2014 Release: NIH awards $14.5 million to research groups studying newest DNA sequencing techniques

National Human Genome Research Institute

National Institutes of Health
U.S. Department of Health and Human Services


NIH News

National Human Genome Research Institute
www.genome.gov

NIH awards $14.5 million to research groups studying newest DNA sequencing techniques

DNA helix with letters of A T G C

Bethesda, Md., Fri., Aug. 1, 2014 - A number of micro-sized technologies - such as nanopores and microfluidics - are among the approaches researchers will use to develop high quality, low cost DNA sequencing technology through new grants from the National Institutes of Health. The grants, which total approximately $14.5 million to eight research teams over two to four years as funds become available, are the last to be awarded by the Advanced DNA Sequencing Technology program of the National Human Genome Research Institute (NHGRI), a part of NIH.

The new group of awards - which total more than $4.5 million in the first year - is wide-ranging, and includes several research projects directed at improving the use of nanopores in DNA sequencing or creating nanopore arrays to enable large-scale DNA sequencing efforts. 

For the past several years, nanopore research has been an important focus of the program's grants. Nanopore-based DNA sequencing entails threading single DNA strands through tiny pores in a membrane. Bases - the chemical letters of DNA - are read one at a time as they squeeze through the nanopore. The different bases are identified by measuring differences in their effect on electrical current flowing through the pore. Nanopores used in DNA sequencing are extremely small, perhaps only about 2 nanometers wide, and come in several types: protein; solid state (also called synthetic); and even nanopores made of DNA. A nanometer is 1 billionth of a meter; a human hair is 100,000 nanometers wide.

One of the projects will explore the use of microfluidics in DNA library preparation. A library is a collection of stretches of physical DNA. Microfluidics can be used to capture small amounts of liquid in hair-thin channels and wells. Another team plans to test a method using an enzyme to amplify a signal that will help identify DNA bases.

"While we continue to support many research projects centered on the development of nanopore technology, some of the new grants focus on additional unique approaches to sequencing DNA," said NHGRI Genome Technology Program Director Jeffery Schloss, Ph.D. Dr. Schloss is also director of the Division of Genome Sciences. "Despite discussion about approaching the goal of sequencing a genome for only $1,000, many challenges remain in terms of containing costs and achieving a high quality of DNA sequencing data."

This group of awards is the last for the Advanced DNA Sequencing Technology program, which began in 2004.

"There haven't been many programs like this anywhere else over the years," Dr. Schloss said. "NHGRI has had a hand in supporting some very novel research, and has helped chart exciting new directions for DNA sequencing technology."

The new grants are awarded (pending available funds) to:

The grant numbers of the awards are the following: R01 HG007827; R21 HG007833; R21 HG007856; R43 HG007843; R01 HG003709; R43 HG007871; R01 HG006283; and R01 HG007836.

NHGRI is one of the 27 institutes and centers at the National Institutes of Health. The NHGRI Extramural Research Program supports grants for research and training and career development at sites nationwide. Additional information about NHGRI can be found at www.genome.gov.   

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 institutes and centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Contact:

NHGRI Communications

Steven Benowitz
(301) 451-8325
Steven.Benowitz@nih.gov

Top of page

Posted: August 1, 2014