

Have we really learned "nothing but probabilities" from the genome ?

9

4 important outcomes of the human genome project

- I. Comparative genomics
- II. Mapping functional elements
- III. Interpretation of disease processes
- IV. Reading the epigenetic code

At 3 gigabases the genome is equivalent to how many Mozilla browsers?

- 28

-2.8

-0.5

Genomic diversity

- multiple noncoding elements used in combination
- alternative processing and alternative promoters
- noncoding RNA

Unconstrained functional regions

- I. lack biological assays
- II. chromatin accessibility was more important than sequence composition
- III. lineage-specific
- IV. functionally conserved but non-orthologous
- V. did not confer a selective advantage or disadvantage

II. Mapping functional elements

III. Interpretation of disease processes

37

Gain of function

Hum. Mol. Genet. 2003 12 : 1725-1735

Loss of function

Development 2005 132 : 4 797-803

Common disease, common variant

enhancer mutations?

type II diabetes
colorectal cancer
breast cancer
pancreatic cancer
coronary artery disease

CELL-TYPE SPECIFIC DATA FROM ENCODE

How do we know if a variant disrupts a functional element or is neutral?

- sequence conservation and phylogenetic footprints provide evidence
- histone modifications and DNAse hypersensitivity indicate function
- p300 binding and looping interactions show activity
- Look to ENCODE data for evidence

How do we confirm that laminar interactions are important?

- Find laminar mutations that cause disease
- Presence of sequence conservation in laminainteracting domains
- Deletion of lamina structures

"Age is not a particularly interesting subject.

Anyone can get old.

All you have to do is live long enough."

(Groucho Marx)

49

Changes to Chromatin With Aging

General heterochromatinization

DNA repair decrease
Chromatin aberrations
Telomere shortening
Loss of histone ADP-ribosylation
Enrichment of tri-methylated histone H4 K20
Appearance of rDNA circles in yeast
Loss of 5-methylcytosine
Changes in H1 distribution

Aging

III. Interpretation of disease processes

What's the prevailing connection between functional elements in the cell?

- Aging cells sabotage each other
- Noncoding RNA orchestrate many events
- Conserved elements underlie all important features

IV. How to read the epigenetic code

DNA methylation

- specific for a tissue type
- stably alters gene expression patterns
- suppresses the expression of viral genes and prevents genomic rearrangements
- plays a crucial role in the development many types of cancer

Contributions of the human genome project

- I. Understanding evolutionary diversity
- II. Genome function and regulatory elements
- III. Variants that disrupt function and explain

The end