They make clear that many important cancer-related genes 
remain to be discovered and can be revealed by systematic genomic 
study. 
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METHODS 
Primary lung specimens. A total of 575 DNA specimens were obtained from 
primary lung tumours (all of them with the original diagnosis of lung adeno­

carcinoma, 528 of which were confirmed to be lung adenocarcinomas), 439 
matched normal samples and 53 additional normal specimens. These DNAs 
were labelled and hybridized to SNP arrays (see below) without previous 
whole-genome amplification. Each of the selected tumour samples was deter­

mined to have greater than 70% tumour percentage by pathology review. 
Of the 575 selected tumours, 384 anonymous lung tumour and matched 

normal DNAs for the Tumour Sequencing Project (TSP) were collected from 
five sites: Memorial-Sloan Kettering Cancer Center (102 tumours and paired 
normal samples), University of Michigan (101 tumours and paired normal 
samples), MD Anderson Cancer Center (29 tumours and paired normal sam­

ples), Washington University (84 tumours and paired normal samples) and 
Dana-Farber Cancer Institute/The Broad Institute (68 tumours and paired nor­

mal samples). Additional anonymous lung adenocarcinoma samples or DNAs 
were collected from the Brigham and Women’s Hospital tissue bank (19 
tumours and 18 paired normal samples), H. Sasaki at the Nagoya City 
University Medical School (112 tumours and 37 paired normal samples) and 
from the University Health Network in Toronto (60 tumour samples). In addi­

tion to the matched normal samples, 53 unmatched normal tissue or blood 
samples were used for SNP array normalization purposes (sources include J. 
Llovet, S. Pomeroy, S. Singer, the Genomics Collaborative, Inc., Massachusetts 
General Hospital and R. Beroukhim). All tumour samples were surgically dis­

sected and frozen at 280 uC until use. 
SNP array experiments. For each sample, SNPs were genotyped with the Sty I 
chip of the 500K Human Mapping Array set (Affymetrix Inc.). Array experi­

ments were performed according to manufacturer’s directions. In brief, for each 
sample, 250 ng of genomic DNA was digested with the StyI restriction enzyme 
(New England Biolabs). The digested DNA was then ligated to an adaptor with 
T4 ligase (New England Biolabs) and PCR-amplified using an Applied 
Biosystems 9700 Thermal Cycler I and Titanium Taq (Clontech) to achieve a 
size range of 200–1,100 bp. Amplified DNA was then pooled, concentrated and 
put through a clean-up set. The product was then fragmented using DNaseI 
(Affymetrix Inc.) and subsequently labelled, denatured and hybridized to arrays. 
Hybridized arrays were scanned using the GeneChip Scanner 3000 7G 
(Affymetrix Inc.). Batches of 96 samples were processed as a single plate using 
a Biomek FX robot with dual 96 and span-8 heads (Beckman Coulter) and a 
GeneChip Fluidics Station FS450 (Affymetrix Inc.). Samples and plates were 
tracked using ABGene 2D barcode rack and single tube readers (ABGene). 
Tumour and paired normal sample (where applicable) were always placed in 
adjacent wells on the same plate to minimize experimental differences. Raw data 
(.CEL and .txt files) are available at http://www.broad.mit.edu/tsp. 
Primary SNP array data analysis. SNP arrays were processed as a plate of 96 
samples using the GenePattern software package32, with modules based on 
dChipSNP algorithms9,10. GenePattern modules are available at http:// 
www.broad.mit.edu/cancer/software/genepattern/. Intensity (.CEL) files were 
normalized and modelled using the PM-MM difference modelling method9 with 
the SNPfileCreator module. Array normalization, similar to quantile normaliza­

tion, was performed33; 6,000 matching quantiles from the probe density distri­

butions of two arrays were used to fit a running median normalization curve for 
normalization of each array to a common baseline array10. 
Array quality control analysis. Further analysis was performed on arrays that 
met certain quality control criteria. As a first step, non-adenocarcinoma samples 
(n 5 47) from the TSP set of 384 tumours were removed from further analysis 
(leaving 528 adenocarcinomas). Technical failure criteria (removing 33 
tumours) included a requirement for correct tumour/normal matching, geno­

typing call rates (% of SNPs that a genotype call can be inferred for) greater than 
85% and a score measuring copy-number variation between neighbouring SNPs 
of less than 0.5. The measure of local SNP copy number variation is calculated by 
the formula: variation score 5 mean[(log(RCi) 2log(RCi11))21(log(RCi)2 
log(RCi21))2], where RCi is the raw copy number at SNP i and the mean is taken 
over all SNPs. Criteria also included a requirement that after taking the log2 ratio 
and performing segmentation by GLAD11, the number of times the smoothed 
copy number crossed 60.1 on the log scale in the genome of tumour samples 
was , 100 (removing 73 tumours). The same test was used to exclude normal 
samples, with the number of times the smoothed copy number crossed 60.1 
decreased to ,45 (removing 50 normal samples). A histogram quality control 
step, as part of the GISTIC procedure, then removed tumours (n 5 51) with high 
degrees of non-tumour DNA contamination by looking for samples with only one 
peak of copy number across its whole genome. This histogram quality control step 
also removed normals (n 5 20) with tumour DNA contamination by looking for 
samples with greater than one peak of copy number across its whole genome. 

GISTIC analysis. GISTIC analysis12 was performed on arrays that met certain 
quality control criteria. Raw intensity value files from the GenePattern 
SNPfileCreator module were used as input into the GISTIC algorithm. In brief, 
batch correction, data normalization, copy-number determination using either 
the paired normal sample or the average of the five closest normal samples and 
copy number segmentation was performed. Data-set-specific copy number poly­

morphisms were identified by running GISTIC on the set of normal samples 
alone; the regions identified from this analysis were then also removed from the 
subsequent analysis of tumours. GISTIC then assigns GAMP and GDEL scores to 
each locus, respectively representing the frequency of amplifications (deletions) 
seen at that locus, multiplied by the average increase (decrease) in the log2 ratio 
in the amplified (deleted) samples. The score (G) is based on the average ampli­

tude (a) of the lesion type (amplification or deletion) and its frequency (f) in the 
(lesion type) (lesion type) (lesion type)data set according to the formula: Gi 5 fi ai . The 

significance of each score is determined by comparison to similar scores obtained 
after permuting the data within each sample. The resulting q-value is an upper 
bound for the expected fraction of false positives among all regions with a 
particular q-value or less. GISTIC also implements a peel-off step, which iden­

tifies additional secondary peaks within a region. 
GISTIC analysis was performed essentially the same as is described in a future 

publication12, with the following exceptions. Copy number determination was 
performed for each tumour using its matched normal sample when available and 
of good quality (n 5 242). For all others, the average of the five closest normal 
samples was used (n 5 129). Copy number segmentation was performed using 
the GLAD algorithm with parameter d 5 10. GLAD segments less than eight 
SNPs in length were also removed. 

Regions identified by GISTIC were also compared to known copy-number 
polymorphisms34 and were manually reviewed for the presence of the alteration 
in the paired normal sample. Focal deletion regions with events that occurred in 
tumour samples that did not have paired normal samples were considered pre­

sumed polymorphisms and also removed from the list. Secondary peaks and 
known and presumed germline copy number polymorphisms are listed in 
Supplementary Tables 12 and 13. 
GISTIC analysis of large-scale regions. Significant broad regions of amplifica­

tion and deletion were identified by applying GISTIC with the default thresholds 
of 2.14/1.87 (log2 ratio of 60.1). Regions identified by GISTIC that were greater 
than 50% of a chromosome arm were considered large-scale. Region frequencies 
were calculated by determining the number of samples that had a median log2 
ratio greater/less than the threshold (60.1), for those SNPs within the region. 
GISTIC analysis of focal regions. Significant focal regions of amplification and 
deletion were identified by applying GISTIC with a threshold of 3.6/1.2 (log2 
ratio of 0.848/20.737). 
Data visualization. Normalized raw copy number from GISTIC analysis was 
used as input for visualization in the GenePattern SNPviewer (http:// 
www.broad.mit.edu/cancer/software/genepattern/)32. Mapping information 
for SNP, Refgene and cytoband locations are based on Affymetrix annotations 
and the hg17 build of the human genome sequence from the University of 
California, Santa Cruz (http://genome.ucsc.edu). 
Chromosome arm analysis. After segmentation by GLAD, the median of each 
chromosome arm for each sample was calculated. Amplification or deletion of an 
arm across the data set was tested for significance by a two-sided binomial test, 
after removing log2 copy number ratios between 60.1. P values were false-

discovery rate (FDR) corrected to give a FDR q value; significance is set to a 
q value of 0.01. The standard deviation of the median copy number of significant 
arms was then used to sort samples into three groups. Higher standard deviation 
implies higher interchromosomal variation, which correlates with less stromal 
contamination. Frequencies were then calculated for the total set and for only the 
top one-third least stromally contaminated samples to give a better idea of true 
frequencies in the context of attenuated signal owing to stromal contamination. 
Comparison between tertiles. A similar chromosome arm analysis was per­

formed independently on the three sample groups, separated according to the 
standard deviations of their median arm log2 copy number ratios. Amplification 
or deletion of an arm across the data set was tested for significance by a two-sided 
binomial test, after removing values between 60.0125. P values were FDR cor­

rected to give a FDR q value, significance is set to a q value of 0.01. 
Estimation of stromal contamination. To attempt to estimate stromal contam­

ination, we calculated the allele-specific copy numbers by taking all informative 
SNPs in each of the 237 tumours that have a paired normal (removing five bad 
pairs) and dividing the allele-specific signal from the tumour by that of the 
normal. Then for each SNP we found M, the minimum between the copy num­

bers of the A and B alleles. In regions in which one allele has zero copies (for 
example, one copy loss in diploid cells) M represents the stromal contamination 
level (as the stroma has one copy of each allele). We calculated the median value 
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of M across each of the chromosome arms and then estimated the stromal 
contamination by taking their minimum. 
LOH analysis. Inferred LOH calls using an HMM algorithm for 242 tumour/ 
normal sample pairs were generated using dChipSNP35. Default parameters were 
used, except the genotyping error rate was set to 0.2. Five bad-quality sample 
pairs were removed before visualization and GISTIC analysis. GISTIC analysis of 
LOH calls and copy loss for 237 samples were performed as described12. 
Correlation analysis. Associations were tested between each large-scale altera­

tion identified by GISTIC and certain clinical parameters. A Fisher’s exact test 
was used to determine association of large-scale copy-number lesions with the 
binary clinical parameters (gender and smoking status). A chi-squared test was 
used to determine whether each large-scale copy number alteration was inde­

pendent of each non-binary clinical parameter (age range, differentiation, 
tumour stage or patient’s reported ancestry). P values were FDR corrected to 
give a FDR q value, significance is set to a q value of 0.05. 
Correlation of clinical features and NKX2-1 amplification. The analysis 
included 123 consecutive patients with lung adenocarcinoma treated at 
Brigham and Women’s Hospital between January 1997 and December 1999. 
Fifty-two of these cases had a FISH amplification status that was not assessable 
(6 cases showed no tumour on the tissue cores and 46 cases had insufficient 
hybridization). Of the remaining 71 cases, 10 cases had NKX2-1 amplification, 1 
had a NKX2-1 deletion, and 60 cases showed no NKX2-1 alteration. All cases for 
which the NKX2-1 amplification status was not assessable and the one case that 
showed a NKX2-1 deletion were excluded, bringing the final number of cases 
included in the analysis to 70. 

All cases were histologically confirmed as lung adenocarcinomas. For cases 
that showed a pure solid growth pattern, mucicarmine and immunohistochem­

ical stains were performed to confirm that the tumour was an adenocarcinoma. 
Well-differentiated tumours were defined as tumours with a purely bronchiolo­

alveolar growth pattern or mixed tumours with an acinar component with 
cytologic atypia equivalent to that seen with bronchioloalveolar carcinoma. 
Poorly differentiated tumours were defined as tumours that showed any amount 
of solid growth. All other tumours were classified as moderately differentiated. 
Patient demographics, smoking status, tumour location, type of surgical resec­

tion, tumour stage (according to the 6th edition of the American Joint 
Committee on Cancer system for lung carcinoma) and nodal status were 
recorded. 
Overall survival of patients with NKX2-1 amplification. We excluded from the 
survival analysis three cases with NKX2-1 amplification and 11 cases that had no 
NKX2-1 alterations. Exclusion criteria included: cancer was a recurrence; 
patients received neoadjuvant treatment; patients died within the first 30 days 
after surgery; and patients had another cancer diagnosed in the 5 years before the 
diagnosis of lung adenocarcinoma. Survival was plotted by Kaplan–Meier 
method using the date of resection and date of death or last follow-up. 
Sequencing. NKX2-1, MBIP and AUTS2 were sequenced in all 384 TSP lung 
adenocarcinomas. Primers were designed in an automated fashion using 
Primer 3 (ref. 36) and characterized by amplification in genomic DNA from 
three Coriell cell lines. Primers that show an agarose gel band for at least two of 
the three DNAs were then used for production PCR. Passing primers were 
arrayed into 384-well PCR plates along with samples and PCR master mix. A 
total of 5 ng of whole-genome-amplified sample DNA was PCR amplified over 
35 cycles in Thermo-Hybaid units, followed by a SAP/Exo clean-up step. NKX2­

1 PCR reactions for sequencing contained an addition of 5% DMSO. The result­

ing purified template is then diluted and transferred to new plates for the 
sequencing reaction. After cycling (also performed on Thermo-Hybaids), the 
plates are cleaned up with an ethanol precipitation, re-hydrated and detected on 
an ABI 3730xl DNA analyser (Applied Biosystems). Output from the detectors is 
transferred back to the directed sequencing platform’s informatics pipeline. 
SNPs and/or mutations are then identified using three mutation-detecting algo­

rithms in parallel: PolyPhred37 and PolyDHAN (D. Richter et al., manuscript in 
preparation), which are bundled into the in-house software package SNP 
Compare, and the commercially available Mutation Surveyor (SoftGenetics, 
LLC.). Candidates were filtered to remove silent variants, intronic variants (with 
the exception of potential splice site mutations) and validated SNPs registered in 
dbSNP or confirmed as SNPs in our previous experiments. 
Mutation validation by genotyping. Homogeneous mass extension (hME) gen­

otyping for validation of sequencing candidates was performed in 96-well plates 
with up to 7-plex reactions. PCR was performed with final concentrations of 
0.83 mM dNTPs, 1.563 of 103 buffer, 3.38 mM MgCl, 0.03 U ml21 HotStar Taq 
(Qiagen), 0.10 mM PCR primers. Thermocycling was performed at 92 uC for 
15 min, followed by 45 cycles of 92 uC for 20 s, 56 uC for 30 s and 72 uC for 
1 min, with an additional extension at 72 uC for 3 min. Shrimp alkaline phos­

phatase (SAP) clean-up was performed using a master mix made up of 0.53 
buffer and SAP. Reactions were performed at 34 uC for 20 min, 85 uC for 5 min 

and then held at 4 uC. After the SAP clean-up, hME reaction was performed using 
thermosequenase and final concentrations of 0.06 mM sequenom termination 
mix (specific to the pool being used), and 0.64 mM extension primer. Reactions 
were cycled at 94 uC for 2 min, followed by 55 cycles of 94 uC for 5 s, 52 uC for 5 s 
and 72 uC for 5 s. Samples were then put through a resin clean-up step, then the 
purified primer extension reaction was loaded onto a matrix pad (3-hydroxypi­

coloinic acid) of a SpectroCHIP (Sequenom) and detected by a Bruker Biflex III 
MALDI-TOF mass spectrometer (SpectroREADER, Sequenom). 
PTPRD mutation discovery and validation. The PTPRD gene was sequenced in 
188 lung adenocarcinoma samples. Sequence traces (reads) were aligned to 
human reference sequence using cross-match. PolyPhred37 and PolyScan were 
used to predict SNPs and insertions/deletions. Identified SNPs were validated 
using the Illumina Goldengate assay. ENST00000356435 is the transcript used 
for annotating the mutations. Both synonymous and non-synonymous candi­

dates were identified, but only non-synonymous mutations were validated. 
Tissue microarray FISH (TMA–FISH). A Biotin-14-dCTP-labelled BAC clone 
RP11-1083E2 (conjugated to produce a red signal) was used for the NKX2-1 
probe and a Digoxin-dUTP labelled BAC clone RP11-72J8 (conjugated to pro­

duce a green signal) was used for the reference probe. Tissue hybridization, 
washing and colour detection were performed as described previously7,38. 
NKX2-1 amplification by FISH was assessed using a total of 935 samples (repre­

sented by 2,818 tissue microarray cores). 
The BAC clones were obtained from the BACPAC Resource Center, 

Children’s Hospital Oakland Research Institute (CHORI, Oakland, California, 
USA). Before tissue analysis, the integrity and purity of all probes were verified by 
hybridization to metaphase spreads of normal peripheral lymphocytes. The 
samples were analysed under a 360 oil immersion objective using an 
Olympus BX-51 fluorescence microscope equipped with appropriate filters, a 
CCD (charge-coupled device) camera and the CytoVision FISH imaging and 
capturing software (Applied Imaging). Semi-quantitative evaluation of the tests 
was independently performed by two evaluators (S.P. and L.A.J.); at least 100 
nuclei for each case were analysed when possible. Cases with significant differ­

ences between the two independent evaluations were refereed by a third person 
(M.A.R.). The statistical analysis was performed using SPSS 13.0 for Windows 
(SPSS Inc.) with a significance level of 0.05. 
Cell lines and cell culture conditions. NCI-H2009 (ref. 39), NCI-H661 (ref. 40), 
NCI-H1975 (ref. 39) and HCC1171 (ref. 8) have been previously described. 
A549 cells were purchased from American Type Culture Collection. NSCLC 
cells were maintained in RPMI growth media consisting of RPMI 1640 plus 
2 mM  L-glutamine (Mediatech) supplemented with 10% fetal bovine serum 
(Gemini Bio-Products), 1 mM sodium pyruvate, and penicillin/streptomycin 
(Mediatech). 
RNAi knockdown. shRNA vectors targeted against NKX2-1, MBIP and GFP 
were provided by TRC (The RNAi Consortium). The sequences targeted by 
the NKX2-1 shRNAs are as follows: shNKX2-1a (TRCN0000020449), 59­

CGCTTGTAAATACCAGGATTT-39, and shNKX2-1b (TRCN0000020453), 
59-TCCGTTCTCAGTGTCTGACAT-39. The sequences targeted by the MBIP 
shRNA and GFP shRNA are 59-CCACCGGAAGGAAGATTTATT-39 
(TRCN0000003069) and 59-GCAAGCTGACCCTGAAGTTCAT-39, respect­

ively. Lentiviruses were made by transfection of 293T packaging cells with a three 
plasmid system41,42. Target cells were incubated with lentiviruses for 4.5 h in the 
presence of 8 mg ml21 polybrene. After the incubation, the lentiviruses were 
removed and cells were fed fresh medium. Two days after infection, puromycin 

21 21 21(0.75 mg ml for NCI-H1975, 1.0 mg ml for NCI-H661, 1.5 mg ml for NCI­
21 21H2009, 1.0 mg ml for NCI-H661 and 2.0 mg ml for A549 and HCC1171) was 

added. Cells were grown in the presence of puromycin for 3 days or until all of the 
non-infected cells died. Twenty-five micrograms of total cell lysates prepared 
from the puro-selected cell lines was analysed by western blotting using anti­

NKX2-1 polyclonal antibody (Santa Cruz Biotechnology), anti-MBIP polyclonal 
antibody (Proteintech Group, Inc.) and anti-vinculin monoclonal antibody 
(Sigma). 
Soft agar anchorage-independent growth assay. NCI-H2009 (1 3 104), NCI­

H661 (2.5 3 104), A549 (3.3 3 103), NCI-H1975 (5 3 104) or HCC1171 
(1 3 104) cells expressing shRNAs targeting NKX2-1, MBIP or GFP were sus­

pended in a top layer of RPMI growth media and 0.4% Noble agar (Invitrogen) 
and plated on a bottom layer of growth media and 0.5% Noble agar in 35-mm 
wells. Soft agar colonies were counted 3–4 weeks after plating. The data are 
derived from two independent experiments unless otherwise noted and are 
graphed as the percentage of colonies formed relative to the shGFP control cells 
(set to 100%) 61 standard deviation of the triplicate samples. P values between 
shGFP and shNKX2-1 or shMBIP samples were calculated using a t-test. 
Cell proliferation assays. NCI-H2009 (500 cells per well), A549 (400 cells per 
well) and NCI-H661 (600 cells per well) cells expressing shRNAs targeting 
NKX2-1, MBIP or GFP were seeded in 6 wells in a 96-well plate. Cell viability 
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was determined at 24-h time points for a total of 4 days using the WST-1-based 
colorimetric assay (Roche Applied Science). The percentage of cell viability is 
plotted for each cell line 61 standard deviation of the reading from six wells, 
relative to day 0 readings. Experiments were performed two or more times and a 
representative experiment is shown. 
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