Identifying Dysregulated Genes in Autoimmune Disease

Chris Cotsapas PhD Yale Neurology/Genetics Broad Institute cotsapas@broadinstitute.org

Causal Identifying Dysregulated Genes in Autoimmune Disease

Chris Cotsapas PhD Yale Neurology/Genetics Broad Institute cotsapas@broadinstitute.org

Cells of the Immune System

Enlarged, inflamed hypofunctioning thyroid (goiter)

© Elsevier 2005

Multiple sclerosis GWAS

Patsopoulos et al. Ann Neurol 2017

Patsopoulos et al. Ann Neurol 2017

GWAS signals are enriched in regulatory DNA

Fig. 5. De novo Identification of pathogenic cell types. GWAS SNPs are systematically enriched in the regulatory DNA of disease-specific cell types throughout the full range of significance (*P*-values). Shown are SNPs tested for association with the autoimmune disorders Crohn's disease (**A**) and multiple sclerosis (**B**), and the cardiovascular trait QRS duration (**C**). Note the increasingly selective enrichment of disease-associated variants within DHSs of specific pathogenic or trait-determining cell or tissue types. Note also that enrichment within cell-selective regulatory DNA persists well below conventional *P*-value thresholds for genome-wide significance.

Maurano et al Science 2012

MS GWAS hits enriched in transcription factor binding sites

Farh et al Nature 2015

NFKB1 locus in MS GWAS

Housley et al STM 2015

IKZF3/ORMDL3 locus in MS GWAS

rs12946510 (CEU)

8 80 0.56 60 rs12946510 P=8.51e-06 Recombination rate (cM/Mb) Observed (-logP) r² 4 40 ч, T) 2 20 R □, 0 0 NEUROD2 ZPBP2 STAC2 FBXL20 MED 1 CRKRS MED₂₄ ERBB2 GSDML ORMDL3 PPP1R1B C 17orf37 THRA NR1D1 STARD3 GRB7 TCAP **KZF3** GSDM PNMT PSMD3 PERLD1 CSF3 35100 34800 35400

Chromosome 17 position (hg18) (kb)

IMSGC, Nat Genet, 2013

Parisa Shooshtari

Problem 1: DHS-gene correlations

Parisa Shooshtari

Aligning DHSs Over Samples

	chr1 p36.31	p36.13 p35.3	3 p34.2	p32.3	p31.3	p31.1	p22.3	p21.3	p13.3	p12 q1	11 q12	q21.1	q22	q24.1	q25.2
		933,000 bp 	1	934,000 bp 			935,000 bp 		1	— 7,266 b 936,000 bp 	-	1	937,000 bp 		<u> </u>
RefSeq Genes						< <	HES4	<	-						
UW.Fetal_Intestine_Small.Chroma ibility.H-23604.DS16559.fdr0.01.p				-	-		-			- [
UW.Fetal_Intestine_Small.Chroma ibility.H-23640.DS16712.fdr0.01.p				-	-		-						-	-	
UW.Fetal_Intestine_Small.Chroma ibility.H-23663.DS16822.fdr0.01.p					-	-	-		-		-	-	-	-	
UW.Fetal_Intestine_Small.Chrom ibility.H-23724.DS16975.fdr0.01.p					-	- /			-		-			-	
UW.Fetal_Intestine_Small.Chrom ibility.H-23744.DS17092.fdr0.01.p					-		-		-		-		-	-	
UW.Fetal_Intestine_Small.Chrom ibility.H-23758.DS17150.fdr0.01.p					-		-		-		-	-	-	-	
UW.Fetal_Intestine_Small.Chrom ibility.H-23769.DS17317.fdr0.01.p					-		-		-	-	-		-	-	
UW.Fetal_Intestine_Small.Chrom ibility.H-23808.DS17425.fdr0.01.p					-		-		-		-	-	-	-	
UW.Fetal_Intestine_Small.Chrom ibility.H-23864.DS17844.fdr0.01.p					-	-	-		-		-	-		-	
UW.Fetal_Intestine_Small.Chrom ibility.H-23887.DS17643.fdr0.01.p					-	-	-		-		-			-	
UW.Fetal_Intestine_Small.Chrom ibility.H-23914.DS17763.fdr0.01.p					-	-	-		-		-		-	-	
UW.Fetal_Intestine_Small.Chrom ibility.H-23941.DS17808.fdr0.01.p					-	-	-				-	-		-	
UW.Fetal_Intestine_Small.Chrom ibility.H-24111.DS18495.fdr0.01.p					-		-	1		-	-	Ļ			
/												Pa	arisa	Sho	oshta

Identify detectable DHS clusters

Parisa Shooshtari

QC+ DHS clusters capture most MS heritability

Caveat DHS clusters are wider than DHS peaks (250-400bp vs 150bp

> Parisa Shooshtari Hilary Finucane Alkes Price

Challenge 2: Gene expression correlation

Correlation Structure of the Gene Expression Data

QQ plot for P Value of Correlation Between One DHS and 14000 Genes

Before Correction

Parisa Shooshtari

Application to MS GWAS

ц.	Gene	GP
Chr 6	MDN1	0.555
90.5-91.5Mb	BACH2	0.162
RP = 0.945	GABRR2	0.106
	RRAGD	0.065
	GJA10	0.029
	MAP3K7	0.028

Parisa Shooshtari IMSGC NG 2013

IKZF3/ORMDL3 locus			
		Gene	GP
	Chr 17	ORMDL3	0.029
	34.5-35.5Mb	PIP4K2B	0.022
	RP = 0.295	IGFBP4	0.018
		IKZF3	0.015
		GSDMB	0.014
		SMARCE1	0.013
rs12946510(CEU)		CCR7	0.013
	- 80	TNS4	0.01
	0.8	ZPBP2	0.009
rs12946510	0.5 - 60	MED1	0.009
► P=8.51e-06	Pecco m	MED24	0.009
	Pecombination rate (cM/Mb)	KRT24	0.009
	rate (cM	PNMT	0.008
	A/Mb)	CDK12	0.007
	99 1.at. – 0	RPL23	0.007
STAC2 FBXL20 MED 1 CRKRS NEUROD2 ERBB2 ZPBP2 MED24 PPP1R1B C17or137 GSDML THI STARD3 GRB7 ORMDL3	RA NR 1D 1	PSMD3	0.007
TCAP KZF3 GSDM1 PNMT PSMD3	וטואא	PLXDC1	0.006
PERLD1 CSF3		TOP2A	0.006
34800 35100 35400 Chromosome 17 position (hg18) (kb)		RARA	0.006

8 -

6

4

2

0 -

Observed (-logP)

MS GWAS hits enriched in transcription factor binding sites

Farh et al Nature 2015

MS GWAS risk effect: NFKB1 locus

MS patients show altered NFkB signaling in CD4⁺ T cells

ex vivo CD4⁺ T cells show higher p-p65 (Housley et al, STM 2015)

CD4⁺ T cells from MS patients proliferate more rapidly after stimulus (Kofler et al JCI 2014)

0.5

MS

HC

MS risk effect near NFKB1 alters signaling in CD4+ cells

← GG ← AA

MS variant in TNFRSF1A alters TNF α -dependent NF κ B signaling

Housley, unpublished

GWAS loci harbor many NFkB genes

Housley, unpublished

Model: NFkB signaling variation

Acknowledgements

• IMSGC

- David Hafler
- Phil De Jager
- Steve Hauser
- Adrian Ivinson
- Nikos Patsopoulos
- Many, many others
- Partners
 - David Hafler
 - Phil De Jager
 - Brad Bernstein
 - John Stamatoyannopoulos

- Yale labs
 - Parisa Shooshtari
 - Mitja Mitrovic
 - Alex Casparino
 - Will Housley

In credible interval 🔶 No 🔶 Yes

Position on Chromosome 2

Color Key

Genes

Position on Chromosome 2