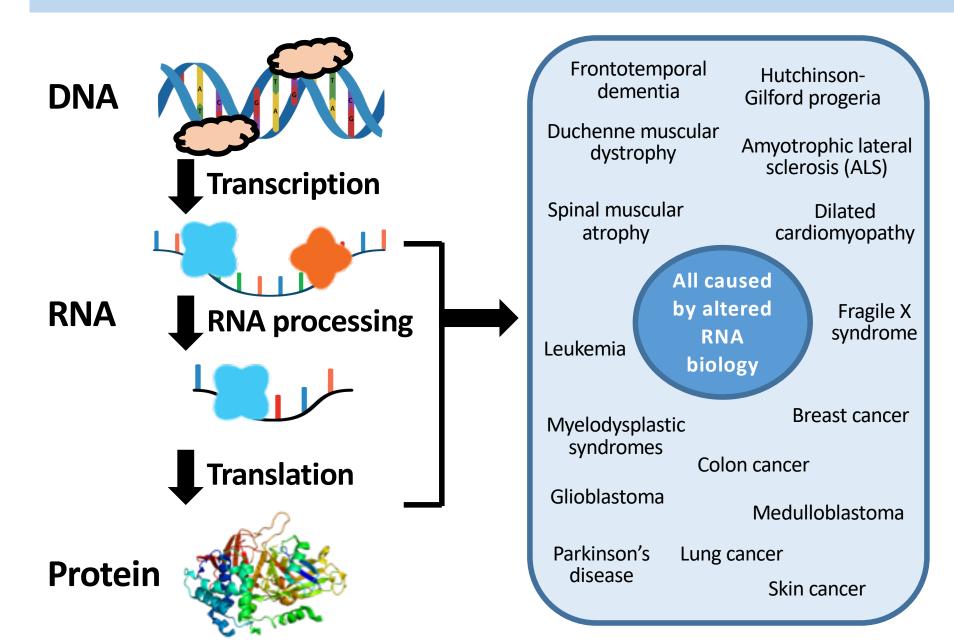
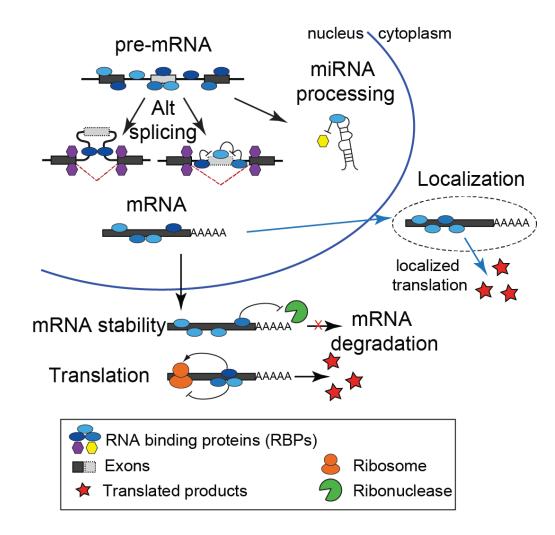
ENCORE: Using the ENCODE RNA binding protein resource to study RNA processing regulation


> Eric Van Nostrand elvannostrand@ucsd.edu Yeo Lab, UCSD 10/16/18

Disclosure



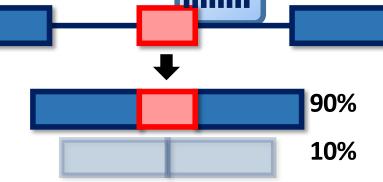
Co-founder & consultant for Eclipse BioInnovations Inc.

The RNA world is controlled by RBPs

Each step of RNA processing is highly regulated

- RNA binding proteins (RBPs) act as trans factors to regulate RNA processing steps
- Estimated >1000 RBPs in human
- RNA processing plays critical roles in development and human physiology
- Mutation or alteration of RNA binding proteins plays critical roles in disease

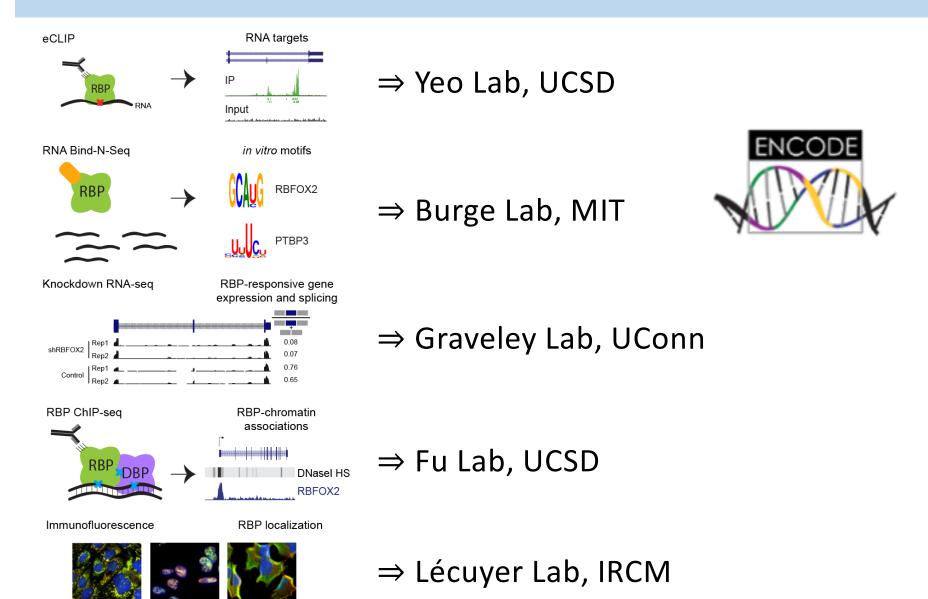
Stephanie Huelga

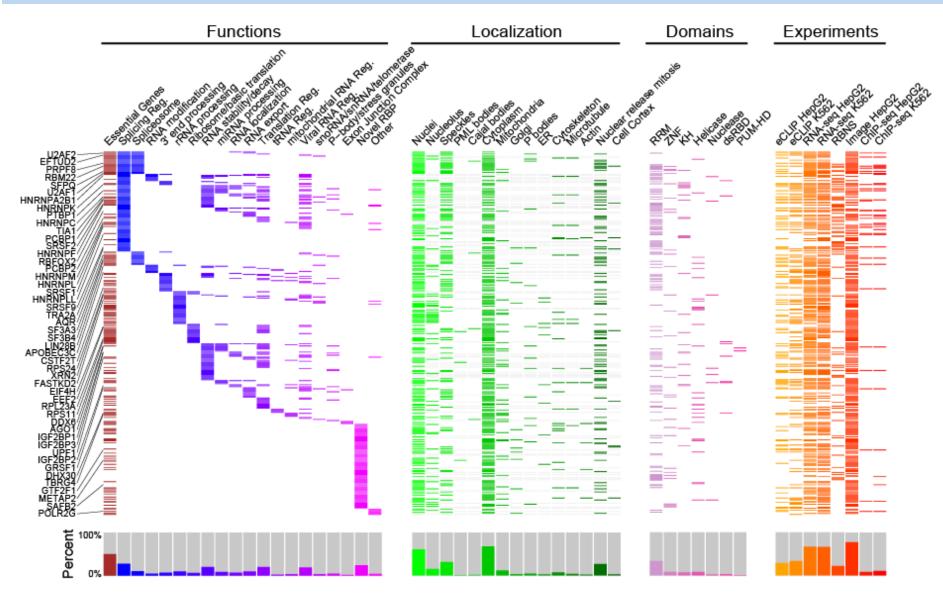

RBP targets are therapeutic targets

Spinal Muscular Atrophy

HNRNP A1 SMN2 10% 90% SMN2

Example: Spinal Muscular Atrophy Antisense oligo therapy targeting

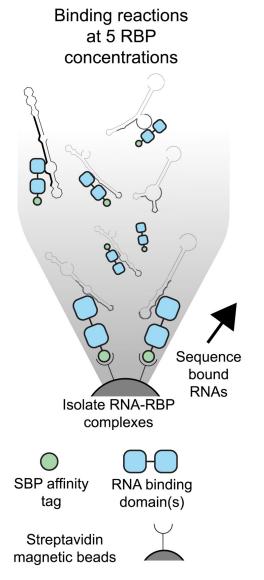

- binding site in SMN2 tor neuron death and
- le wasting
- ogen binding and
- roved in
- éssing exöh in *SMN2* Ilion annual sales by 2025

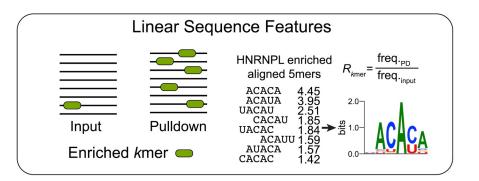

Outline

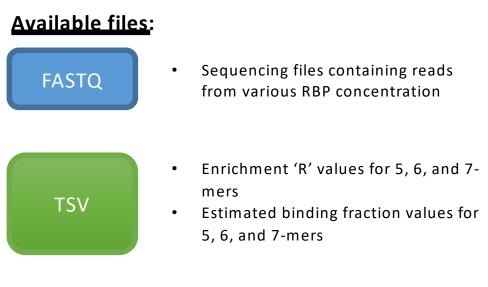
- Data overview for ENCORE experiments
 - Available data types
 - Example: a deeper dive into accessing eCLIP data
- Incorporating ENCORE data into analyses
 - Using eCLIP to identify potential regulators of an RNA of interest
 - Integrating *in vivo* and *in vitro* motifs to study RBP regulation
 - Integrating RBP-responsive and *in vivo* RNA targets to map regulation of RNA stability and splicing
 - Using localization to predict RBP function (and vice versa)

ENCORE: the ENCODE RNA regulation group

RBP Data Production Overview (ENCODE Phase 3)

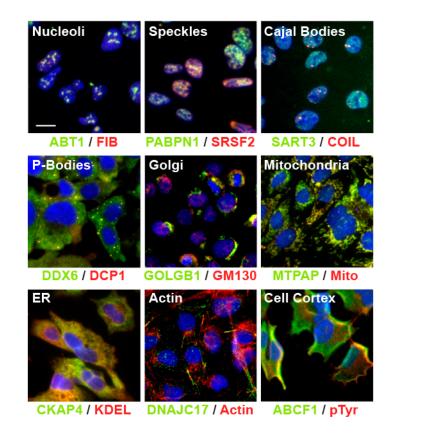


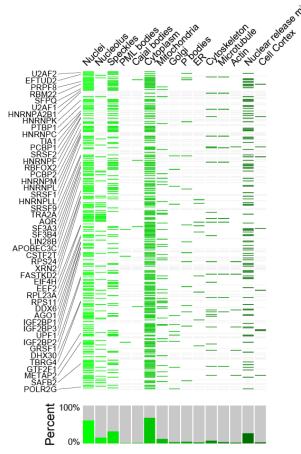

ENCORE data availability


https://www.encodeproject.org/

Experiment Ma					Toront of commu		Bala aslessed			-
		Assay shRNA RNA-seq	478	Assay category Transcription 516	Target of assay RNA binding protein	897	Date released August, 2015	84	Available fasto	data 885
Click or enter search terms		eCLIP	231	RNA binding 310		412	March, 2016	81	bam	808
experiments included in the	matrix.	RNA Bind-n-Seg	79	DNA binding 71		235	December, 2014	80	bigWig	808
Entry an and toronto?		ChIP-seq	71				October, 2014	80	tsv	591
Enter search term(s)		siRNA RNA-seq	57				August, 2018	55	tar	472
Organism				ASSAY						
Homo sapiens	818	897 re								
Biosample type		§ 897 re	sults	8	and the second					
cell line	816			- <u></u>						
cell-free sample	79			5 4 4	A.B.					
cell-free sample tissue	79	Clear Fi								
tissue	79 2	Clear Fi								
	79 2 431		iters O							
tissue Organ	2	Clear Fi	iters O	K562 246 124 38 2	3					
tissue Organ blood bodily fluid liver	2 431 431 385	Clear Fi	iters O H		3					
tissue Organ blood bodily fluid	2 431 431	Clear Fi cell line cell-free sample	iters O H	K562 240 124 38 2 lepG2 232 105 33 1	3					
tissue Organ blood bodily fluid liver	2 431 431 385	Clear Fi cell line cell-free sample	iters O H	K562 242 38 2 epG2 232 105 33 1 imple 79	3					

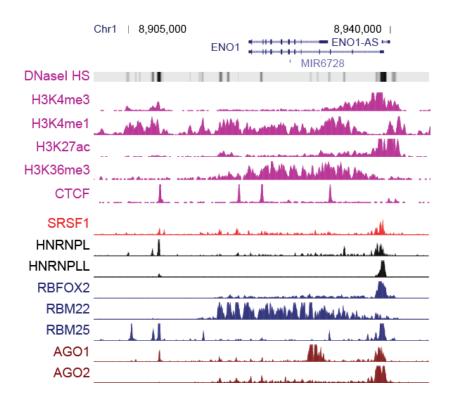
RNA Bind-N-Seq – in vitro binding motifs

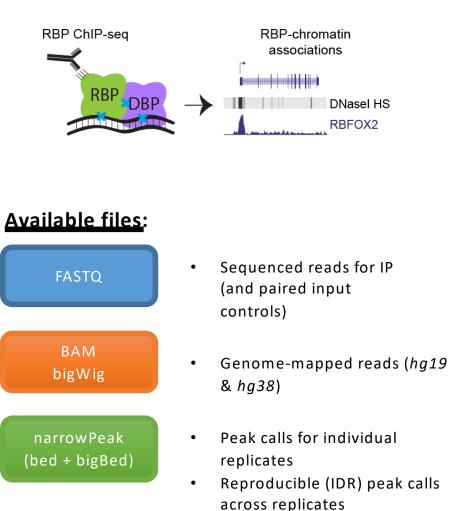


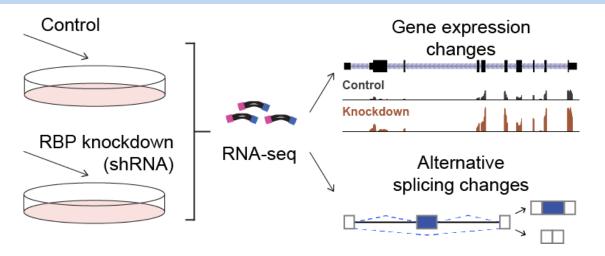


For more info see Dominguez D, et al. Molecular Cell (2018)

Immunofluorescence - RBP subcellular localization


Searchable images available at: http://rnabiology.ircm.qc.ca/RBPImage/




Data table available as supplementary information for Van Nostrand E, et al. Manuscript submitted. Preprint available at: https://www.biorxiv.org/content/early/2018/10/05/179648

RBP DNA associations – ChIP-seq

RBP-responsive targets – knockdown/RNA-seq

Available files:

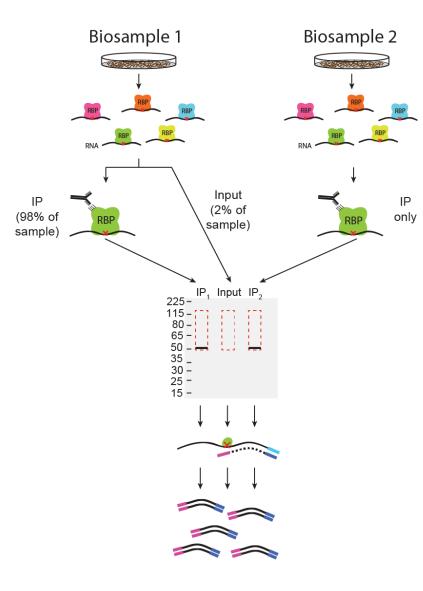
 Sequenced reads for knockdown (and paired non-target controls)

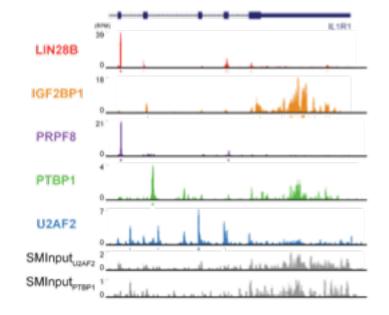
 Genome-mapped reads (hg19 & hg38)

 Differential expression (DEseq2) against paired control

tsv

tsv

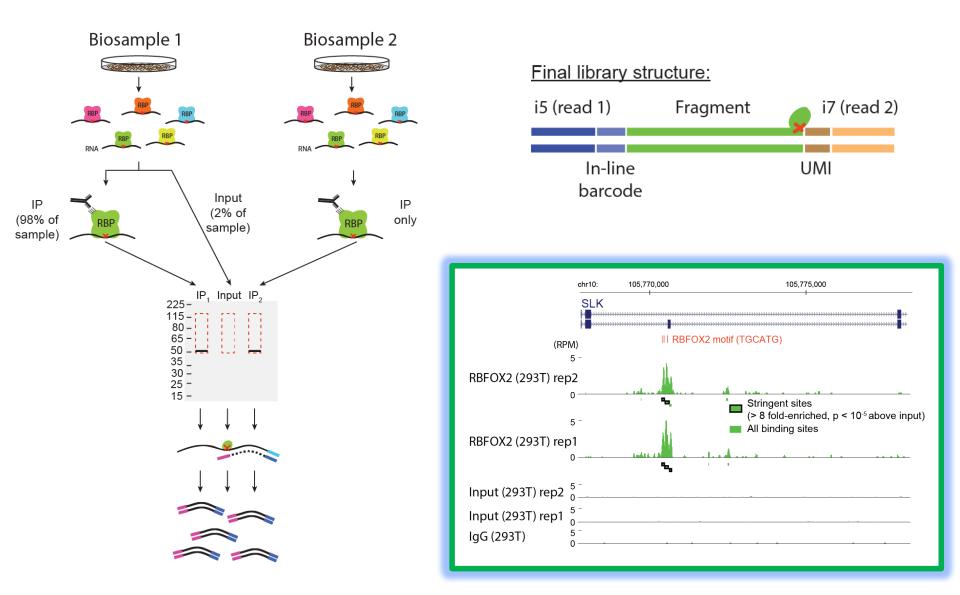

Batch corrected expression levels


٠

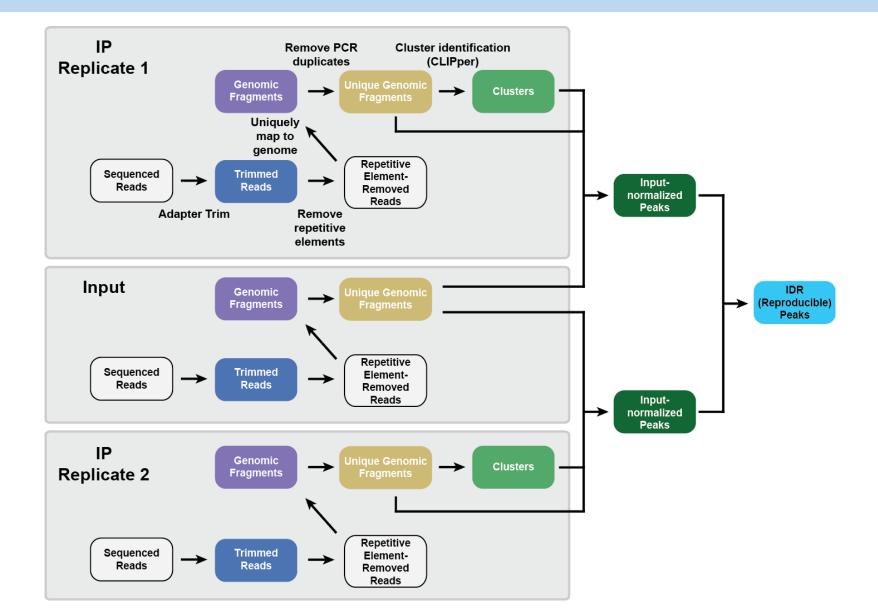
- Differential splicing (rMATS) against paired control
- Batch corrected splicing changes

RBP in vivo RNA targets - eCLIP

Available files:

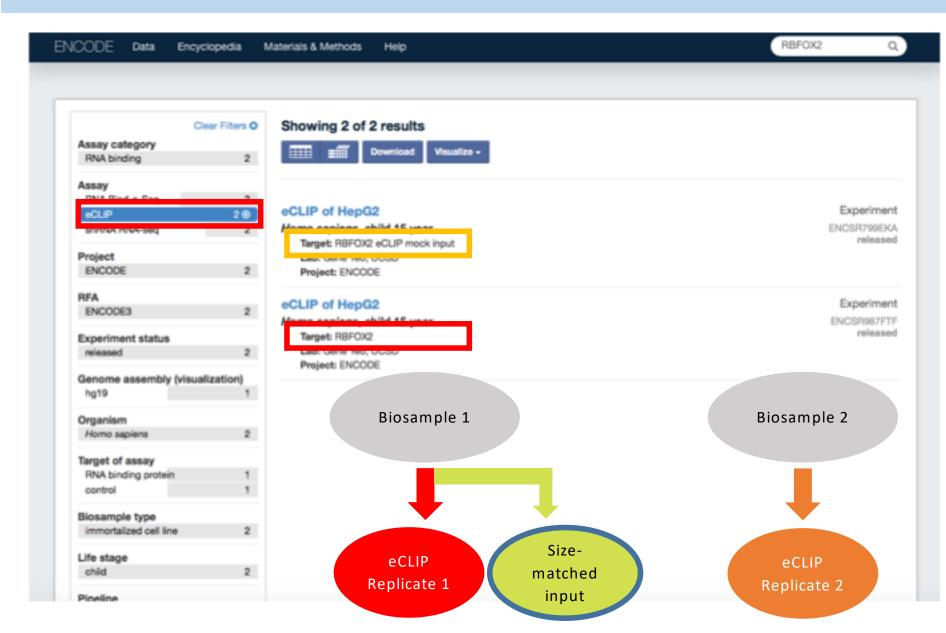

- Sequenced reads for IP and paired input controls)
- Genome-mapped, PCR duplicateremoved reads (hg19 & hg38)
- Peak calls for individual replicates
- Reproducible (IDR) peak calls across replicates

Outline


• Data overview

- Available data types
- Example: a deeper dive into accessing eCLIP data
- Incorporating ENCODE data into analyses
 - Using eCLIP to identify potential regulators of an RNA of interest
 - Integrating *in vivo* and *in vitro* motifs to study RBP regulation
 - Integrating RBP-responsive and *in vivo* RNA targets to map regulation of RNA stability and splicing
 - Using localization to predict RBP function (and vice versa)

A deeper dive into eCLIP


eCLIP: data processing overview

eCLIP: data access overview

CODE Data End	cyclopedia N	taterials & Methods Help	RBF0X2
Data Type		Showing 18 of 18 results	
Experiment processing-re	7	RBFOX2 (Homo sapiens)	Tar
AntibodyLot Publication	2 2 + See more	External resources: ENSEMBL:ENSG00000100320 C HGNC:FCIX2 C HGNC:RBM9 C GenelD:23543 HGNC:HRNBP2 C HGNC:RTA C	
		RBFOX2 eCLIP mock input (Homo sapiens) External resources: None submitted	Tar
		RNA Bind-n-Seq Target: RBF002 Lab: Chris Burge, MIT Project: ENCODE	Experim ENCSR441F relea
		RBFOX2 (Homo sapiens) Source: GeneTex Product ID / Lot ID: GTX116327 / 40555	Antiba ENCAB507
		RBFOX2 (Homo sapiens) Source: Bethyl Labs Product ID / Lot ID: A300-864A / 2	Antibe ENCAB6921
		K562 (Horno sapiens, adult 53 year) Type: immortalized cell line Summary: Homo sapiens K562 immortalized cell line transient RNAi knockdown shRNA RNAi target: RBFCK2 Culture harvest date: 2015-03-05 Source: ATCC	Biosam ENCBS677H relea

eCLIP: data availability

eCLIP: data processing overview

	t summary for ENCSR987FTF							
			1					
Summary		Attribution						
Status:	released	Lab:	Gene Yeo, UCSD					
Assay:	eCLIP	Award:	US4HG007005 (Brenton Graveley, UConn)					
Target:	RBF0X2	Project:	ENCODE					
Biosample summary:	Homo sapiens HepG2	External resources:	RBPImage:RBFOX2 C* GEO:GSE92211 C*					
Biosample Type:	cell line	Aliases:	gene-yeo:204					
Replication type:	isogenic	Date submitted:	March 21, 2016					
Description:	eCLIP experiment on HepG2 against RBFOX2	Date released:	July 15, 2015					
Nucleic acid type:	RNA	Submitter comment:	E Fastg files ENCFF591SSP, ENCFF172GUS, ENCFF289OF and ENCFF647KDW contain reads of mixed lengths. Rear length followed by number of reads: ENCFF591SSP (28, 1000)					
Size range:	175-300							
Lysis method:	see document		24096), (29, 29994), (30, 36373), (31, 44027), (32, 52166), (33 62212), (34, 72146), (35, 83327), (36, 95836), (37, 111280), (
Extraction method:	see document		124658), (39, 145860), (40, 173927), (41, 297859), (42, 7571) (43, 1869770), (44, 6256221); ENCFF1720US (28, 30109), (2					
Fragmentation method:	see document		37059), (30, 44823), (31, 54327), (32, 64359), (33, 76121), (34 88715), (35, 100926), (36, 115541), (37, 131323), (38, 148444 (39, 168373), (40, 192392), (41, 295921), (42, 729070), (43,					
Size selection method:	agarose gel extraction		1644786), (44, 6116564); ENCFF289OFA (30, 101628), (31, 43075), (32, 50755), (33, 59105), (34, 68593), (35, 79699), (38 90230), (37, 99313), (38, 111706), (39, 126182), (40, 138622)					
Strand specificity:	Strand-specific		(41, 158824), (42, 186932), (43, 298418), (44, 802322), (45, 2032984), (46, 5788540); and ENCFF647KDW (30, 88954), (2010)					
Platform:	Illumina HiSeq 2000		2032894), (46, 5785940); and ENCFT6476047604 (30, 68904), (2 46645), (32, 54434), (33, 64706), (34, 75349), (35, 87425), (36 100155), (37, 111358), (38, 125762), (39, 140030), (40, 15666					
Controls:	ENCSR799EKA		(41, 177459), (42, 208190), (43, 306399), (44, 796621), (45,					

Isogenic replicates	Isogenic replicates												
Isogenic replicate	 Technical replicate 	¢	Summary	Biosample		Antibody	_	Library	٥				
1	1		Homo sapiens HepG2 immortalized cell line	ENCBS547JWV		ENCAB592TEY		ENCLB180GIG					
2	1		Homo sapiens HepG2 immortalized cell line	ENCBS537ADD		ENCAB592TEY		ENCLB696TLV					

ENCAB592TEY

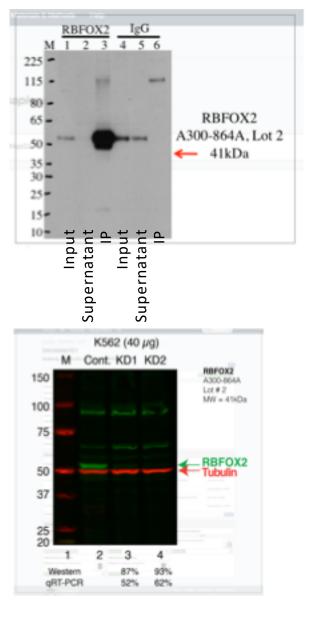
Antibody against Homo sapiens RBFOX2

xiang-dong-fu:R8FCX2

actorized to standards

(:)

Home sapiens	K362, HepG2	e that
Status:	reisased	
Source (vendor):	Bettyl Labs (2*	
Product ID:	A300-864A.(2*	
Let ID:	2	
Targets:	REFCIQ (Homo sapiens)	
Host	Rabbit	
Clenality	Polycional	
Purification	Affinity	
hotype:	1gG	


Experiments using this antibody

External resources: APLA8_2615817 (2)

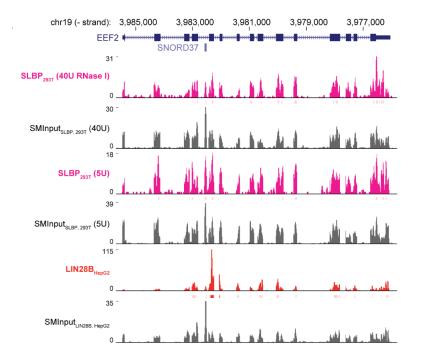
Alases:

Accession *	Assay 0	Biosample term name 0	Target	•	Description	•	Lab 0
ENCSR05130X	+OLP	K562	RBFGIQ eCLP mack input		eOLIP control experiment on KS62 against RBFOR2		Gene Yeo, UCSD
ENCER756CKJ	#CLP	K362	RBFCK2		eCLIP experiment on KS62 against RBFCK2		Gene Yeo, UCSD
ENCORTONPYS	Ch/P-seq	HepG2	RBFCX2		RBFC82 ChiP-seq in HepG2		Xiang-Dong Fu, UCSD
ENCORTORICA	+OLP	HepG2	RBFCH2 eCLIP mack input		eOLIP control experiment on HepG2 against RBFOR2		Gene Yeo, UCSD
ENCOMINIO	Ch/P-seq	K362	RBFOK2		RBFCH2 ChiP-eeq in #362		Xang-Dong Fu, UOSD
Displaying 5 of 6							Vew at

For more info on antibody validation see Sundararaman B, *et al.* Molecular Cell (2016)

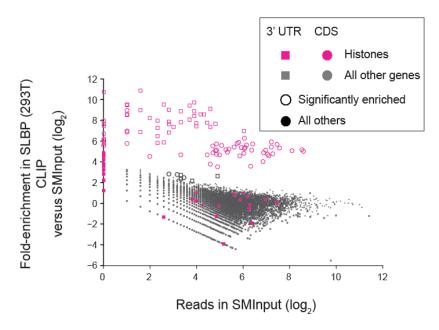
Isogenic re	Isogenic replicates																						
Isogenic replic	ate	•	Technical	rep	licate	¢	Sur	mmary								Biosamp	le	•	٥	Antibody	¢	Library	٥
1			1				Hor	no sapiens	н	epG2 immo	orta	lized cell lin	e			ENCBS54	47	JWV		ENCAB592TEY		ENCLB180GIG	
2			1				Hor	mo sapiens	н	epG2 immo	orta	lized cell lin	e			ENCBS5	37	ADD		ENCAB592TEY		ENCLB696TLV	
		_							_		_		_				_		_		_		
File summary Visualize Data -																							
Raw data files																							
Accession 0	File 0 type 0		logical licate	•	Library 0	Ri tyr		0 Read	•	Lab	0	Date added	•	File 0 size 0		atus 0		File status	۰				
ENCFF647KDW 🛦	fastq	1			ENCLB180GIG	PE	50nt	R2		Gene Yeo, UCSD		2016-03-22		335 MB	8	*		released		D1 _ D	2	facta filos	_
ENCFF172GUS	fastq	1			ENCL8180GIG	PE	50nt	R1		Gene Yeo, UCSD		2016-03-22		313 MB	8	-		released			2	fastq files	>
ENCFF289OFA	fastq	2			ENCLB696TLV	PE	50nt	R2		Gene Yeo, UCSD		2016-03-22		338 MB		<i>•</i>	1	released					
ENCFF591SSP	fastq	2			ENCLB696TLV	P	50nt	R1		Gene Yeo, UCSD		2016-03-22		315 MB	8	× .	1	released					
Processed dat	ta files																						
Accession \$	File type	٥	Output type		Biological replicate	•	Mapp		•	Lab	٠	Date added	•	File o size o		udit e atus		File status	٠				
ENCFF735HJV 🛦	bed narrowPer	ek.	peaks		1		hg19			Gene Yeo,		2016-04-05		784 kB	8		1	in progress	3		no	ormalized	
ENCFF475KXE	bigBed narrowPeak		peaks		1		hg19			Gene Yeo, UCSD		2016-03-24		2.67 MB	8	*)	1	released		peaks			
ENCFF994WPX 🛦	bam		alignments		1		hg19			Gene Yeo, UCSD		2016-03-23		365 MB	8		1	released					
ENCFF030USB 🛦	bed narrowPer	ek.	peaks	1	2		hg19			Gene Yeo, UCSD		2016-04-05		665 kB	8		1	is progress	1				
ENCFF026CVE	bigBed narrowPeak		peaks	1	2		hg19			Gene Yeo, UCSD		2016-03-24		2.7 MB	8		1	released					
ENCFF154BQS 📥	bam		-						_	UCSD					•	-				Paired			
																				mappi	ng	g (STAR)	

File details: bed narrowPeak (input-normalized peaks)


chr \t start \t stop \t dataset label \t 1000 \t strand \t log2(eCLIP fold-enrichment over size-matched input) \t -log10(eCLIP vs size-matched input p-value) \t -1 \t -1

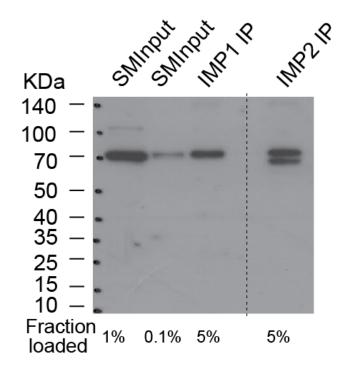
- Note: p-value is calculated by Fisher's Exact test (minimum p-value 2.2x10⁻¹⁶), with chi-square test (-log10(p-value) set to 400 if p-value reported == 0)
- Our typical 'stringent' cutoffs: require $-\log 10(p-value) \ge 3$ and $\log 2(fold-enrichment) \ge 3$

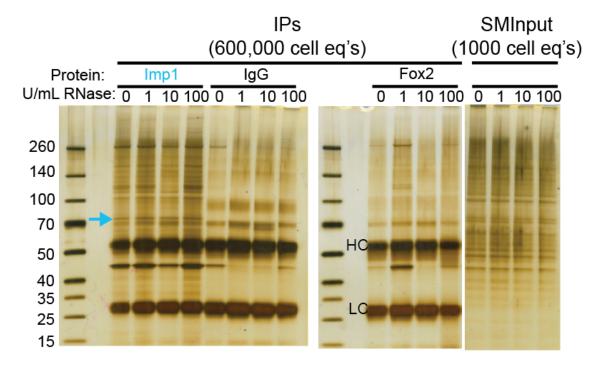
track type=narrowPeak visibility=3 db=hg19 name="RBFOX2_HepG2_rep01" description="RBFOX2_HepG2_rep01
input-normalized peaks"


Chr7	4757099	4757219	RBFOX2_HepG2_rep01	1000 +	6.539331235	400	-1	-1
Chr7	99949578	99949652	RBFOX2_HepG2_rep01	1000 +	5.233511963	400	-1	-1
Chr7	1027402	1027481	RBFOX2_HepG2_rep01	1000 +	5.243129966	69.5293984	1 -1	-1

Why input normalize?

• We see mRNA background at nearly all abundant genes...

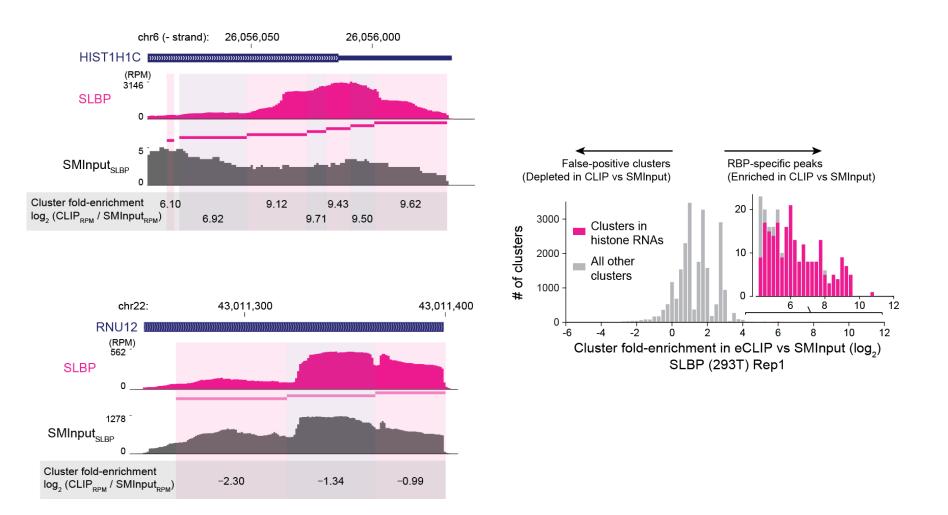

... but true signal is highly enriched above this background



Why input normalize?

IP-Western

Silver stain (all protein)



• IP-western indicates immunoprecipitation success... ... but there remains substantial background of other proteins after IP

Stefan Aigner

Input normalization removes false-positives and identifies confident binding sites

Van Nostrand, et al. Nature Methods (2016)

eCLP-usy-horeoing Pypeline v2.0 2018/714 For DECDID release Texclub, ICCD - Central geneyexplusiol.edu , sharrooinand@usid.edu

Supplementary Protocol 2: eCLIP-seg Processing Pipeline

Programs Used & Version Information

(For all softem scripts: https://athub.com/aport/arth/wineeu/tag/2.3.2)

The California Script Version: Second, of any program Script Version: West, News, News Y. Second, Second Script Version: Script Annual Script Annual Script Script Version: Script Annual Script Annual Script Annual Script Script Version: Script Annual Script Annual Script Annual Script Script Version: Script Annual Script Annual Script Annual Script Script Version: Script Annual Script Annual Script Annual Script Script Version: Script Annual Script Annual Script Annual Script Script Version: Script Annual Script Annual Script Annual Script Script Version: Script Annual Script Annual Script Annual Script Annual Script Script Version: Script Annual Script Annual Script Annual Script Annual Script Script Version: Script Annual Script Annua

Other programs used

 Particle - 0.20.1

 Constant - 1.5.56m-1

 Statut - Statut - 1.5.56m-1

 Statut - 2.5.5

 Statut - 2.5.0

 Res 3.0.2

Pythan and Python Package Versions

Pythen 2711 - Insurenda 21.0 (Me Me) Pytem 28.2 Me 53.0 Million (Ala) Nampa 18.2 Pythen 21.3 Nampa 18.1 Magazin (Ala) Magazin (Ala) Magazin (Ala) Magazin (Ala) Magazin (Ala) Magazin (Ala) Magazin (Ala)

Peri Packages used: Tortetro-Octributions 1.12

eCLP-ong/hoseoing Pipeline v2.0.20180724 For DMCDDE release Tescult, ICDD - Centurt geneyeo@uccd.edu _sharroothand@uccd.edu

Script Details

Our entire processing pipeline is performed by two commands. (2) Demultiplexing of facing files based on infine lawnodes, and (2) A scalar commanditiest procedurally performs all subsequent processing steps in order. See the next section for detailed description of processing steps performed by the scale particles.

Steps used to generate the fasts files available on ENCODEDCC (input is Hilles from sequencing center)

Demultiplexing:

Inter militad unit.ev --faste 1 ofisity read in --faste 1 ofisity rank 25 -6. Success. Mila.bath --out. File 1 ofisity read 1.puts --out. Ris. J Outry, out. 3, out. --implit Guadramon, Sample's -st outries. Riss.

ingust No. Decumentation: The ingust file is a tab organized file that describes the barcodes to demultiplex.

Column 1. Recode to demultiplex Column 2. Human readable label to append to the demultiplexed No.

Comple Workfest

ACAMUNE / Fall/math/to/files/file No.0

Congan: Democraficational Scole Texe (Mallin Institution Variational Science Statements) (Mallin Institution Variational Science Scien

In these files, the in-line heating has need reserved from N1 and the in-line condumned has been concred from N2 and appended 10 the "read hash" as files

Australia all'Allanda autori la casa casa casa casa dall' anna alla della ante della anna della dell

Pipeline

• Analysis SOP available at:

https://www.encodeproject.org/document s/3b1b2762-269a-4978-902e-0e1f91615782/@download/attachment/eCL IP_analysisSOP_v2.0.pdf

Linked at bottom of each eCLIP experiment:

	Documents			
	Pipeline Protocol		General Protocol	
	Description: eCLIP-seq Processing Pipeline v2.0 2018-07-24		Description: eCLIP experimental protocol - November 9th, 2015	
	& eCLIP_analysisSOP_v2.0.pdf	٠	eCLIP_SOP_v1.P_110915.pdf	۲
7				
	Stanford University			

Outline

Data overview

- Available data types
- Example: a deeper dive into accessing eCLIP data

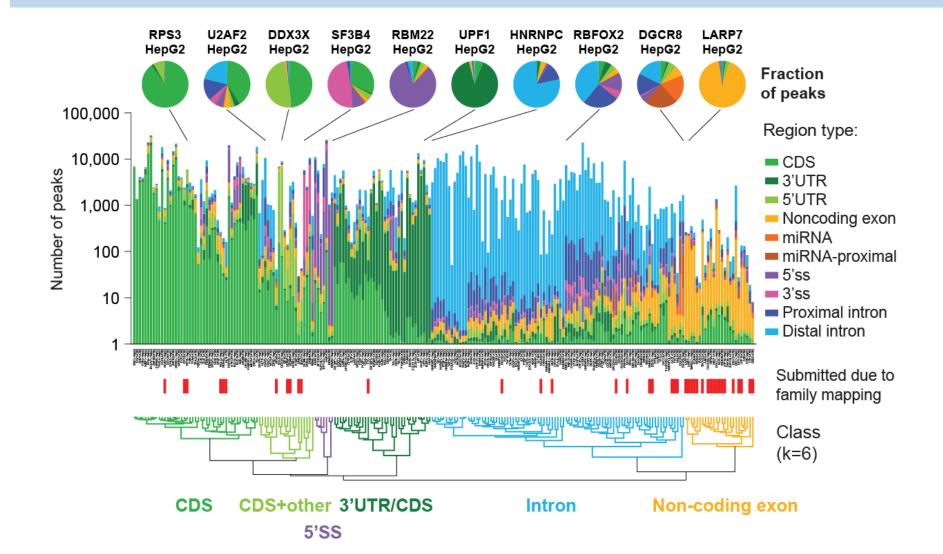
• Incorporating ENCODE data into analyses

- Using eCLIP to identify potential regulators of an RNA of interest
- Integrating *in vivo* and *in vitro* motifs to study RBP regulation
- Integrating RBP-responsive and *in vivo* RNA targets to map regulation of RNA stability and splicing
- Using localization to predict RBP function (and vice versa)

223 eCLIP experiments (150 RBPs) released in K562 and HepG2 cell lines

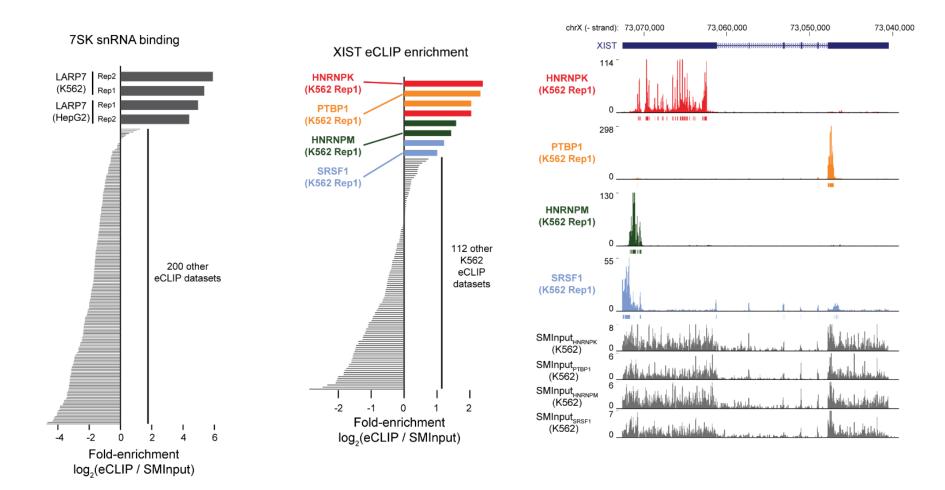
HepG2 (103 RBPs)

BCLAF1 CDC40 BCCIP CSTF2 DDX59 DKC1 EIF3H FIF3D FKBP4 FUBP3 G3BP1 GRSF1 IGF2BP3 NIP7 NKRF NOL12 PABPN1 PCBP2 POLR2G PPIG PRPF4 RBM5 SF3A3 SFPQ SRSF9 STAU2 SUB1 SUGP2 TIAL1 XPO5


Both (73 RBPs)

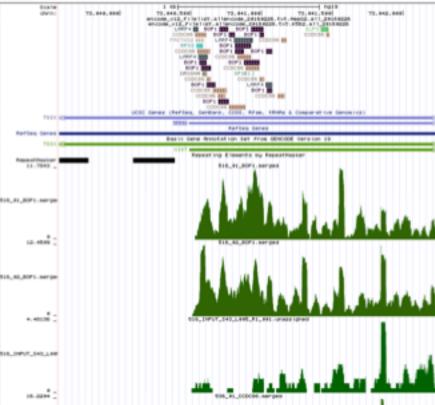
AGGF1 AKAP1 AQR BUD13 CSTF2T DDX3X **DDX52** DDX6 DGCR8 DDX55 **DHX30** DROSHA EFTUD2 EXOSC5 **FAM120A** FASTKD2 FTO FUS FXR2 GRWD1 GTF2F1 HLTF HNRNPA1 HNRNPC HNRNPK HNRNPL HNRNPM HNRNPU HNRNPUL1 IGF2BP1 ILF3 KHSRP LARP4 LARP7 LIN28B LSM11 MATR3 NCBP2 NOLC1 PCBP1 PRPF8 PTBP1 QKI **RBFOX2 RBM15 RBM22 RPS3 SAFB SDAD1** SF3B4 SLTM SMNDC1 SND1 SRSF1 SRSF7 SSB SUPV3L1 TAF15 TBRG4 TIA1 TRA2A TROVE2 U2AF1 U2AF2 UCHL5 UPF1 UTP18 WDR43 XRCC6 XRN2 YBX3 ZC3H11A ZNF800

K562 (120 RBPs)


AARS AATF ABCF1 AKAP8L APOBEC3C CPEB4 CPSF6 DDX21 DDX24 DDX42 DDX51 EIF3G EWSR1 FMR1 EIF4G2 FXR1 **GEMIN5 GNL3 GPKOW IGF2BP2** KHDRBS1 METAP2 MTPAP NIPBL NONO NPM1 NSUN2 PHF6 PPIL4 PABPC4 PUM1 PUM2 PUS1 RPS11 SAFB2 SBDS SERBP1 SF3B1 SLBP TARDBP UTP3 WDR3 WRN YWHAG **ZC3H8 ZNF622 ZRANB2**

A '10,000-foot view' of each eCLIP experiment: Summary by distribution of peaks

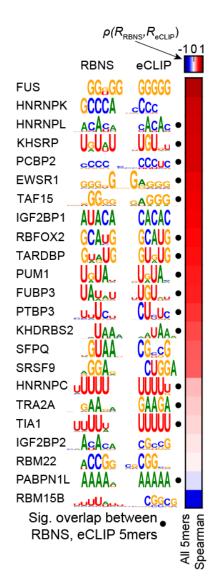
An "RNA-centric" view of RBP-binding

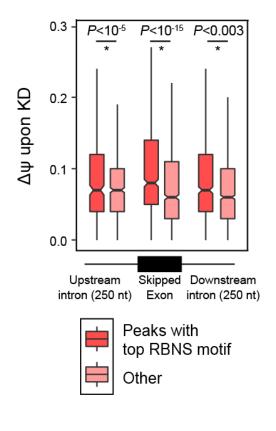

'in silico screen' of a desired RNA against all CLIP datasets to identify the best-binding RBPs

An "RNA-centric" view of RBP-binding

'in silico screen' of a desired RNA against all CLIP datasets to identify the best-binding RBPs

Outline


Data overview


- Available data types
- Example: a deeper dive into accessing eCLIP data

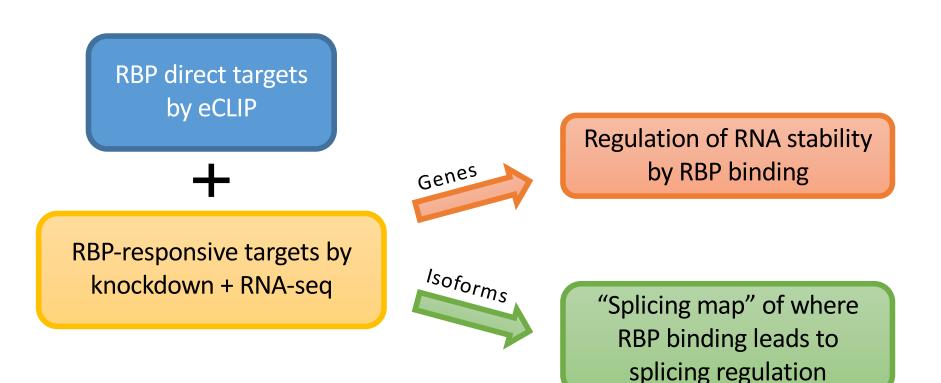
• Incorporating ENCODE data into analyses

- Using eCLIP to identify potential regulators of an RNA of interest
- Integrating *in vivo* and *in vitro* motifs to study RBP regulation
- Integrating RBP-responsive and *in vivo* RNA targets to map regulation of RNA stability and splicing
- Using localization to predict RBP function (and vice versa)

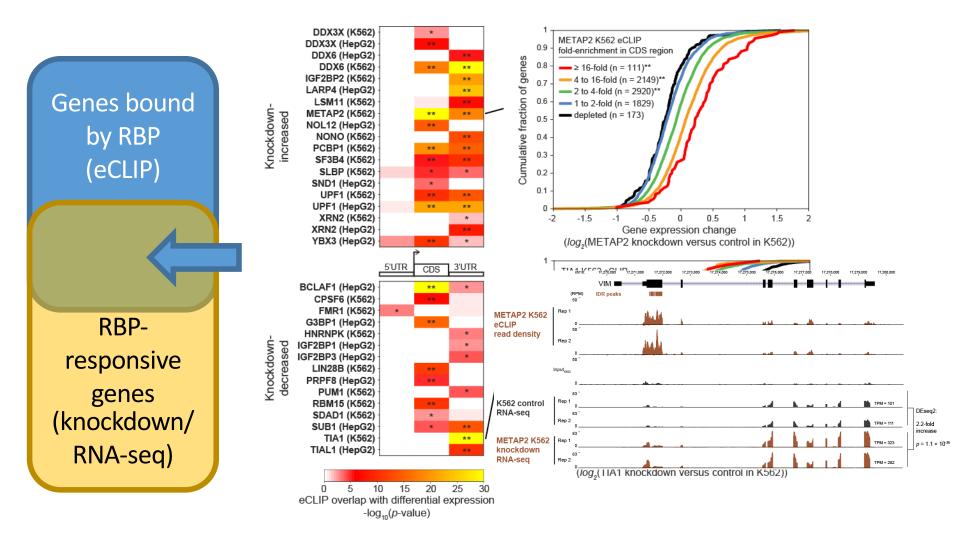
Incorporating *in vitro* motifs can give better insight into regulatory targets

RBP-repressed cassette exons (across all RBPs)

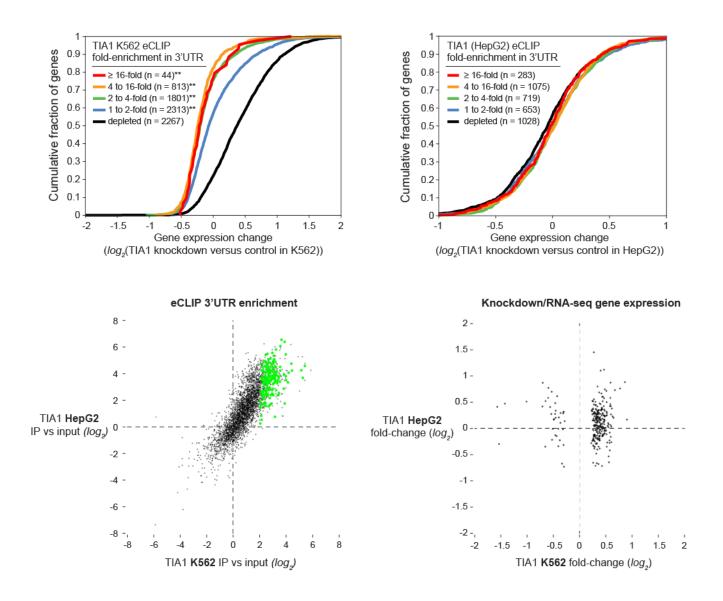
Outline

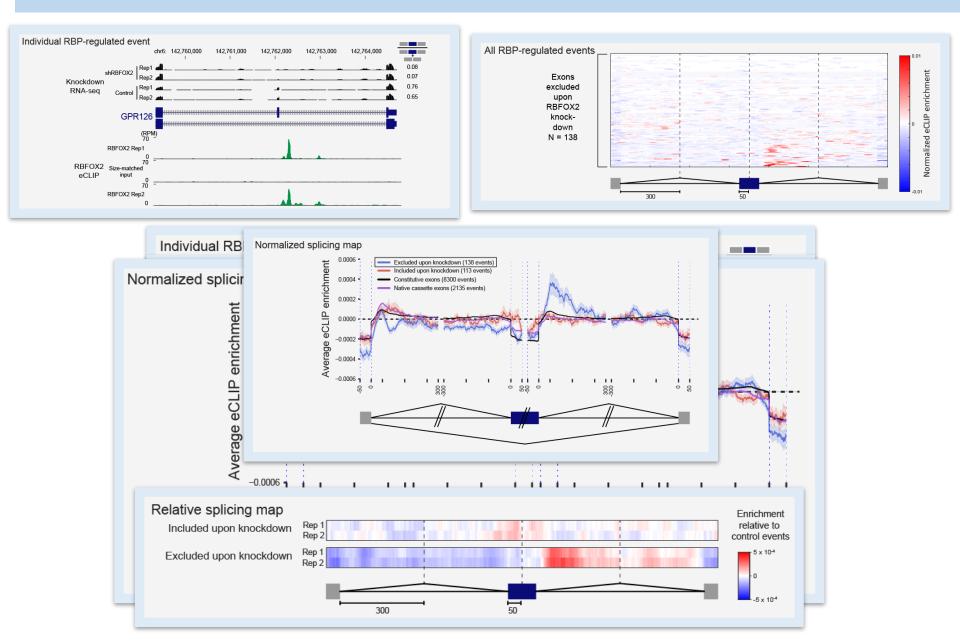

Data overview

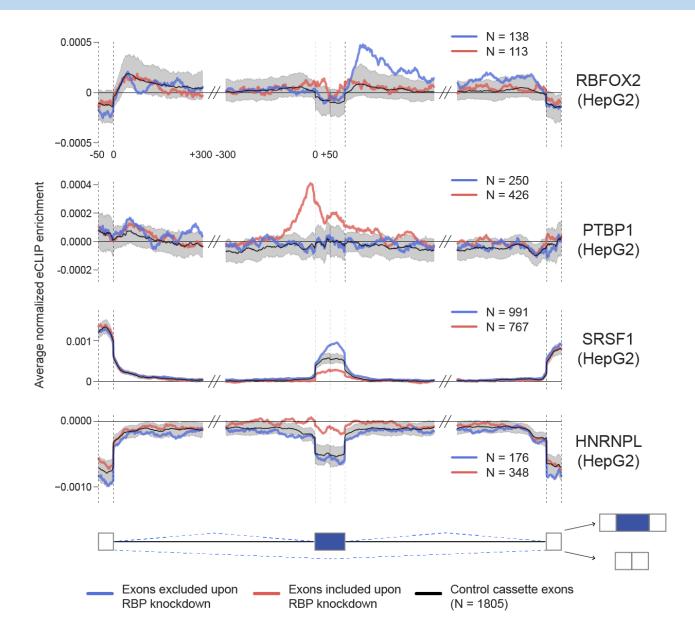
- Available data types
- Example: a deeper dive into accessing eCLIP data


• Incorporating ENCODE data into analyses

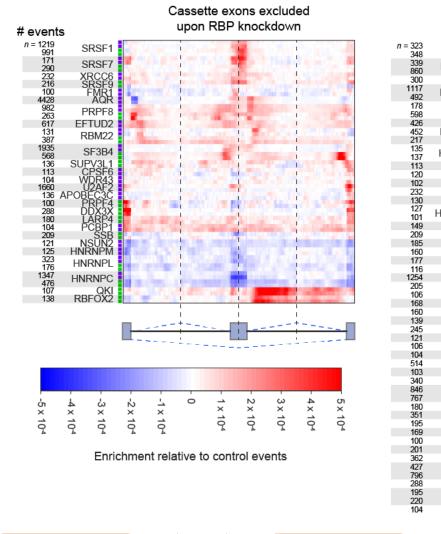
- Using eCLIP to identify potential regulators of an RNA of interest
- Integrating *in vivo* and *in vitro* motifs to study RBP regulation
- Integrating RBP-responsive and *in vivo* RNA targets to map regulation of RNA stability and splicing
- Using localization to predict RBP function (and vice versa)

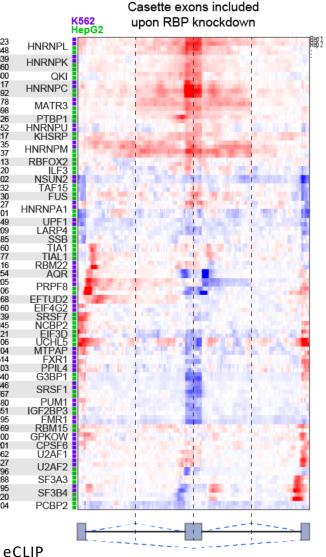

Identifying functional targets by integrating eCLIP with knockdown/RNA-seq


Identification of new candidate regulators of RNA stability


Analysis of TIA1 reveals cell-type specific regulation

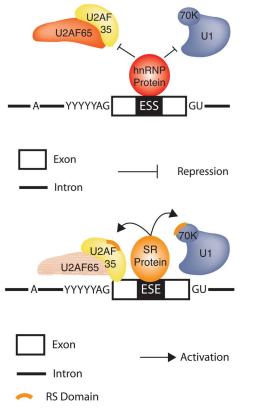
Splicing regulatory maps identify regulatory binding



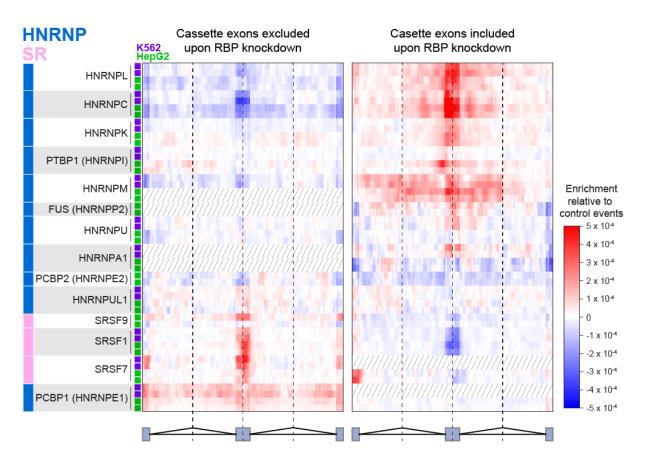

Splicing regulatory maps identify regulatory binding

Splicing regulatory maps identify regulatory binding

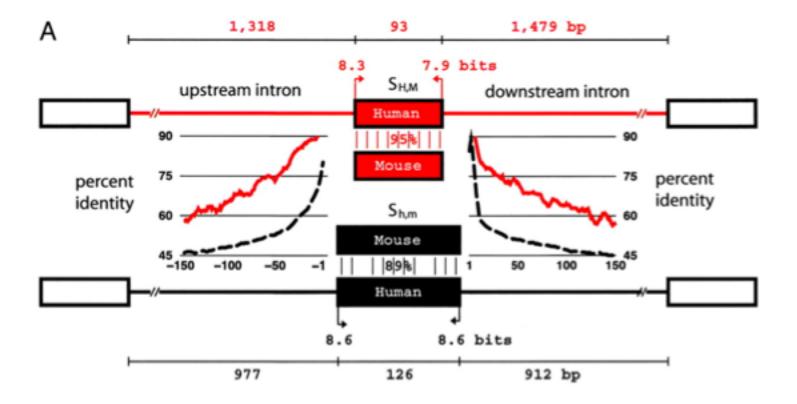
RBP X



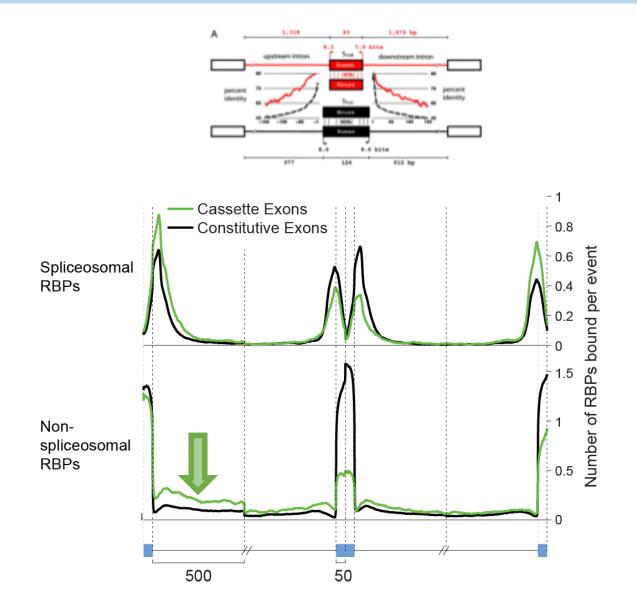

Knockdown RNA-seq


RBP X

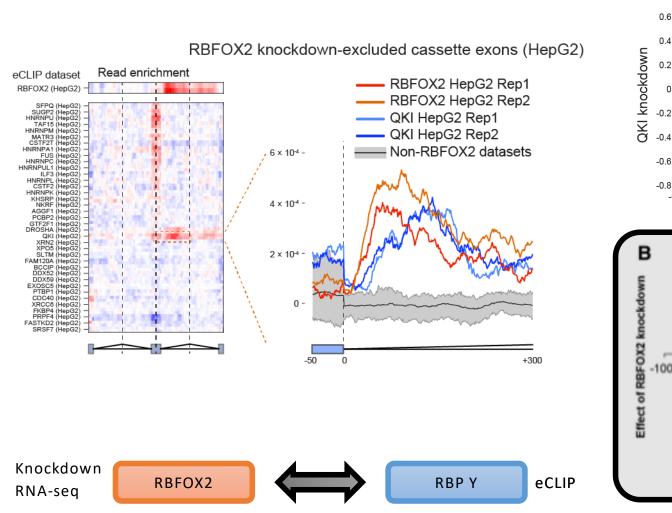
Global analysis recapitulates general principles of alternative splicing regulation

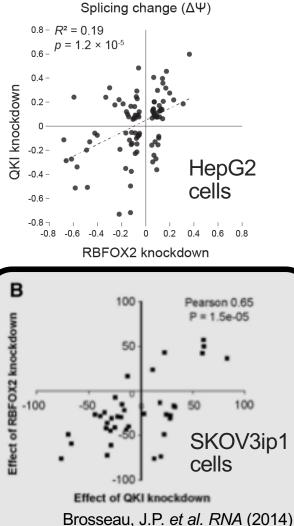



```
Busch A & Hertel KJ,
Wiley Inderdiscip Rev RNA (2012)
```

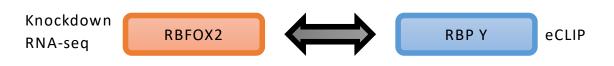
Where are key regions for splicing regulation?




Yeo GW, Van Nostrand E, et al. PNAS (2005)

Where are key regions for splicing regulation?

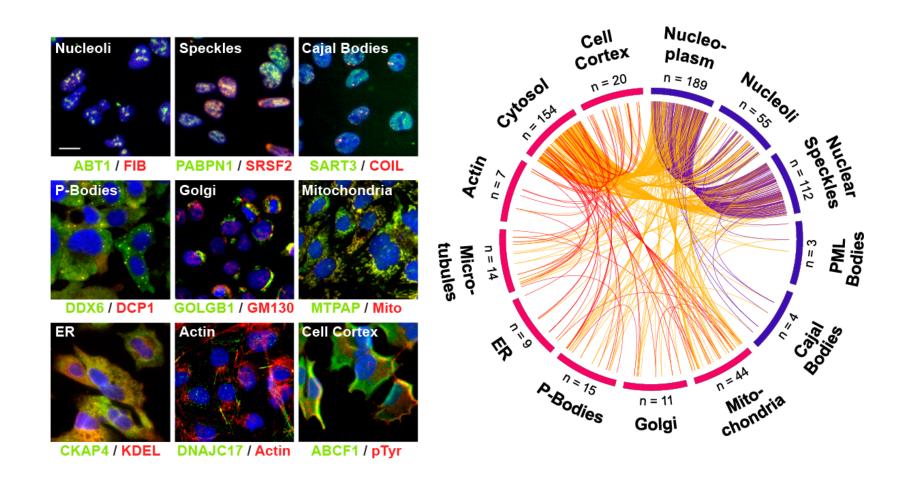
Cross-RBP splicing maps indicate coordinated regulation



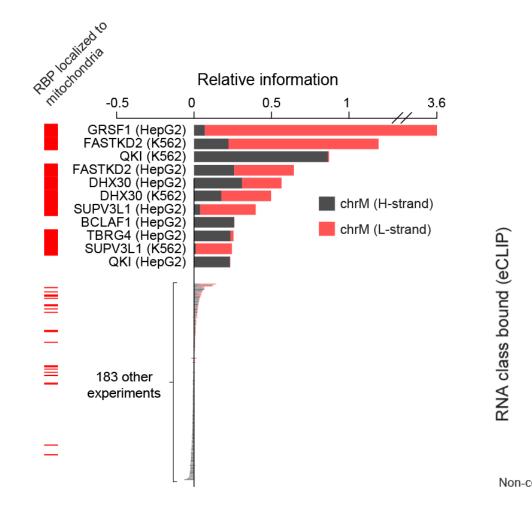
Cross-RBP splicing maps indicate coordinated regulation

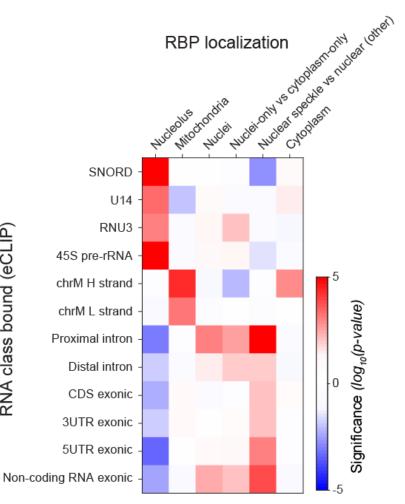
RBFOX2 knockdown-excluded cassette exons (HepG2)

Outline

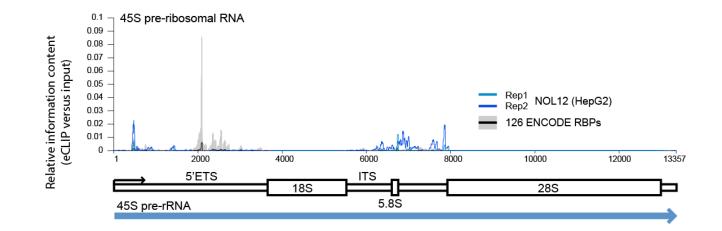

Data overview

- Available data types
- Example: a deeper dive into accessing eCLIP data


• Incorporating ENCODE data into analyses

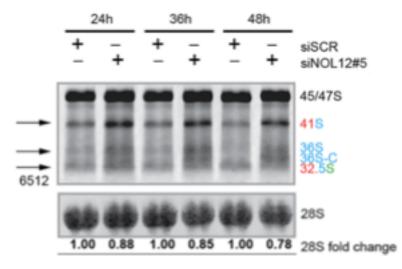

- Using eCLIP to identify potential regulators of an RNA of interest
- Integrating *in vivo* and *in vitro* motifs to study RBP regulation
- Integrating RBP-responsive and *in vivo* RNA targets to map regulation of RNA stability and splicing
- Using localization to predict RBP function (and vice versa)

Using RBP localization and binding to infer and confirm RBP functions



Does localization predict binding (and vice versa)?

eCLIP plus localization predicts function



Published online 23 October 2017

Nucleic Acids Research, 2017, Vol. 45, No. 21 12509-12528 doi: 10.1093/narlgkx963

Nol12 is a multifunctional RNA binding protein at the nexus of RNA and DNA metabolism

Daniel D. Scott^{1,2,1}, Christian Trahan^{1,3,1}, Pierre J. Zindy¹, Lisbeth C. Aguilar¹, Marc Y. Delubac^{1,3}, Eric L. Van Nostrand⁴, Srivathsan Adivarahan³, Karen E. Wei¹, Gene W. Yeo^{4,5}, Daniel Zenklusen³ and Marlene Oeffinger^{1,2,3,*}

Acknowledgements

UC San Diego

<u>Computational:</u> Gabriel Pratt Shashank Sathe Brian Yee Experimental: Alex Shishkin Steven Blue Thai Nguyen Chelsea Gelboin-Burkhart Ruth Wang Ines Rabano Balaji Sundararaman Keri Elkins Rebecca Stanton Jasmine Mueller Zong Chua

Brent Graveley Chris Burge Eric Lécuyer Xiang-Dong Fu

Mitch Guttman

Funding:

Damon Runyon **Cancer Research** Foundation

National Human Genome Research Institute Advancing human health through genomics research

K99 Pathway to Independence Award