Mapping the epigenetic basis of kidney disease

Katalin Susztak, MD, PhD University of Pennsylvania ksusztak@mail.med.upenn.edu

The Problem

End Stage Kidney Disease

ESRD care is ~ \$30 billion/year ~10% of Medicare budget

Why do people develop Kidney Disease ?

Chronic kidney disease; typical gene environmental disease

Kidney disease

GWAS for CKD in EUR population

How do they lead to kidney disease development ?

Causal SNP Target cell type Target gene Mode of dysregulation

> Nat Genet. 2009 Jun;41(6):712-7. Nat Genet. 2010 May;42(5):373-5. Hum Mol Genet. 2012 Dec 15;21(24):5373-84 Nat Genet. 2011 Jun;43(6):513-8. PNAS 2009 Jun 9;106(23):9362-7

Our framework to understand the genetics of kidney disease

1. The causal variant is localized to a regulatory region in a disease relevant cell

type (kidney)

2. The variant alters target expression in disease relevant cell type (the kidney) via

altering transcription factor binding

- 3. The target is expressed in disease relevant tissue (kidney)
- 4. The expression of target changes in kidney disease

5. Alterations in target expression causes kidney disease. The target is functional

in the kidney

Integrated translational approach for target identification for chronic kidney disease

1. The causal variant is localized to a regulatory region in a disease relevant cell type (kidney)

CKD SNPs are enriched on kidney-specific enhancers in comparison to non-kidney cell lines

CKD SNPs are enriched on tubule cell specific enhancers when comparing kidney cell lines

Macrophage

Fibroblast

Endothelia

Experimental validation

The causal variant is expressed on disease relevant cell type

Our framework to understand the genetics of kidney disease

1. The causal variant is localized to a regulatory region in a disease relevant cell

type (kidney)

2. The variant alters target expression in disease relevant cell type (the kidney) via

altering transcription factor binding

3. The target is expressed in disease relevant tissue (kidney)

4. The expression of target changes in kidney disease

5. Alterations in target expression causes kidney disease. The target is functional

in the kidney

The variant alters target expression in disease relevant tissue (the kidney)

expression quantitative trait locus (eQTL)

Genotype driven gene expression changes (99 CEU kidneys)

Which gene is the target of the polymorphism?

Our framework to understand the genetics of kidney disease

1. The causal variant is localized to a regulatory region in a disease relevant cell

type (kidney)

2. The variant alters target expression in disease relevant cell type (the kidney) via

altering transcription factor binding

3. The target is expressed in disease relevant tissue (kidney)

4. The expression of target changes in kidney disease

5. Alterations in target expression causes kidney disease. The target is functional

in the kidney

Which gene is expressed in the kidney?

ACSM1

0.7

ACSM1

ACSM2B

Our framework to understand the genetics of kidney disease

1. The causal variant is localized to a regulatory region in a disease relevant cell

type (kidney)

2. The variant alters target expression in disease relevant cell type (the kidney) via

altering transcription factor binding

3. The target is expressed in disease relevant tissue (kidney)

4. Target expression changes in kidney disease

5. Alterations in target expression causes kidney disease. The target is functional

in the kidney

Expression of the target correlates with kidney function

Pearson R = 0.526 R² = 0.2768 Pcorr = 2.45 x 10⁻⁶

Our framework to understand the genetics of kidney disease

- **1**. The causal variant is localized to a regulatory region in a disease relevant cell
- type (kidney)
- 2. The variant alters target expression in disease relevant cell type (the kidney) via
- altering transcription factor binding
- 3. The target is expressed in disease relevant tissue (kidney)
- 4. The expression of target changes in kidney disease

5. Alterations in target expression causes kidney disease. The target is functional in the kidney

Functional studies in model organism

Morpholino knock down in zebrafish embryo

Functional studies in model organism

CONCLUSION 1.

Our Roadmap to understand GWAS associated hits -Human tissue samples are needed

-Epigenome maps to identify regulatory DNA -Model organisms to validate validate causal variant

-eQTL maps to identify target genes

-Examine kidney expression, correlation with kidney function -Model organisms to validate gene function (zfish to mouse)

Our analysis indicate that ACSM gene family are likely targets of a common CKD GWAS hit on Chr16

Fatty acid metabolism might be the target of common CKD associated GWAS variant

These variants explain small fraction of heritability

Inherited 30-70%

Can be explained by sequence variants (SNP)

Inherited but we can not identify DNA sequence variation

Missing heritability

Larger sample size Different ethnic groups Deeper sequencing Epigenetics

Different ethnic groups...

...admixture study in YRB for kidney disease...

Kopp et al Nature Genetics

Association of Trypanolytic ApoL1 Variants with Kidney Disease in African Americans

Giulio Genovese,^{1,2}* David J. Friedman,^{1,3}* Michael D. Ross,⁴ Laurence Lecordier,⁵ Pierrick Uzureau,⁵ Barry I. Freedman,⁶ Donald W. Bowden,^{7,8} Carl D. Langefeld,^{8,9} Taras K. Oleksyk,¹⁰ Andrea L. Uscinski Knob,⁴ Andrea J. Bernhardy,¹ Pamela J. Hicks,^{7,8} George W. Nelson,¹¹ Benoit Vanhollebeke,⁵ Cheryl A. Winkler,¹² Jeffrey B. Kopp,¹¹ Etienne Pays,⁵† Martin R. Pollak^{1,13}†

APOL1 variants cause kidney disease in mice

Beckerman, Park and Susztak unpublished

These variants explain small fraction of heritability

Inherited 30-70%

Can be explained by sequence variants (SNP)

Inherited but we can not identify DNA sequence variation

Missing heritability

Epigenetic studies in patients with kidney disease

Demographics of the research participants						
Characteristics	Control	Hypertension	DM	DKD		
n	23	23	20	21		
Age (years) Mean ± SD	60 1+ 10 /	<u>61 0 + 10 7</u>	65.3±12.1	65.8± 12.3		
Ethnicity 🍡	PO SO					
Asian, Pacific Islander 🛛 🚺	AAD	3	1	0		
White, non-Hispanic	Lin		2	5		
Black, non-Hispanic 🛛 🎢	A CAR		6	7		
Hispanic	CARLON I		2	3		
Other&Unknown			9	6		
BMI (kg/m2) Mean ± SD		A 93	28.9±5.53.	32.5 ± 7.76		
Diabetes			20	21		
Hypertension 🤜	SUR CO		17	19		
Proteinuria (dipstick)	U.U9 ± U.29	U.5 ± U.8	0.74 ± 1.19	3.0 ± 1.7		
Serum BUN (mg/dL) Mean ± SD	15.30 ± 5.38	15.56 ± 7.23	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Serum creatinine (mg/dL) Mean ±	C. C	- 18 P P	₀ Gyst <u>osin</u> e me	ethy <u>jation</u> analy		
eGFR (ml/min/1.73 m²) Mean ± 😒		100 Ser	74.MRE16.26P	30.32 ± 17.21		
Histology		VASSA	Illumina 450K			
Tubular atrophy (%) 🛛 💆		See 1	4.5 ± 4.02	31.8 ± 22.2		
Interstitial fibrosis (%) 🛛 😽			5.5 ± 4.18	29.6 ± 19.2		
Glomerulosclerosis (%)			7.13 ± 7.52	31.11 ± 32.25		
Mesangial matrix Expansion 🚺	Real A	A Starting	0.32 ± 0.40	1.38 ± 1.18		
Arteriosclerosis Intima 🛛 🕺	101		1.0 ± 0.7	2.0 ± 0.8		

Distinct Cytosine Methylation Profiles tubule cells obtained from patients with Diabetic kidney Disease

Cytosine methylation (p<10⁻¹⁶ Δ >13%)

Differential methylation occurs on kidney specific enhancers

Repressed/Heterchromatin

Differentially methylated regions affect kidney specific transcription factor binding

Cytosine methylation differences correlate with transcript level changes

Are there differences in histone tail modifications in CKD ?

2501 AK H3K4me3			
Term	%	P-Value	Corrected
developmental process	23.4	3.50E-20	7.60E-19
biological adhesion	6.4	1.80E-11	2.00E-10
multicellular organismal process	27.2	3.50E-08	2.50E-07
cellular process	59	1.70E-04	9.60E-04
reproduction	5	1.90E-02	8.20E-02
reproductive process	4.9	2.10E-02	7.60E-02
cellular component organization	14.7	2.60E-02	8.00E-02

Maternal calorie restriction in rats causes low nephron number, HTN, albuminuria and distinct epigenetic changes

The Epigenetics of Kidneys Is Altered in Offspring of Maternal Caloric Restriction Howard Slomko, DO¹, Hye Heo, MD², Fabien Delahaye, PhD², Yongmei Zhao², Zhongfang Du MD¹ Kimberly J Reidy, MD¹ and Francine H Einstein, MD²

In utero calorie restriction

Control

Conclusion

CONCLUSION 2.

Small but highly consistent cytosine methylation changes in CKD tubule samples

Methylation changes are enriched on kidney specific enhancer regions

Fibrosis and developmental genes are more affected by methylation changes

Kidney disease might have a "developmental" origin

Acknowledgment

Susztak Lab

Yi-An Ko (Graduate student) Huigang Yi PhD

Hyun Mi Kang, PhD Kimberly Reidy, MD Esther Park, MD Mariya Sweetwyne PhD Seon Yeok Han MD PhD Pazit Beckerman, MD Nora Ledo MD Frank Chinga Mendy Liang Kriti Gaur, PhD Laura Malaga MD, PhD NIDDK Pilot Award

DiaComp

www.diacomp.org

Lilly

ROADMAP

Collaborators: John Stam, UW Casey Brown, Penn Hongzhe Li, Penn John Greally, Einstein Shanon Fisher, Penn Mike Pack, Penn Anna Kottgen, Freiburg

National Institute of

Diabetes and Digestive and Kidney Diseases biogen idec

IMPROVING LIVES. CURING TYPE 1

Association