

Next-Generation Sequencing Technologies

Elaine R. Mardis Professor in Genetics Co-director, The Genome Institute

NHGRI Current Topics in Genome Analysis © Elaine R. Mardis

Current Topics in Genome Analysis 2012

Elaine Mardis, Ph.D.

No Relevant Financial Relationships with Commercial Interests

Overview

- Next-Generation Sequencing (NGS) Instruments
 - Roche/454
 - Illumina
 - · Life Technologies
 - · Pacific Biosciences
 - · Ion Torrent
 - · Oxford Nanopore
- NGS Applications across the spectrum of genomics
 - Examples from our work
 - Future Directions

Next-generation Sequencer basics Platforms and their attributes © Elaine R. Mardis

Next-generation DNA sequencing instruments

- All commercially-available sequencers have the following shared attributes:
 - Random fragmentation of starting DNA, ligation with custom linkers
 "a library"
 - Library amplification on a solid surface (either bead or glass)
 - Direct step-by-step detection of each nucleotide base incorporated during the sequencing reaction
 - Hundreds of thousands to hundreds of millions of reactions imaged per instrument run = "massively parallel sequencing"
 - · Shorter read lengths than capillary sequencers
 - A "digital" read type that enables direct quantitative comparisons
 - A sequencing mechanism that samples both ends of every fragment sequenced ("paired end" reads)

© Elaine R. Mardis

Paired-end reads

- All next-gen platforms now offer paired end read capability, e.g. sequences can be derived from both ends of the library fragments.
- Differences exist in the _distance_ between read pairs, based on the approach/platform.
 - "paired ends": linear fragment sequenced at both ends in two separate reactions
 - "mate pairs": circularized fragment of >1kb, sequenced by a single reaction read or by two separate end reads (platform dependent)
- In general, paired end reads offer advantages for sequencing large and complex genomes because they can be more accurately placed ("mapped") than can single ended short reads.

454 Instrumentation

Instrument	Run Time (hr)	Read Length (bp)	Yield (Mb/run)	Error Type	Error Rate (%)	Purchase Cost (x1000)
454 FLX+	18-20	700	900	Indel	1	\$30 A
454 FLX Titanium	10	400	500	Indel	1	\$500
454 GS Jr. Titanium	10	400	50	Indel	1	\$108

A- Requires the 454 FLX Titanium. This is the upgrade cost.

Notable:

- \bullet Mate pair paired end reads of 3kb, 8kb and 20 kb separation without an increase in run time.
- Cost per run makes sequencing an entire human genome cost-prohibitive relative to other technologies (~ \$20/Mbp)
- · Great platform for targeted validation

© Elaine R. Mardis

Illumina Sequencing: Library Preparation DNA fragments

Blunting by Fill-in and exonuclease

The Phosphorylation

Addition of A-overhang

Ligation to adapters

Ligation to adapters

Illumina's Library Preparation Workflow

Illumina Instrumentation

- 2010: HiSeq 2000
 - Two flow cells per run
 - 100 Gbp/FC or two genome equivalents per run
 - New scanning mechanics scans both surfaces of FC lanes
- 2011: HiSeq 2000
 - Improved chemistry (v. 3): increased yield and accuracy
- 2011: MiSeq

Instrument	Run Time (days)	Read Length (bp)	Yield (Gb/run)	Error Type	Error Rate (%)	Purchase Cost (x1000)
GAIIx	14	150 x 150	96	Sub	>0.1	\$525
HiSeq 2000	8	100 x 100	200 x 2	Sub	>0.1	\$700
HiSeq 2000 v3	10	100 x 100	<600	Sub	>0.1	\$700
MiSeq	1	150 x 150	2	Sub	>0.1	\$125

custom adapter library emPCR on magnetic beads sequencing by <u>ligation</u> using fluorescent probes from a common primer sequential rounds of ligation from a series of primers fixed /known nucleotides for each probeset identify two bases each cycle, or "two base encoding"

© Elaine R. Mardis

SOLiD Instrumentation

Instrument	Run Time (days)	Read Length (bp)	Yield (Gb/run)	Error Type	Error Rate (%)	Purchase Cost (x1000)
SOLiD 4	12	50 x 35 PE	71	A-T Bias	>0.06	\$475
SOLiD 5500 xl	8	75 x 35 PE 60 x 60 MP	155	A-T Bias	>0.01	\$595

5500 xl

- Front-end automation addresses bottlenecks at emPCR, breaking, and enrichment of beads
- 6-lane Flow Chip with independent lanes/2 per run
- Cost per whole genome data set is predicted to be \$6K by 2011
- Very high accuracy data due to two-base encoding
- ECC Module An optional 6th primer that increases accuracy to 99.999%
- Direct conversion of color space to base space
- True paired-end chemistry enabled Ligation reaction can be used in either direction

Third generation sequencers??

- · Recently, new sequencing platforms were introduced.
- The Pacific Biosciences sequencer is a single molecule detection system that marries nanotechnology with molecular biology.
- The Ion Torrent uses pH rather than light to detect nucleotide incorporations.
- The MiSeq is a scaled down version of the HiSeq, with faster chemistry and scanning.
- All offer a faster run time, lower cost per run, reduced amount of data generated relative to 2nd Gen platforms, and the potential to address genetic questions in the clinical setting.

© Elaine R. Mardis

Comparisons to Third-Generation Sequencers

Company	Platform Name	Sequencing	Amplification	Run Time
Roche	454 Ti	DNA Polymerase "Pyrosequencing"	emPCR	10 hours
Illumina	Hi-Seq/ MiSeq	DNA Polymerase	Bridge amplification	10 days/ 24 hours
Life	SOLiD/ 5500	DNA Ligase	emPCR	12 days
Ion Torrent	PGM	Synthesis H ⁺ detection	emPCR	2 hours
Pacific Biosciences	RS	Synthesis	NONE	45 min

PacBio RS Instrumentation							
Instrument	Run Time (Hours)	Read Length (bp)	Yield (Mb)	Error Type	Error Rate (%)	Purchase Cost (x1000)	
RS	14 (~8 SMRTCells)	2500	45 per SMRTCell	Insertions	15	\$695	
maxir Strobe protoco	mean mapped sub-read length: 3,416 bp maximum mapped read length: 8,580 bp maximum 95th percentile mapped read length: 5,807 bp Strobe polymerase/strobe reagent/strobe protocol (45 min movie) Strobe polymerase/standard reagent/standard protocol protocol						
1200 - 12	1x45	min movie SMRT cells	3500 3000 - 2500 - 90 2000 - 500 - 1000 - 1000 -	2x45 m	nin movies SMRT cells		
400	1000 2000 3000 4000 5000 Mapped Subread Re	6000 7000 8000 90	4± 1000 -	1000 2000 3000	4000 5000 66		

Applying Next Generation Sequencing

- Genomes: re-sequencing or de novo
- point mutation/indel/structural variation discovery
- Protein: DNA binding
 - Chromatin IP/histone binding
 - Nucleosome/transcription factor binding, etc.
- ncRNA discovery/sequencing/variants
- Transcriptome sequencing (RNA-seq)
- Genome-wide methylation of DNA (Methyl-seq)
- Clinical sequencing for therapeutic decisions

E.R. Mardis, Annual Reviews in Genetics & Genomics (2008) E.R. Mardis, Nature (2011) 470: 198-203 © Elaine R. Mardis

Whole Genome Sequencing: Data Production and Alignment

- Prepare paired end libraries as whole genome fragment/shotgun by random shearing of genomic DNA, adapter ligation, size selection.
- Produce paired end data from each end of billions of library fragments, over-sampling about 30-fold to cover at a depth sufficient to find all types of genome alterations.
- Computer programs align the read pair sequences onto the reference genome and several algorithms are used to discover variants genomewide.

© Elaine R.

Hybrid Capture

- <u>Hybrid capture</u> fragments from a whole genome library are selected by combining with probes that correspond to most (not all) human exons or gene targets.
- The probe DNAs are biotinylated, making selection from solution with streptavidin magnetic beads an effective means of purification.
- An "exome" by definition, is the exons of all genes annotated in the species' reference genome.
- Custom capture reagents can be synthesized to target specific loci that may be of interest in a clinical context.

© Elaine R. Mardis

Merkel Cell Polyoma Virus Capture

- Merkel Cell Polyoma virus
 - MCPyV shows frequent genomic deletions and sequence mutations that make it difficult to amplify the virus from cases of MCC by PCR
 - The circular genome does not contain a defined linearization sequence
 - Only FFPE material available for majority of cases
 - For proof-of-principle experiments:
 - Biotinylated PCR amplicons designed to target entire 5Kb viral genome
 - · Hybrid capture and sequencing
 - · Analysis to identify insertion points in human genomes

Conclusions

- 2nd and 3rd generation sequencing instruments are revolutionizing biological research.
- Earliest impacts have been on cancer genomics and metagenomics.
- The extreme need for bioinformatics-based analytical approaches to interpret these large data sets has revitalized the field and introduced statistical and mathematical rigor.
- Integration across data sets from DNA, RNA, methylation, proteomics, etc. presents the next challenge but provides comprehensive analytical power to inform biology.
- With newer instruments, clinical applications have potential for implementation, with appropriate interpretive algorithms.

Acknowledgements

• The Genome Institute

Vince Magrini

Todd Wylie

Sean McGrath

Amy Ly

Jason Walker

Jasreet Hundal

Lisa Cook

Li Ding

George Weinstock

Richard K. Wilson

• Clinical Collaborators (WUSM)

Tim Ley

Phil Tarr

John Pfeifer

