

Current Topics in Genome Analysis 2012

Laura Elnitski, Ph.D.

No Relevant Financial Relationships with Commercial Interests

"the most important, most wondrous map ever produced by human kind"

Bill Clinton

3

Characterizing the human genome

- ~ 3 billion bases
- 2% protein-coding regions
- 20,000-25,000 protein-coding genes

Epigenetic patterns

- Identify cell type
- Distinguish functional elements
- Indicate gene expression levels

7

	Mendelian diseases	# of Genes
	molecular basis known	3,398
	molecular basis unknown	1,790
	suspected mendelian basis	1,924

Gut 2011. 60:1739-1753

Have we really learned "nothing but probabilities" from the genome ?

9

4 important outcomes of the human genome project

- I. Comparative genomics
- II. Mapping functional elements
- III. Interpretation of disease processes
- IV. Reading the epigenetic code

At 3 gigabases the genome is equivalent to how many Mozilla browsers?

-28

-2.8

-0.5

Genomic diversity

- multiple noncoding elements used in combination
- alternative processing and alternative promoters
- noncoding RNA

Genome wide association data

15

Comparative genomics

Mutations in functional DNA are less likely to be tolerated

fastest divergence : immune, reproduction and olfaction

slowest divergence : developmental genes

How much overlap is there between the human and mouse genomes?

- · 20%?
- 40%?
- 10%?

Unconstrained functional regions

- I. lack biological assays
- II. chromatin accessibility was more important than sequence composition
- III. lineage-specific
- IV. functionally conserved but non-orthologous
- V. did not confer a selective advantage or disadvantage

II. Mapping functional elements

Enhancers

Sequence features

- Clusters of TFs
- Sequence conservation

Epigenetic features

- DNAse hypersensitivity
- H3K4me1, me2, H3K27ac
- p300

35

Long distance interactions

ChIA-pet 3C, 4C, 5C HiC

III. Interpretation of disease processes

37

SHH enhancer mutations

C

Gain of function

Hum. Mol. Genet. 2003 12 : 1725-1735

Loss of function

Development 2005 132: 4 797-803

Regenerating tissue

39

Common disease, common variant

enhancer mutations?

type II diabetes
colorectal cancer
breast cancer
pancreatic cancer
coronary artery disease

CELL-TYPE SPECIFIC DATA FROM ENCODE

How do we know if a variant disrupts a functional element or is neutral?

- sequence conservation and phylogenetic footprints provide evidence
- histone modifications and DNAse hypersensitivity indicate function
- p300 binding and looping interactions show activity
- Look to ENCODE data for evidence

How do we confirm that laminar interactions are important?

- Find laminar mutations that cause disease
- Presence of sequence conservation in laminainteracting domains
- Deletion of lamina structures

47

Progeria

Am J. Med Genet. 23:2603-24

Normal nucleus

Affected nucleus

PLoS Biology Vol. 3/11/2005, e395

"Age is not a particularly interesting subject.

Anyone can get old.

All you have to do is live long enough."

(Groucho Marx)

49

Changes to Chromatin With Aging

General heterochromatinization

DNA repair decrease

Chromatin aberrations

Telomere shortening

Loss of histone ADP-ribosylation

Enrichment of tri-methylated histone H4 K20

Appearance of rDNA circles in yeast

Loss of 5-methylcytosine

Changes in H1 distribution

Aaina

III. Interpretation of disease processes

What's the prevailing connection between functional elements in the cell?

- Aging cells sabotage each other
- Noncoding RNA orchestrate many events
- Conserved elements underlie all important features

IV. How to read the epigenetic code

"Good science is all about following the data as it shows up

letting yourself be proven wrong,

and letting everything change while you're working on it "

61

Diversity of histone modifications K-methylases Acetylases Acetylases Acetylases Acetylases Acetylases Acetylases Acetylases Kinases Kinases Kinases

DNA methylation

- specific for a tissue type
- stably alters gene expression patterns
- suppresses the expression of viral genes and prevents genomic rearrangements
- plays a crucial role in the development many types of cancer

Contributions of the human genome project

- I. Understanding evolutionary diversity
- II. Genome function and regulatory elements
- III. Variants that disrupt function and explain

The end