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Summary

The TDT provides a hypothesis test for the presence of linkage or association (linkage disequilibrium).
However, since the TDT is a single test statistic, it cannot be used to separate association and linkage.
The importance of this difficulty, following a significant TDT result, has been recently emphasized by
Whittaker, Denham and Morris (2000), who alert the community to the possibility that a significant
TDT may result from loose linkage and strong association, or from tight linkage and weak association.
To attack this problem we start with the parametric model for family-based allele transmission data

of Sham and Curtis (1995) (or Sham (1998)) and find that the parameters in the model are not always
identifiable. So we introduce a reparameterization that resolves the identifiability issues and leads to a
valid likelihood ratio (LR) test for linkage.
Since the linkage and association parameters are both of interest, we next introduce and apply an

integrated likelihood (IL) approach to provide separate point estimates and confidence intervals for
these parameters. The estimates are shown to have generally small bias and mean square error, while
the confidence intervals have good average length and coverage probabilities. We compare the power
of the IL approach for testing linkage and, separately association, with the TDT and LR.
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1. Introduction

Since its introduction, the transmission/disequilibrium test (TDT) of Spielman,

McGinnis and Ewens (1993, 1994) has achieved widespread use in genetics for
testing for association and/or linkage of a marker gene with a putative disease
gene. There are now many variants and extensions of the TDT. Many of these are
discussed in the informative series by Schaid (1996, 1998, 1999), which is also
especially helpful in understanding the comparison of the TDT with case-control
methods for measuring presence of association. See also Knapp (1999), and Wil-

son (1997) for further discussion and extensions of the TDT.
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The essential purpose in the original TDT, and evidently in all later extensions,
is that of a pure significance test of the null model, which states that there is no
association and/or no linkage of a marker gene with the disease gene. But one
might also be interested in estimating these model parameters and deriving asso-
ciated confidence intervals, as this may provide much more insight to the research-
er than simple tests of a null point hypothesis. Hence we present methods for
obtaining parameter estimates and confidence intervals for linkage and association
from allele transmission data as is collected for use in the TDT. The separate
estimates of association and linkage derived here enable one to declare which part
of the null model is being rejected by the TDT: no linkage, or no association, or
both. In addition we use the reparameterization introduced here to allow us to
comment on the performance of the TDT under varying conditions. Other research-
ers have achieved similar success with this type of approach, that is, estimation
and generation of confidence intervals for important genetics parameters; see for
example Cordell and Elston (1999), Cordell and Carpenter (2000).

In the next section we present the Sham (1998) probability model for family-
based allele transmission data. In Section 3 we discuss the identifiability problem
and consider the likelihood ratio test. Section 4 contains a discussion of the inte-
grated likelihood approach for confidence intervals.
We close the paper with the presentation of Monte Carlo simulations and a

discussion of our results. In general, our procedure has greater power than the
TDT for detecting association, especially when linkage is only weak or moderate.
Moreover, when association is at least moderate, the confidence intervals for link-
age successfully distinguish weak from moderate or strong linkage.
A version of our C code, ELAAT (Estimation of Linkage and Association from

Allele Transmission) is freely available on-line at: http://mscl.cit.nih.gov/spaj/elaat

2. The Probability Model for Allele Transmissions

Transmission/disequilibrium data consist of a square table of counts. Classically,
they are obtained by genotyping an affected child and both parents. From this data
one can, for each parent, specify which allele was transmitted to the child, except
in the ambiguous case of doubly heterozygous parents with identical alleles. The
basic assumption is that the parent-offspring pairs have been ascertained through a
random sample of affected children from a randomly mating population. This ba-
sic probability model also assumes that all allele transmissions are unambiguously
known, and uses transmission data from just a single parent. Of course, in general,
genotype data from both parents is required to identify alleles transmission in the
chosen parent. In a later paper we will examine robustness of our estimation meth-
ods when this latter condition is relaxed and allele transmission data from both
parents is included, as well as when multiple affecteds from a single family are
included. The allele transmission model used here is the simplest useful model:
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allele transmission data from just one parent per family trio, under the assumption
of random mating.
Our notation follows that of Sham and Curtis (1995). A basic reference is

Sham (1998) in which the p’s and q’s of Sham and Curtis (1995) are reversed.
The model, in full generality has k � 2 marker alleles so let:

pi ¼ frequency of marker allele i; 1 � i � k
q1 ¼ frequency of susceptibility allele at disease locus
q2 ¼ frequency of normal allele at disease locus
h1i ¼ frequency of the haplotype with disease allele and marker allele i
e1i ¼ h1i=q1pi linkage disequilibrium between disease allele and marker

allele i
frs ¼ penetrance given genotype ðr; sÞ at disease locus
q ¼ recombination frequency.

These basic variables are then used to define

K ¼ q21f11 þ 2q1q2f12 þ q22f22 ¼ population prevalence of disease

and
B ¼ q1½q1ðf11 � f12Þ � q2ðf11 � f22Þ�=K = the mode of inheritance param-
eter.

We note that other definitions for linkage disequilibrium (LD) are present in the
literature; see for example the discussion in Cordell and Elston (1999).
As Sham and Curtis (1995) observe, the parameter B is “one minus the ratio

of the conditional probability of transmitting the normal allele, given that the off-
spring is affected, to the unconditional probability of transmitting the normal al-
lele.” In still other words, it expresses the degree to which selection through af-
fected offspring has diminished the transmission of the normal allele.
Continuing, the probability pij that a parent having genotype (i, j) transmits

allele i and does not transmit allele j to an affected is given by:

pij ¼ pipjð1þ B½ðe1i � 1Þ þ qðe1j � e1iÞ�Þ for 1 � i; j � k :

Note first that if the parental genotype is (i, i), then one of the i alleles must be
transmitted, and the other allele, also of type i, is not transmitted. Second, in this
basic form of the allele transmission model only the contribution of one parent is
counted. If both are counted it must be assumed that the parental contributions are
independent. This is in general only valid under the null model, as discussed by
Sham and Curtis (1995). However, it is also the case that more than one affected
can be counted in a single family, as can be seen from the derivation given in
Sham and Curtis (1995), assuming that the meiosis events leading to allele trans-
missions are independent across the affecteds.
A crucial fact about the probability model for allele transmission data is that the

model is not identifiable if the recombination frequency q ¼ 0:5 or if the mode of
inheritance term B is unknown. That is, distinct parameter values can generate the
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same cell probabilities, for all observed data values. The following result, whose
proof is given in Appendix I, clarifies this issue:

Theorem: Let B > 0 be given. Then the model is identifiable if and only if
q 6¼ 0:5 and e1i 6¼ 1 for some index i.
So we reparameterize the model in order to solve this identifiability problem.

To simplify we focus on the case for just two marker alleles, and introduce a new
parameter for the linkage disequilibrium term d ¼ aB, where a ¼ e11 � 1. We then
propose the model:

p11 ¼ p2½1þ d� ;
p12 ¼ pð1� pÞ ½1þ d � dq=ð1� pÞ� ;
p21 ¼ pð1� pÞ ½1þ dp=ð1� pÞ þ dq=ð1� pÞ� ;
p22 ¼ ð1� pÞ2 ½1� dp=ð1� pÞ� :

In this model we observe that (i) d is free of confounding with recombination
frequency q; (ii) for all values of q and p, d is bounded by
�1 � �B � d � Bð1� pÞ=p and (iii) when d is zero the linkage term q drops out
of the model.
The null hypothesis in which we are interested in is that we have no association

(d ¼ 0) or that we have no linkage (q ¼ 0:5). But the model is nonidentifiable
exactly when q ¼ 0:5 or d ¼ 0. Hence nonidentifiability occurs for any parameters
that satisfy the null hypothesis. This of course generates interesting technical diffi-
culties; these are discussed in the next section.
Assume now that data has been collected, x ¼ ðx11; x12; x21; x22Þ, where the

components correspond to counts for the cells with probabilities
ðp11; p12; p21; p22Þ: Then for the model above the log likelihood is (apart from
an additive constant) given by:

lðd; B; q; p j xÞ ¼
P
i; j

xij log ½pijðd; q; pÞ� :

Before discussing our integrated likelihood approach to estimation and intervals
we use our reparameterization to first investigate the structure of the TDT and its
connection to a likelihood ratio test for linkage.

3. The Likelihood Ratio Test and the TDT as a test for linkage

As we have noted, at the null value q ¼ 0:5, the likelihood is not identifiable, and
the null value is itself on the boundary of the parameter space. These two facts
together invalidate the derivation of the distribution of the likelihood ratio (LR)
test, as given in Self and Liang (1987); see Goldstein (1995) for details on how
the boundary correction given in Self and Liang is often misused in the statistical
genetics literature.
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We resolve these two problems in one stroke using another parameterization for
the basic allele transmission probability model. We begin by noting that if d 6¼ 0,
p 2 (0, 1) and q ¼ 0:5, then the likelihood function is not identifiable in that there
are exactly two points in the parameter space for which the likelihood function
has the same values (see Appendix I for a proof of this result). Specifically given
one point ðd > 0; p; q ¼ 0:5Þ, then the other point is ðd0 ¼ �d=ðd þ 1Þ < 0;
p0 ¼ pðd þ 1Þ; q ¼ 0:5Þ. So define

Q ¼ f�1 < d � ð1� pÞ=pg � f0 � q � 0:5g � f0 < p < 1g ;
Q2 ¼ f0 � d � ð1� pÞ=pg � f0 � q � 1g � f0 < p < 1g

and let

tðd; p; qÞ ¼ ðd; p; qÞ if d � 0 ;
ð�d=ðd þ 1Þ; pðd þ 1Þ; 1� qÞ if d < 0 :

�

Then the mapping t : Q ! Q2 is onto and, outside of the plane q ¼ 0:5, the map-
ping is one to one as well. When q ¼ 0:5 the function t also maps points with
negative values of d to points with positive values of d.
Finally, the likelihood function Lðtðd; p; qÞÞ ¼ Lððd; p; qÞÞ, is smooth over Q2,

and the information matrix can be shown to be invertible when q ¼ 0:5: Given all
these facts, the standard asymptotic result is seen to hold for the likelihood ratio
test (see for example Ferguson (1996)) and we have the following theorem:

Theorem: Assume that a given marker allele has association d 6¼ 0. Let

LR ¼ maxQ lðd; q; pÞ �maxW lðd; q; pÞ
where

Q ¼ f�1 < d � Bð1� pÞ=pg � f0 � q � 0:5g � f0 < p < 1g ;
W ¼ f�1 < d � Bð1� pÞ=pg � fq ¼ 0:5g � f0 < p < 1g :

Then for testing q ¼ 0:5, LR has an asymptotic c2 distribution, under the null
hypothesis, with one degree of freedom:

Pð2LR � cÞ ¼ a ;

where c is such that Pðc21 � cÞ ¼ a; for c21 a chi-square with 1 d.f.
Next, using a Taylor series expansion for the LR test, one can show that it is

asymptotically equivalent to the TDT (details not given, available from the corre-
sponding author upon request). This equivalence can also be seen from the simula-
tions in Table 3a and 3b. Thus, for both analytic and computational reasons, we
see that the TDT is for all practical purposes equivalent to a likelihood ratio test
for linkage, given that association is nonzero. It is, therefore, not useful to view or
apply the TDT as a test of association in the presence of linkage. In fact, as might
be expected, the TDT has little power for detecting association when linkage is
weak or only moderate, and our simulations verify this point. For example, the

Biometrical Journal 45 (2003) 3 353



integrated likelihood test (IL, see below) for detecting association, when linkage
q ¼ 0:45, has power 0.994, while the TDT has power 0.248. (Additional results of
these simulations are given in Table 3a.)
Finally, we observe that Abel and Muller-Myhsok (1998) discuss the TDT in

relation to a likelihood test they introduce. However, their likelihood uses only
data from the parents for which the transmitted and not transmitted alleles are
different: they use the off-diagonal elements of the 2 � 2 data table. Our basic
allele transmission likelihood, discussed above, uses all the data from the 2 � 2
data table, and data is collected under the same assumptions as that in Abel and
Muller-Myhsok (1998), e.g. random mating, Hardy-Weinberg equilibrium, etc.
We note that the diagonal elements of the complete 2 � 2 table contain informa-
tion about the association parameter, d, so for this reason alone we could expect
our estimation and testing methods to have greater power.
This concludes our discussion of the identifiability issues and the relation of the

TDT to the method of maximum likelihood. We next turn to our main procedure
for estimating association and linkage.

4. Integrated Likelihood Estimation

4.1. A general introduction to integrated likelihood estimation

Good discussions of the integrated likelihood (IL) approach can be found in Ber-

ger, Liseo, and Wolpert (1999) (see also Gelman et al. (1995), Carlin and
Louis (2000), or Severini (2000)).
To assist the reader we present a brief outline of the method and consider a

statistical model with parameters w and l, where w is the parameter of interest
and l is a nuisance parameter, and let Lðw; lÞ denote the likelihood function for a
given data set. In general, likelihood-based inference for w is complicated by the
presence of l in the likelihood function.
One approach (see Severini (2000) for references to many other approaches) is

that of an integrated likelihood function of the form

LIðwÞ ¼
Ð
L

Lðw; lÞ pðl j wÞ dl

where pðl j wÞ represents a nonnegative weight function on L, the space of possi-
ble l. Note that this space may depend on the value of w under consideration.
Inference for w may then proceed by treating LIðwÞ as a likelihood function for w.
Thus, for example, an estimate of w may be obtained by maximizing LIðwÞ, to
find ŵwI say.
In order to carry out this approach it is necessary to choose the weight function

pðl j wÞ and different choices of this function will lead to different forms for
LIðwÞ. One choice is the uniform weight function that is constant on L. Berger,
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Liseo and Wolpert (1999) note that this is an attractive choice when nothing else
is suggested. Note that if L does not depend on the value of w under consid-
eration, then pðl j wÞ may be taken to be 1. Otherwise, pðl j wÞ is a function of
w but not of l. The integrated likelihood functions used in this paper are all based
on uniform weights.
The integrated likelihood function can be used as one would normally use a

likelihood function. In particular, the value of w that maximizes LIðwÞcan be used
as a point estimate of w. A frequentist confidence interval for the parameter of
interest, w, may be obtained by solving for all w such that:

fw : �2½LIðwÞ � LIðŵwIÞ� � c21g
where c21 is a c2 variable on one d.f., and ŵwI is the maximizer of LIðwÞ. Such
intervals may also be used to obtain frequentist hypothesis tests.
Note that the integrated likelihood approach only requires a weight function for

the nuisance parameter of the model. In contrast, a full Bayesian analysis would
require a prior for the parameter of interest as well and the results of such as an
analysis may depend heavily on the prior distribution used.

4.2. Application of integrated likelihood to the Sham and Curtis (1995) model

Recall the basic allele transmission probability model presented in Section 2, and
consider inference for d, where we assume that d is not zero. We note that the set
of allowed values for p depends on the value of d and B, since we have the upper
bound

p � B=ðd þ BÞ :
As B is not identifiable we set it to its maximum, B ¼ 1. Simulations show that
this arbitrary choice has little practical effect on inference for d.
Using the upper bounds p ¼ 1=ðd þ 1Þ, and 0 � q � 0:5 we see that for a

given value of d, the uniform weight on the space of possible (q, p) is given by

pðq; p j dÞ ¼ 2=ð1þ dÞ for 0 � q � 0:5 ; 0 < p � 1=ðd þ 1Þ if d > 0

¼ 2 for 0 � q � 0:5 ; 0 < p � 1=ðd þ 1Þ if d < 0 :

For inference about q, pðd; p j qÞ is taken to be constant on the set

fðd; pÞ : 0 < p < 1;�1 < d < 1; p < 1=ðd þ 1Þg ;
which is the space of possible (d, p). Note that this space does not depend on the
value of q under consideration, so that pðd; p j qÞ does not depend on q.
To obtain accurate nominal levels for tests based on the IL approach, calibration

of the interval above may be needed, in order to correct for any discrepancy
between the observed and the stated nominal level of the test. Our Monte Carlo
studies reveal that such calibration is needed for inference regarding q, but not
for d.
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In our use of IL we emphasize that the introduction of flat priors is largely
irrelevant to our final results, since the marginal likelihoods produced and the
intervals and estimates derived from them, are all then examined in a conventional
frequentist manner. The IL approach is simply one way among many for generat-
ing estimates and tests of the model parameters all within the frequentist context.
Finally we note that when the intervals are considered as tests of the null model
(no association and/or no linkage) we can see that they have other satisfactory
frequentist properties: good nominal level and good power.

5. Monte-Carlo Simulations

To evaluate the performance of the IL methods, and to explore the sensitivity of
the TDT or IL to population stratification, we generated a variety of simulated
data. In particular we study five models, those considered in Sham and Curtis

(1995): classical, and common, with both recessive and dominant genes, and Alz-
heimer disease (see Post and Whitehouse (1998), for example, for background
on Alzheimer disease). We also study three admixture models and three linkage
heterogeneity models, and in all six of these mixture models one of the subpopula-
tions is chosen to satisfy the null model. For the three population admixture mod-
els we set q ¼ 0.5 and use d ¼ 0:057, d ¼ 0:20 and d ¼ 0:40 with various disease
and marker allele frequencies for the subpopulations. For the linkage heterogeneity
models we mix together a population with d ¼ 0:0 and q ¼ 0:5 with a population
with d > 0 and q ¼ 0:001 using various disease and marker allele frequencies for
the subpopulations. In the case that d ¼ 0:0, we recall that the parameter q is not
identifiable and hence this variable can be chosen to have an arbitrary value.
In each case the Monte-Carlo simulations are based on using tables with 50

parent pairs (which generates 100 values in each table); this number of parent
pairs was chosen as being of practical interest in current routine applications of
the TDT. For each model we then generate 1000 of these tables. For each of these
1000 tables we generated an integrated likelihood point estimate and computed the
average bias, root mean squared error and relative bias of these estimates. In addi-
tion, for each of these 1000 tables we computed a confidence interval based on
1000 additional replications and computed the probability that the point estimate
was contained in the confidence interval: this is the coverage probability. The
average length of the confidence intervals is also computed since coverage prob-
abilities may be inflated if the average confidence interval length is large.
In Table 1 we present results for the five classical models and the six mixture

models. The table contains the results of the integrated likelihood procedure and
presents coverage probabilities, average interval length, average bias, root mean
square error and the relative bias for the estimation of the parameters q and d.
Table 2 contains the same types of values as in Table 1 except in this table we

allow the parameters q and d to vary in a regular way to explore the behavior of
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Table 1

Monte-Carlo Simulations with Classical and Mixture Models Notation:

Classical Models
R1 ¼ Classical recessive, q ¼ 0.0316, p ¼ 0.25, q ¼ 0.02, d ¼ 2:00
D1 ¼ Classical dominant, q ¼ 0.0005, p ¼ 0.25, q ¼ 0.02, d ¼ 1:25
R2 ¼ Common recessive, q ¼ 0.1000, p ¼ 0.25, q ¼ 0.02, d ¼ 1:20
D2 ¼ Common dominant, q ¼ 0.0050, p ¼ 0.25, q ¼ 0.02, d ¼ 0:60
AD ¼Alzheimer disease, q ¼ 0.1300, p ¼ 0.25, q ¼ 0.02, d ¼ 0:75

Population Admixture Models
M1: q ¼ 0.25, q* ¼ 0.5, p ¼ 0.3, p* ¼ 0.7, q ¼ 0.50, d ¼ 0.057
M2: q ¼ 0.01, q* ¼ 0.03, p ¼ 0.3, p* ¼ 0.7, q ¼ 0.50, d ¼ 0.20
M3: q ¼ 0.01, q* ¼ 0.06, p ¼ 0.2, p* ¼ 0.7, q ¼ 0.50, d ¼ 0.40

Linkage Heterogeneity Models
M4: r ¼ 0.25, q ¼ 0.01, p ¼ 0.25, q ¼ 0.50, q* ¼ 0.01, d ¼ 0.00, d* ¼ 0.12
M5: r ¼ 0.05, q ¼ 0.01, p ¼ 0.25, q ¼ 0.50, q* ¼ 0.01, d ¼ 0.00, d* ¼ 0.12
M6: r ¼ 0.25, q ¼ 0.01, p ¼ 0.25, q ¼ 0.50, q* ¼ 0.01, d ¼ 0.00, d* ¼ 2.0

Integrated Likelihood (IL) Estimation Results with Classical and Mixture Models

cover
q

cover
d

int len
q

int len
d

av bias
q

av bias
d

rms
q

rms
d

rel
bias q

rel
bias d

R1 0.984 0.947 0.1513 3.2872 �0.0188 �0.4016 0.0401 0.6899 �0.4682 �0.5821
D1 0.951 0.958 0.2831 3.6640 �0.0755 �0.5396 0.0801 0.7397 �0.9424 �0.7295
R2 0.937 0.906 0.2809 3.9446 �0.0779 �0.6790 0.0834 0.8589 �0.9342 �0.7906
D2 0.937 0.919 0.4445 4.6208 �0.2099 �0.6240 0.1218 0.9471 �1.7234 �0.6589
AD 0.958 0.953 0.4031 4.1269 �0.1533 �0.5774 0.1095 0.7697 �1.3999 �0.7501
M1 0.926 0.942 0.4681 0.6785 þ0.0887 �0.0578 0.0951 0.1521 þ0.9320 �0.3796
M2 0.372 0.910 0.4239 0.7606 þ0.2540 �0.1251 0.1127 0.1688 þ2.2537 �0.7415
M3 0.981 0.733 0.4155 1.0408 þ0.0381 þ0.2786 0.0652 0.3168 þ0.5845 þ0.8795
M4 0.732 0.946 0.4471 2.3580 �0.4180 �0.2870 0.0874 0.7435 �4.7833 �0.3861
M5 0.779 0.945 0.4559 2.2327 �0.4047 �0.2512 0.0907 0.5793 �4.4636 �0.4337
M6 0.938 0.909 0.1236 1.4904 �0.0264 þ0.2237 0.0406 0.3782 �0.6494 þ0.5914

(a) 1000 tables generated in all simulations (using SLINK).
(b) All based on 50 parent pairs (N ¼ 100), except for M3 and M6 which had 1000 parent pairs

(N ¼ 2000).
(c) the bias and coverage probabilities for d in all M models were taken relative to the

nonzero values for d given above.
(d) using q ¼ disease allele frequency, p ¼ marker allele frequency: in M1 20% of the affecteds come

from population (q, p) in M2 20% of the affecteds come from population (q, p), in M3 5% of the
affecteds come from population (q, p).

(e) in M4, M5, M6, r is the mixing rate such that proportion r comes from the population with values
(q, d).



the IL approach over the parameter space. Again when d ¼ 0, q is not identifiable
and can be chosen to have any value.
In Tables 3a and 3b we study the relationships between the Likelihood ratio test

and the TDT for both the classical models of Table 1 and the models of Table 2.
Full details of the Monte Carlo simulations and results are given in Tables 1, 2,

and 3.
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Table 2

Monte-Carlo Simulations using Primary Models
Integrated Likelihood (IL) Estimation Results for the Primary Models

(d, q) cover
q

cover
d

int len
q

int len
d

avg bias
q

avg bias
d

rms
q

rms
d

rel bias
q

rel bias
d

0.0, 0.5 0.979 0.950 0.4566 2.1451 þ0.0438 �0.1688 0.0746 0.5730 þ0.5870 �0.2946
1.0, 0.5 0.987 0.770 0.3292 2.2401 þ0.0315 þ0.3571 0.0545 0.7485 þ0.5784 þ0.4771
2.0, 0.5 0.979 0.950 0.1050 1.6636 þ0.0178 þ0.0088 0.0314 0.4263 þ0.5653 þ0.0206
2.5, 0.5 0.976 0.938 0.0840 1.5002 þ0.0148 þ0.0011 0.0275 0.3988 þ0.5381 þ0.0028
1.0, 0.45 0.986 0.847 0.3407 2.2343 þ0.0024 þ0.2895 0.0624 0.6957 þ0.0384 þ0.4161
2.0, 0.45 0.975 0.950 0.1282 1.6604 þ0.0003 þ0.0088 0.0412 0.4263 þ0.0065 þ0.0206
2.5, 0.45 0.963 0.938 0.1094 1.5002 þ0.0009 þ0.0011 0.0359 0.3988 þ0.0255 þ0.0028
1.0, 0.35 0.967 0.936 0.3813 2.0204 �0.0059 þ0.1378 0.0809 0.5779 �0.0725 þ0.2385
2.0, 0.35 0.942 0.950 0.1616 1.6560 þ0.0011 þ0.0088 0.0424 0.4263 þ0.0250 þ0.0206
2.5, 0.35 0.934 0.938 0.1266 1.5002 þ0.0011 þ0.0011 0.0351 0.3988 þ0.0319 þ0.0028
1.0, 0.25 0.968 0.969 0.3587 1.8461 �0.0091 þ0.0292 0.0837 0.4889 �0.1086 þ0.0598
2.0, 0.25 0.938 0.950 0.1627 1.6510 þ0.0025 þ0.0086 0.0415 0.4257 þ0.0596 þ0.0201
2.5, 0.25 0.952 0.938 0.1193 1.5002 þ0.0016 þ0.0011 0.0318 0.3989 þ0.0499 þ0.0028
1.0, 0.15 0.966 0.980 0.3014 1.7155 �0.0199 �0.0821 0.0824 0.4140 �0.2414 �0.1984
2.0, 0.15 0.948 0.953 0.1574 1.6209 þ0.0025 þ0.0045 0.0394 0.4192 þ0.0634 þ0.0108
2.5, 0.15 0.947 0.938 0.1073 1.4997 þ0.0024 þ0.0011 0.0283 0.3987 þ0.0852 þ0.0027
1.0, 0.05 0.957 0.963 0.2352 1.6022 �0.0447 �0.2244 0.0732 0.3539 �0.6098 �0.6341
2.0, 0.05 0.956 0.968 0.1118 1.4934 �0.0009 �0.0737 0.0330 0.3678 �0.0273 �0.2005
2.5, 0.05 0.948 0.943 0.0803 1.4648 þ0.0021 �0.0178 0.0216 0.3848 þ0.0962 �0.0462
1.0, 0.001 0.969 0.885 0.1140 0.6492 �0.0283 �0.1420 0.0341 0.1340 �0.8307 �1.060
2.0, 0.001 0.980 0.910 0.0333 0.6033 �0.0061 �0.1035 0.0009 0.1532 �0.6480 �0.6756
2.5, 0.001 0.973 0.932 0.0176 0.6063 �0.0025 �0.0721 0.0050 0.1690 �0.5033 �0.0427

(a) at each setting of d and q, 1000 tables were generated, marker allele frequency fixed at p ¼ 0.25,
data simulated using SLINK.

(b) all tables based on 200 parent pairs (N ¼ 400), except for (d, q) = (1.0, 0.001), (2.0, .001), (2.5,
0.001) which had 1000 parent pairs (N ¼ 2000).

(c) notation: cover ¼ coverage probability using 95% confidence interval for that parameter; int len ¼
average interval length for 95% confidence interval; avg bias ¼ average bias of parameter estimate;
rms ¼ root mean square error for parameter, taken with respect to known value for that parameter;
rel bias ¼ (avg bias)/(rms).

(d) when d ¼ 0, the parameter q drops out of the allele transmission model, and the results regarding
estimation for d and q are essentially the same for all values of q. Hence the results for d ¼ 0 are
not duplicated for the other values of q.



6. Results and Discussion

As indicated in the Introduction, and as discussed in Whittaker, Denham and
Morris (2000), separation of association and linkage following a significant TDT
result is important, since a significant TDT may result from loose linkage and
strong association, or from tight linkage and weak association. Often only the
latter possibility is considered as the alternative to the rejection of the null model
when using the TDT. Moreover, as we have shown above, the TDT is not a useful
test of association, having very little power when linkage is weak: it returns little
information about the amount of association present in these cases. Also, while
Whittaker, Denham and Morris (2000) suggest the possibility of obtaining max-
imum likelihood estimates for association and linkage, they argue that it would be
“virtually impossible to distinguish, solely on the basis of [family-based data],
between tight and loose linkage.” Our results tell a rather different, more complex
story.
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Table 3a

Power results for the TDT, IL, and the Likelihood Ratio (LR) procedures on the Primary
Models

(d, q) IL test for
d ¼ 0

IL test for
q ¼ 0:5

LR test for
q ¼ 0:5

TDT

0, 0.5 0.049 0.029 0.052 0.052
1.0, 0.5 0.158 0.012 0.053 0.053
2.0, 0.5 0.987 0.020 0.047 0.047
2.5, 0.5 0.999 0.023 0.048 0.048
1.0, 0.45 0.248 0.045 0.101 0.101
2.0, 0.45 0.994 0.194 0.248 0.248
2.5, 0.45 0.999 0.285 0.331 0.331
1.0, 0.35 0.649 0.394 0.535 0.535
2.0, 0.35 0.999 0.949 0.960 0.960
2.5, 0.35 0.999 0.993 0.994 0.994
1.0, 0.25 0.961 0.899 0.951 0.951
2.0, 0.25 0.999 0.999 0.999 0.999
2.5, 0.25 0.999 0.999 0.999 0.999
1.0, 0.15 0.999 0.995 0.998 0.998
2.0, 0.15 0.999 0.999 0.999 0.999
2.5, 0.15 0.999 0.999 0.999 0.999

(a) for all models results are formed using 1000 tables each with 200 parent pairs
(N ¼ 400).

(b) for the models (d, q) ¼ (1.0, 0.05), (2.0, 0.05), (2.5, 0.05), (1.0, 0.001), (2.0, 0.001),
(2.5, 0.001), the power sof all tests were 0.999 and are hence omitted from this table.

(c) the IL tests are based on the 95% integrated likelihood confidence intervals for each
parameter.



The power calculations given in Tables 1, 2, and 3 tell part of the story for
testing of association or linkage, when using the IL method to generate tests of the
null models.
First of all, we see that the IL method for testing either association or linkage

can yield significant improvements in power against the TDT (or, equivalently, LR,
as we have seen), but lose some power in other cases. A representative case in
point: for marker allele frequency p ¼ 0.25, association d ¼ 2:5, and recombina-
tion frequency q ¼ 0:45, the power of the TDT is 0.331, while the IL approach
(when used for testing d ¼ 0) has power 0.999; see Table 3. Note that d is
bounded above by Bð1� pÞ=p ¼ 3:0, so d ¼ 2:5 in this instance represents strong
association. Note also that when testing q ¼ 0:5 (when d ¼ 2:5, marker frequency
p ¼ 0:25, and true q ¼ 0:45) the IL approach has power only 0.285, while the
TDT and LR have power 0.331. Of course, a power of 0.331 is not especially
good either: even when association is strong, and given the sample size of 50
parent pairs, no method presented here is especially good at detecting small
changes from the null value of q ¼ 0:5.
Secondly, we observe that, when association is at least moderately strong, the

IL confidence intervals for linkage can effectively distinguish between tight and
loose linkage. Thus consider model (d ¼ 2:5, q ¼ 0:05), and note that the 95%
confidence interval for q has average interval length 0.0803, while the average
bias in estimating q is only very slightly positive: þ0.0021. Similar results were
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Table 3b

Power Results for Classical and Mixture Models

Model IL test for
d ¼ 0

IL test for
q ¼ 0:5

LR test for
q ¼ 0:5

TDT

R1 0.999 0.999 0.999 0.999
D1 0.989 0.972 0.988 0.983
R2 0.989 0.979 0.989 0.989
D2 0.600 0.412 0.603 0.593
AD 0.778 0.686 0.814 0.809
M1 0.145 0.073 0.153 0.148
M2 0.751 0.627 0.781 0.786
M3 0.072 0.018 0.050 0.049
M4 0.118 0.054 0.101 0.101
M5 0.132 0.065 0.129 0.129
M6 0.999 0.999 0.999 0.999

(a) the Classical models (R1, D1, R2, D2, AD) assume q ¼ 0.02, and the values given
above for the IL and the LR test for q ¼ 0.5, and the TDT, are the observed powers of
these tests using a stated level of 0.05.

(b) the Mixture models M1, M2, M3, M4, M5, and M6 assume a variety of values for d
and q in one of the two subpopulations, but the null values for the tests in all cases are
d ¼ 0 or q ¼ 0.5. Details for these models are given in the Notes for Table 2.



obtained for the models in which strong association is present: d ¼ 2:5 with
dmax ¼ 3:0. Slightly wider intervals for linkage are obtained when association is
only moderate (d ¼ 2:0). Those models with weak association (d ¼ 1:0) show an
expected corresponding increase in our inability to estimate recombination fre-
quency. On the other hand, by substantially increasing the sample size (from 200
to 1000 parent pairs), we obtain short length intervals for recombination frequency
at all levels of association.
As noted earlier our likelihood ratio test for linkage appears to have virtually

the same power and rejection rates as the TDT, at all levels of association, even
though the TDT is at least formally a test of the compound null hypothesis of no
association and/or no linkage. In other words, inherent in the performance of the
TDT, and in our result showing that it is analytically equivalent to LR, we see that
the TDT cannot be usefully considered as a test of association. However, the IL
procedure that detects association does so at all levels of linkage, and the IL pro-
cedures for association or linkage both lead to valid confidence intervals for those
parameters.
Summarizing the power results, we find that the IL test for linkage lags somewhat

behind that of the TDT (and LR). As a practical matter therefore we suggest using
the TDT as a test for linkage (in the presence of strong association), and following
that with the confidence interval for q when the TDT (or LR) is found significant.
We have not, however, investigated the statistical properties (e.g. observed level
under the alternative hypothesis) of this two-stage, conditional procedure.
To be complete, we note that it is generally unlikely that a human population

would have strong association and yet have weak linkage. However we could
expect this to be more likely in certain isolated populations, such as the Amish or
the Finns. We also could expect to see strong association with weak linkage in
nonhuman studies such as those involving fruit flies, mice, yeast, or test crosses
with animals.
Before taking up the mixture models and the performance of the IL procedure

considered here, let us begin by noting that the basic Mendelian models as consid-
ered by Sham and Curtis (1995), for example, in fact have rather complex ex-
pressions in terms of the original allele transmission model parameters. Thus, even
these ostensibly simple genetics models are in fact quite intricate when expressed
in fully parameterized form. In this regard, we observed that our reparameteriza-
tion of the transmission model, specifically our introduction of d, the generalized
association term, allows us to simulate and interrogate models with well-calibrated
levels of association and linkage. This then permits a methodical inquiry of any
test or estimation approach based on allele transmission data with respect to per-
formance under departures from the homogeneous population model.
We now observe that, from the Table 3b, the tests for linkage and association as

derived from our intervals are basically as robust on the mixture models as the
TDT. The observed levels for the TDT in the population admixture models M1,
M2, and M3 are close to the nominal level of p ¼ 0:05 in these cases, since by
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construction there is no linkage for these data (q ¼ 0:50). Continuing, consider
models M4 and M5, where 25% of the total population has no linkage or associa-
tion, while the remaining 75% has strong linkage. We might expect therefore that
the TDT had good power in these cases, but find that the powers are 0.101 and
0.129 (for M4 and M5, respectively). That is, power is rather close to the assigned
nominal level of the test, ¼ 0.05. The power values for LR test are virtually the
same as that for the TDT, and neither are appreciable better than the IL test for
linkage (0.54 in M4 and 0.65 in M5). The performance of the TDT in these cases
would suggest no linkage or association, contrary to the true situation, and the
performances of the other procedures are equally unrevealing. On the other hand,
in model M6, having both strong linkage and association in 75% of the popula-
tion, the power for all the procedures, including the TDT, is essentially 1.00.
Summarizing, we see inconsistent behavior of the TDT in these complex linkage

heterogeneity models, and this is matched unfortunately by the behavior of the sepa-
rate tests for linkage and association as we present here. This should not be so sur-
prising, since separate estimates and intervals for linkage and association are ineffec-
tive when the population being sampled does not have the assumed likelihood
function, in particular, when subpopulations have distinct model parameters.
An objection might be raised concerning the wide intervals for linkage that result

in the mixture models, as shown in Table 1. We have seen that in a subpopulation
with zero association, linkage is not well defined in the basic allele transmission
model, and in particular the “true” value might as well be q ¼ 0:5. When mixed
with a subpopulation that has nontrivial association and tight linkage we found that
wide intervals for q often result. To argue from a simple point estimate of q in this
case to conclude that linkage was present in the whole population would be an
error. We caution, therefore, that a wide interval for q should, at any time, only be
considered as very weakly informative of the presence or strength of any linkage.
Of course, as we emphasized above, estimation in any mixture problem is not well
posed unless the likelihood accounts for the mixing, and the standard allele trans-
mission model used here and in the genetics literature does not do this.
Currently an extremely wide range of possible stratification and mixture popula-

tions are being contemplated in genetics, especially when studying complex traits,
which may include features such as multiple susceptibility alleles, multiple linked
and unlinked susceptibility loci and multiple types of disease etiology. Given this
large universe of possible departures from a homogeneous population model, it is
difficult to organize a testing plan for any test procedure. Our results are therefore
but a step in this direction, with these first steps now possible using our properly
parameterized allele transmission model.
Finally, it has been observed that model identifiability issues also arise with

association studies based on case-control data (e.g., Sham (1998), p. 165). The
success of the techniques described here suggests the feasibility of parameter esti-
mation and confidence intervals in these other experimental designs, for which
only frequentist tests of null models are currently available.
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Appendix 1

Identifiability

We note that the Sham (1998) model given in terms of f ¼ fp; e; q; Bg is not
identifiable. To see this consider the likelihood function

Lðx j jÞ ¼
Ym
i¼1

Ym
j¼1

ðpipjð1þ Bððei � 1Þ þ qðej � eiÞÞÞÞxij :

We define the parameter space to be the set of values of f for which

ð1þ Bððei � 1Þ þ qðej � eiÞÞÞÞ > 0 for each index i and j and
Pm
i¼1

pi ¼ 1,Pm
i¼1

piei ¼ 1, pi > 0 and ei > 0 for 1 � i � m.

To help with the analysis also define ai ¼ ei � 1and then

Lðx j jÞ ¼
Ym
i¼1

Ym
j¼1

ðpipjð1þ Bðai þ qðaj � aiÞÞÞÞxij :

Since
Pm
i¼1

pi ¼ 1 and
Pm
i¼1

piei ¼ 1, then
Pm
i¼1

piai ¼
Pm
i¼1

piðei � 1Þ ¼ 0.

We first note that in all cases, the parameter B cannot be determined indepen-
dently of the other parameters. To see this let c be a non zero constant and define

B0 ¼ cB and a0i ¼
1

c
ai for i ¼ 1; . . . ;m. Then

Pm
i¼1

pia0i ¼ 0 and the value of the

likelihood function will not change since B0a0i ¼ cBð1=cÞai ¼ Bai for each index i.
Hence you cannot determine both B and the ai’s independently. From this point
on we will assume that the value of B is positive and known.
The model is also not identifiable if all of the ai’s are equal for in this case q

drops out of the equations altogether. This is equivalent to the case that ei ¼ e for

each i which implies that ei ¼ 1 for each i since 1 ¼
Pm
i¼1

piei ¼ e
Pm
i¼1

pi ¼ e.

Finally the model is not identifiable in the case that q ¼ 1=2 and ei 6¼ 1 for at
least one index i. To see this suppose that p and e are given. Then define

p0i ¼ pið1þ Bðei � 1ÞÞ and e0i ¼ 1� 1

B

� �
þ p0i

Bpi

� �
:

Since
Pm
i¼1

pi ¼ 1 and
Pm
i¼1

piei ¼ 1, then
Pm
i¼1

p0i ¼ 1. Hence

Pm
i¼1

p0ie
0
i ¼

Pm
i¼1

pi 1� 1

B

� �
þ p0i

Bpi

� �� �
¼
Pm
i¼1

pi �
1

B
ðpi � p0iÞ

� �
¼ 1

as required. It is then easy to see that Lðx; q ¼ 1=2; p; eÞ
¼ Lðx; q ¼ 1=2; p0; e0Þfor every value of x. Hence the model is not identifiable.
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Theorem A1: If B > 0 is known, ei 6¼ 1 for some index i, and q 6¼ 1=2, then
the model parameters are identifiable.

Proof: Assuming that B is know and let f ¼ fq; p; eg and f0 ¼ fq0; p0; e0g.
Then suppose that Lðx; fÞ ¼ Lðx; f0Þ for all values of x that satisfy

Pm
i¼1

Pm
j¼1

xij ¼ n
so that

Lðx; fÞ
Lðx; f0Þ ¼

Ym
i¼1

Ym
j¼1

pipj
p0ip

0
j

 !xij
1þ Bððei � 1Þ þ qðej � eiÞÞ
1þ Bððe0i � 1Þ þ qðe0j � e0iÞÞ

 !xij

¼ 1 :

Suppose that xkl ¼ 0 for all choices of k and l except for i and j and that xij 6¼ 0.
Then for each i and j the expression above simplifies to

pipjð1þ Bððei � 1Þ þ qðej � eiÞÞÞ ¼ p0ip
0
jð1þ Bððe0i � 1Þ þ qðe0j � e0iÞÞÞ :

Once again to help with the analysis we can define wi ¼ 1þ Bðei � 1Þ, then
Bðej � eiÞ ¼ wj � wi and

Pm
i¼1

piwi ¼ 1. We similarly define w0
i ¼ 1þ Bðe0i � 1Þ. Fi-

nally let ri ¼ pi=p0i. Then we have

rirjðwi þ qðwj � wiÞÞ ¼ ðw0
i þ q0ðw0

j � w0
iÞÞ Eq A1

for each i and j.
Letting i = j this gives r2i wi ¼ w0

i which can be substituted to yield

rirjðwi þ qðwj � wiÞÞ ¼ ðr2i wi þ q0ðr2j wj � r2i wiÞÞ :

If we rewrite this expression as a linear combination of wi and wj we get

ðrirjð1� qÞ � r2i ð1� q0ÞÞ wi þ ðrirjq� r2i q
0Þ wj ¼ 0 :

If we exchange i for j in this expression we get

ðrirjð1� qÞ � r2j ð1� q0ÞÞ wj þ ðrirjq� r2j q
0Þ wi ¼ 0 :

Since
Pm
i¼1

piwi ¼ 1, then wi 6¼ 0 for at least one index i. Without loss of generality

assume that w1 6¼ 0. Then, in order for the equation to have a solution for any
index j, the determinant of the coefficients must vanish. Using Mathematica the
value of this determinant is r1rjðr1 � rjÞ2 ðqþ q� 1Þ ¼ 0. But r1 6¼ 0 and rj 6¼ 0
and since q < 1=2, then qþ q0 � 1 6¼ 0. Hence r1 ¼ rj for each index j and hence
rj ¼ c for some constant c. But since ri ¼ pi=p0i, then this implies that pi ¼ cp0i.

However 1 ¼
Pm
i¼1

pi ¼
Pm
i¼1

cp0i ¼ c and so pi ¼ p0i for each i.

Since r2i wi ¼ w0
i, then we also have that wi ¼ w0

i for each index i. This immedi-
ately implies that ei ¼ e0i for each index i. Finally if ei 6¼ ej for some indices i and
j, then wi 6¼ wj for some indices i and j which implies that q ¼ q0.
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The result in the next theorem gives details of the nonidentifiability problem
when q ¼ 1=2. We continue to use the expressions ri ¼ pi=p0i, wi ¼ 1þ Bðei � 1Þ
and w0

i ¼ 1þ Bðe0i � 1Þ.
Theorem A2: Let B > 0 be given and let f ¼ fp; w; q ¼ 1=2g a be point in

the parameter space. If wi 6¼ 1 for some index i, then for there is exactly one other
point in the parameter space at which the likelihood function always has exactly
the same value. In particular, given fp1; p2; . . . ; pmg and fw1; w2; . . . ;wmg, the
other point is p0i ¼ piwi with w0

i ¼ 1=wi for i ¼ 1; 2; . . . ;m.

Proof: Given Theorem A1, we conclude that q0 ¼ q ¼ 1=2 and note that since
B � 1 and ei > 0 for each index i, then wi > 0 for each index i. So it is easy to
show that the constructed point in the parameter space. So by equation Eq. A1,
we have that

rirj
wi þ wj

2

� �
¼ r2i

wi

2
þ r2j

wj

2
or equivalently

ðri � rjÞ ðriwi � rjwjÞ ¼ 0 :

This expression will be zero if either the first or second factors are zero. So we
consider the following two cases.

Case 1: For all i and j, ri ¼ rj. Then as argued above, pi ¼ p0i and wi ¼ w0
i for

each index i.

Case 2: So we now suppose that ri 6¼ rj for some indices i and j. So let
S1 ¼ fi j ri ¼ r1g and let S2 ¼ f1; 2; . . . ;mg � S1. Then since ri 6¼ rj when i 2 S1
and j 2 S2, then riwi ¼ rjwj for each i 2 S1 and j 2 S2. But since equality is transi-
tive, it must be the case that riwi ¼ rjwj for all indices i and j. So then
pi
pj

wi ¼ riw ¼ c for some constant c. But then 1 ¼
Pm
i¼1

piwi ¼
Pm
i¼1

cp0i ¼ c
Pm
i¼1

p0i ¼ c.

So c ¼ 1, riwi ¼ 1 and piwi ¼ p0i for each index i. So

w0
i ¼ r2i wi ¼ riðriwiÞ ¼ ri ¼

pi
p0i

¼ pi
piwi

¼ 1

wi
:

Note that the condition wi 6¼ 0 for some index i is required to conclude that
q0 ¼ q and guarantees that w0

i 6¼ w for some index i so that the two points are
distinct.
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