An Epigenomic and Transcriptional Basis for Insulin Resistance

Evan Rosen

ENCODE Research Applications and Users Meeting 2015

Beth Israel Deaconess Medical Center

Obesity and diabetes trends among US adults

Obesity

Diabetes

Behavioral Risk Factor Surveillance System, CDC

Obesity is one of the top three social burdens generated by human beings.

Impact on global GDP¹

\$2.1 trillion

Smoking

\$2.1 trillion

Armed violence, war, and terrorism

\$2.0 trillion

Obesity

Alcoholism

¹In 2014 dollars at purchasing-power parity.

Source: Literature review; World Health Organization global burden of disease (GBD) database; McKinsey Global Institute analysis What are the critical transcriptional pathways that underlie key transitions or distinctions in adipose biology?

The epigenome

Cell, 2010 143:156

Strategy for identification of sequence-specific regulators

Cell, 2010 143:156

Motif ranks from adipogenesis recover many known regulators

Most enriched in pre-adipocytespecific enhancers

Motif	ID	Ratio	Candidates	
TATCCATA	U_Pou3f3	0.32	?	
	M00498	0.63	(Stat half-site)	
IGAT "ATCA	U_Cphx	0.34	?	
TAATTA	U_Hoxa6	0.36	Homeobox-family	
CTATIIATAG	M00026	0.41	Mef2a	
TATATATA	U_Tbp	0.44	Тbp	
	U_Srf	0.46	Srf	?
ALGAGICAI	M00495	0.52	Bach1/2	
T _⊊ A_T_A	M00199	0.54	Fos/Jun (AP-1)	
	M00987	0.55	Foxp1	
<u>ATTI-CAT</u>	M00795	0.56	Pou2f1 (Octamer motif)	
LIGE	M01075	0.57	Zbtb16 (PLZF)	?
I	M00999	0.60	?	
~AICAAAG	U_Tcf7	0.62	Tcf7l2, Tcf3, Lef1	
∏CĄĘ∏	M00747	0.62	Irf1/3	
ILINA JUIS	M01146	0.62	?	
	M00920	0.63	E2f	
	U_Evx2	0.65	Homeobox-family	
	M00694	0.67	E4f1	
	U_Hoxa13	8 0.71	Homeobox-family	

Most enriched in adipocytespecific enhancers

Motif	ID	Ratio	Candidates
GATA	M00278	2.1	Gata-family
	M01132	2.1	Rxra/b + others (NHR half-site)
<u>∓⊊</u> AAGT⊊	M00240	1.9	? (Nkx2 family)
	M00117	1.8	Cebpa/b/d/g/z
CAAGETCAAGETCA	M00526	1.8	Nr6a1
TCACGIC	M00539	1.6	Max, Myc + others (E box)
<u>_GGGC_</u> _	U_Zfp161	1.6	Zfp161
TGACC	M00191	1.6	Rxra/b + others (NHR half-site)
TCCCC_T&TATA	M01069	1.6	Gzf1
<u>.cGAAAC</u> ⊊	U_Irf4	1.6	Irf3/4/5/6
S_AFAIIbet of	M00237	1.6	Ahr:Arnt dimer
	U_Gmeb1	1.6	Gmeb1
CACGATA IAT.G	M00105	1.5	Cux1
T 2 I ADDes	M00651	1.5	Nfkb1
CILIACCIGGAACT	M00979	1.5	?
<u>161(</u> I.	M00963	1.5	Rxra/b + others (NHR half-site)
<u>_GGCGGGG</u>	M00196	1.4	Sp1 + others (G/C-box)
TIACGTAA	M00040	1.4	Atf2
TGACCCC	U_Rxra	1.4	Rxra/b + others (NHR half-site)
aCaGTAGC	U_Osr2	1.3	Osr1/2

Cell, 2010 143:156

Knockdown of PLZF or SRF enhances adipogenesis

shLuc

shSRF

Insulin resistance: is there a common molecular denominator?

Also: Infection/sepsis Burn injury Starvation

Insulin resistance: is there a common molecular denominator?

Many molecular mediators have been proposed:

- Cortisol
- TNF- α
- IL-6
- Growth hormone
- Insulin
- Glucose
- Free Fatty Acids
- Glucosamine

To what extent are molecular pathways shared in these conditions?

Cellular models of insulin resistance: TNF, dexamethasone

Why Dex and TNF?

- Both GCs and TNF are elevated in multiple insulin resistant states
- Exogenous GCs/TNF induce insulin resistance in vivo
- TNF-/- mice are protected from diet-induced insulin resistance
- Glucocorticoid antagonists block diet-induced insulin resistance in mice

Dex and TNF are very different

- Dex is the prototypical anti-inflammatory agent; acts through a nuclear receptor
- TNF is the prototypical pro-inflammatory agent; acts through a cell-surface receptor

Virtually all mechanisms proposed for insulin resistance involve signal transduction or mitochondrial pathways

Yet....

-Thiazolidinedione class of insulin-sensitizing drugs work by binding and activating the transcription factor PPAR γ

-Cellular models of insulin resistance develop slowly over the course of many days

-There is a wealth of data linking chromatin state to obesity and its complications

Establishment of the comparative IR model

Dex and TNF do not cause de-differentiation

The overlapping gene set affected by Dex and TNF is altered in obesity

Is the GR required for TNF to induce insulin resistance?

TNF causes GR binding to predicted motifs

3T3-L1

TNF induces nuclear translocation of the GR

TNF induces genome-wide GR binding

GR is required for TNF to fully induce insulin resistance

GR is required for TNF to fully induce insulin resistance

Is the VDR a mediator of insulin resistance?

Dex and TNF increase Vdr binding to predicted motifs

Dex-TNF peak

VDR causes insulin resistance

Vdr expression is elevated in obesity

Dex and TNF increase Vdr expression

L1

Primary

What about humans?

Our isolated adipocytes yield excellent ChIP-seq profiles free from evidence of stroma or immune cells

Histone profiles suggest the presence of novel transcripts and alternative promoters in human adipocytes

We can identify *cis*-elements that differ between IR and IS subjects

В $\rightarrow \rightarrow$ \rightarrow \rightarrow ALDH1L1-AS2 $\leftarrow \leftarrow \leftarrow$ EVL **CD84** $\leftarrow \leftarrow \bullet$ STON1-GTF2A1L FAM47E II 10RA ALDH1L1

Summary

- 1. Dex and TNF causes discrete changes in epigenome of L1 cells that associate with IR.
- 2. Motif finding in differentially regulated regions can identify novel pathways leading to IR.
- 3. TNF causes IR, in part, through ligand-independent activation of the GR.
- 4. The VDR is a GR target that further induces downstream IR genes.
- 5. Tmem176a, Colq, Lcn2 and Serpina3n are part of an IR-inducing gene network downstream of GR and VDR.
- 6. Human studies are underway to confirm and extend these results.

Acknowledgements

BIDMC Sona Kang Linus Tsai Yiming Zhou Xingxing Kong Michael Griffin Hyun Cheol Roh Manju Kumari Eleanna DeFilippis Frin Merkel Su Xu Zhao Xu

<u>MGH</u> Chad Cowan Ray Camahort

Penn/Princeton

Adam Evertts Ben Garcia Broad Institute Tarjei Mikkelsen Chuck Epstein Noam Shoresh Robbyn Issner Holly Whitton Xiaolan Zhang

Funding from the NIH and ADA