

Overview

- Next-Generation Sequencing (NGS) Instruments
- Roche/454
- Illumina
- Life Technologies
- Pacific Biosciences
- Ion Torrent
- Oxford Nanopore
- NGS Applications across the spectrum of genomics
- Examples from our work
- Future Directions

The Trajectory of Throughput: 10 years

E.R. Mardis, Nature (2011) 470: 198-203

Comparative costs: sequencing a human genome

\square

Next-generation DNA sequencing instruments

- All commercially-available sequencers have the following shared attributes:
- Random fragmentation of starting DNA, ligation with custom linkers = "a library"
- Library amplification on a solid surface (either bead or glass)
- Direct step-by-step detection of each nucleotide base incorporated during the sequencing reaction
- Hundreds of thousands to hundreds of millions of reactions imaged per instrument run = "massively parallel sequencing"
- Shorter read lengths than capillary sequencers
- A "digital" read type that enables direct quantitative comparisons
- A sequencing mechanism that samples both ends of every fragment sequenced ("paired end" reads)

Paired-end reads

- All next-gen platforms now offer paired end read capability, e.g. sequences can be derived from both ends of the library fragments.
- Differences exist in the _distance_ between read pairs, based on the approach/platform.
- "paired ends" : linear fragment sequenced at both ends in two separate reactions
- "mate pairs" : circularized fragment of $>1 \mathrm{~kb}$, sequenced by a single reaction read or by two separate end reads (platform dependent)
- In general, paired end reads offer advantages for sequencing large and complex genomes because they can be more accurately placed ("mapped") than can single ended short reads.

454 Instrumentation

Instrument	Run Time (hr)	Read Length (bp)	Yield $(\mathrm{Mb} / \mathrm{run})$	Error Type	Error Rate $(\%)$	Purchase Cost $(\times 1000)$
454 FLX+	$18-20$	700	900	Indel	1	$\$ 30 \mathrm{~A}$
454 FLX Titanium	10	400	500	Indel	1	$\$ 500$
454 GS Jr. Titanium	10	400	50	Indel	1	$\$ 108$

A- Requires the 454 FLX Titanium. This is the upgrade cost.

Notable:

- Mate pair paired end reads of $3 \mathrm{~kb}, 8 \mathrm{~kb}$ and 20 kb separation without an increase in run time.
- Cost per run makes sequencing an entire human genome cost-prohibitive relative to other technologies ($\sim 20 / \mathrm{Mbp}$)
- Great platform for targeted validation

Illumina Sequencing: Library Preparation

DNA fragments

- • \quad : Blunting by Fill-in

${ }^{\mathrm{p}} \downarrow \mathrm{p} \quad$ Phosphorylation

${ }^{\bullet} \downarrow 0 \quad$ Addition of A-overhang

Illumina's Library Preparation Workilow

Illumina Instrumentation

- 2010: HiSeq 2000
- Two flow cells per run
- $100 \mathrm{Gbp} / \mathrm{FC}$ or two genome equivalents per run
- New scanning mechanics - scans both surfaces of FC lanes
- 2011: HiSeq 2000
- Improved chemistry (v. 3): increased yield and accuracy
- 2011: MiSeq

Instrument	Run Time (days)	Read Length (bp)	Yield $(\mathrm{Gb} /$ run $)$	Error Type	Error Rate $(\%)$	Purchase Cost $(\times 1000)$
GAllx	14	150×150	96	Sub	>0.1	$\$ 525$
HiSeq 2000	8	100×100	200×2	Sub	>0.1	$\$ 700$
HiSeq $2000 \mathrm{v3}$	10	100×100	<600	Sub	>0.1	$\$ 700$
MiSeq	1	150×150	2	Sub	>0.1	$\$ 125$

Life Technologies: sequencing by ligation

SOLiD Instrumentation

Instrument	Run Time $($ days $)$	Read Length (bp)	Yield $(\mathrm{Gb} /$ run $)$	Error Type	Error Rate $(\%)$	Purchase Cost $(\times 1000)$
SOLiD 4	12	$50 \times 35 \mathrm{PE}$	71	A-T Bias	>0.06	$\$ 475$
SOLiD $5500 \times \mathrm{xl}$	8	$75 \times 35 \mathrm{PE}$ $60 \times 60 \mathrm{MP}$	155	A-T Bias	>0.01	$\$ 595$

5500 x

- Front-end automation addresses bottlenecks at emPCR, breaking, and enrichment of beads
- 6-lane Flow Chip with independent lanes/2 per run
- Cost per whole genome data set is predicted to be $\$ 6 \mathrm{~K}$ by 2011
- Very high accuracy data due to two-base encoding
- ECC Module - An optional $6^{\text {th }}$ primer that increases accuracy to 99.999%
- Direct conversion of color space to base space
- True paired-end chemistry enabled - Ligation reaction can be used in either direction
© Elaine R. Mardis

Third generation sequencers??

- Recently, new sequencing platforms were introduced.
- The Pacific Biosciences sequencer is a single molecule detection system that marries nanotechnology with molecular biology.
- The Ion Torrent uses pH rather than light to detect nucleotide incorporations.
- The MiSeq is a scaled down version of the HiSeq, with faster chemistry and scanning.
- All offer a faster run time, lower cost per run, reduced amount of data generated relative to $2^{\text {nd }}$ Gen platforms, and the potential to address genetic questions in the clinical setting.

Comparisons to Third-Generation Sequencers

Company	Platform Name	Sequencing	Amplification	Run Time
Roche	454 Ti	DNA Polymerase "Pyrosequencing"	emPCR	10 hours
Illumina	Hi-Seq/ MiSeq	DNA Polymerase	Bridge amplification	10 days/ 24 hours
Life	SOLiD/ 5500	DNA Ligase	emPCR	12 days
Ion Torrent	PGM	Synthesis H^{+}detection	emPCR	2 hours
Pacific Biosciences	RS	Synthesis	NONE	45 min

Pacific Biosciences RS

The SMRTbell ${ }^{\text {TM }}$ Library Types

Consensus Read

PacBio RS Instrumentation

Instrument	Run Time (Hours)	Read Length (bp)	Yield (Mb)	Error Type	Error Rate $(\%)$	Purchase Cost $(\times 1000)$
RS	14 $(\sim 8$ SMRTCells)	2500	45 per SMRTCell	Insertions	15	$\$ 695$

mean mapped sub-read accuracy:	86.2%
mean mapped sub-read length:	$3,416 \mathrm{bp}$
maximum mapped read length:	$8,580 \mathrm{bp}$
maximum 95th percentile mapped read length:	$5,807 \mathrm{bp}$

ION Torrent Personal Genome Machine (PGM)

Ion Torrent Yield Trajectory

Oxford Nanopore Sequencing

Applying Next Generation Sequencing

- Genomes: re-sequencing or de novo
- point mutation/indel/structural variation discovery
- Protein:DNA binding
- Chromatin IP/histone binding
- Nucleosome/transcription factor binding, etc.
- ncRNA discovery/sequencing/variants
- Transcriptome sequencing (RNA-seq)
- Genome-wide methylation of DNA (Methyl-seq)
- Clinical sequencing for therapeutic decisions
E.R. Mardis, Annual Reviews in Genetics \& Genomics (2008)
E.R. Mardis, Nature (2011) 470: 198-203
© Elaine R. Mardis

Whole Genome Sequencing: Data Production and Alignment

- Prepare paired end libraries as whole genome fragment/shotgun by random shearing of genomic DNA, adapter ligation, size selection.
- Produce paired end data from each end of billions of library fragments, over-sampling about 30 -fold to cover at a depth sufficient to find all types of genome alterations.
- Computer programs align the read pair sequences onto the reference genome and several algorithms are used to discover variants genomewide.

Whole Genome Tumor: Normal Comparison

- Caucasian female, mid-50s at diagnosis
- De novo M1 AML.
- Family history of AML and lymphoma
- 100\% blasts in initial BM sample
- Relapsed and died at 23 months
- Normal cytogenetics
- Informed consent for whole genome sequencing
- Solexa sequencer, 32 bp unpaired reads
- 10 somatic mutations detected

BreakDancer: detecting somatic structural variation

K. Chen et al., Nature Methods 6: 677-81 (2009)

An insertion-derived fusion of PML and RARA

PML-RARA: PML exons 1-3 fused to RARA exons 3-9 (bcr3 variant in frame)
RARA-LoxL1: fusion out of frame
LoxL1-PML: truncated protein - premature stop in novel LoxL1 exon 5a

Use of Whole-Genome Sequencing to Diagnose a Cryptic Fusion Oncogene

Welch et al., JAMA April 20, 2011
© Elaine R. Mardis

Combining Platforms: de novo Assembly

Two VLR PacBio reads contiguate an Illumina assembly gap

Rapid Genotyping by Ion Torrent

Hybrid Capture

- Hybrid capture - fragments from a whole genome library are selected by combining with probes that correspond to most (not all) human exons or gene targets.
- The probe DNAs are biotinylated, making selection from solution with streptavidin magnetic beads an effective means of purification.
- An "exome" by definition, is the exons of all genes annotated in the species' reference genome.
- Custom capture reagents can be synthesized to target specific loci that may be of interest in a clinical context.

Merkel Cell Polyoma Virus Capture

- Merkel Cell Polyoma virus
- MCPyV shows frequent genomic deletions and sequence mutations that make it difficult to amplify the virus from cases of MCC by PCR
- The circular genome does not contain a defined linearization sequence
- Only FFPE material available for majority of cases
- For proof-of-principle experiments:
- Biotinylated PCR amplicons designed to target entire 5Kb viral genome
- Hybrid capture and sequencing
- Analysis to identify insertion points in human genomes

Viral Coverage Plots (4 FFPE Samples)

Duncavage et al., JMD 2011
© Elaine R. Mardis
σ

Finding the Junction (Integration Site) using SLOPE

Table 3. MCC Case Clinical Characteristics, PCR-Verified Viral Insertion Sites, and Viral Deletions

	Age of block (years)					Sex	Site
Sample	Type	6	M	Buttocks	ch8: 65568962	ch8: 65566806	3.0 kb
12	Primary	Metastasis	5	M	Back	ch8: 65568962	ch8: 65566806

RNA Sequencing

TNRC6B splice site mutation -> alt. splicing

Stability of virome over time

Conclusions

- $2^{\text {nd }}$ and $3^{\text {rd }}$ generation sequencing instruments are revolutionizing biological research.
- Earliest impacts have been on cancer genomics and metagenomics.
- The extreme need for bioinformatics-based analytical approaches to interpret these large data sets has revitalized the field and introduced statistical and mathematical rigor.
- Integration across data sets from DNA, RNA, methylation, proteomics, etc. presents the next challenge but provides comprehensive analytical power to inform biology.
- With newer instruments, clinical applications have potential for implementation, with appropriate interpretive algorithms.

Acknowledgements

- The Genome Institute

Vince Magrini
Todd Wylie
Sean McGrath
Amy Ly
Jason Walker
Jasreet Hundal
Lisa Cook

Li Ding
George Weinstock
Richard K. Wilson

- Clinical Collaborators (WUSM)

Tim Ley
Phil Tarr
John Pfeifer

