Epigenetic control of genetics: the impact of epigenome on mutation

Shamil Sunyaev

Division of Genetics Department of Medicine Brigham and Women's Hospital / Harvard Medical School

Broad Institute of M.I.T. and Harvard

Complex relationship between epigenetics and genetics

- The field is interested in the effect of genetic variation on epigenetic features: (favorite_feature)QTL studies.
- We are interested in the effect of epigenetic features on genetic variation via control of mutation rate.

Data on de novo mutations

Why is this of any interest?

Gene mapping by recurrence

Possible approaches that do not involve controls

Estimate genomic mutation rate using independent samples

Evaluate probability to observe recurrent events in a given gene

Correct for multiple testing

PROBLEM: heterogeneity among samples

Possible approaches that do not involve controls

Real data

PROBLEM: heterogeneity of mutation rate along the genome

Germ line mutation rates are associated with replication timing

Stamatoyannopoulos, Adzhubei et al., Nature Genetics 2009

Somatic cancer mutation density is associated with replication timing

Lawrence, et al., Nature 2013

Somatic mutation rate depends on expression

Mutation rate is reduced in transcribed regions compared to intergenic regions

The reduction of mutation rate is proportional to expression level

The effect is attributed to transcription coupled repair (TCR), which is supported by the strand bias

Hanawalt & Spivak, Nat Rev Mol Cell Biol 2008

Nature Reviews | Molecular Cell Biology

Regulatory regions and chromatin accessibility

Hypersensitivity to DNase I is a hallmark of regulatory regions

DNase I

DNase seq is used to map regulatory regions by assessing chromatin accessibility

adopted from Bell et al., NRG 2011

Mutation rate is reduced in regulatory regions marked by accessible chromatin

Analysis of melanoma genome sequences

LETTER

doi:10.1038/nature11071

Melanoma genome sequencing reveals frequent *PREX2* mutations

Michael F. Berger¹†*, Eran Hodis¹*, Timothy P. Heffernan²†*, Yonathan Lissanu Deribe²†*, Michael S. Lawrence¹, Alexei Protopopov²†, Elena Ivanova², Ian R. Watson²†, Elizabeth Nickerson¹, Papia Ghosh², Hailei Zhang², Rhamy Zeid², Xiaojia Ren², Kristian Cibulskis¹, Andrey Y. Sivachenko¹, Nikhil Wagle^{2,3}, Antje Sucker⁴, Carrie Sougnez¹, Robert Onofrio¹, Lauren Ambrogio¹, Daniel Auclair¹, Timothy Fennell¹, Scott L. Carter¹, Yotam Drier⁵, Petar Stojanov¹, Meredith A. Singer²†, Douglas Voet¹, Rui Jing¹, Gordon Saksena¹, Jordi Barretina¹, Alex H. Ramos^{1,3}, Trevor J. Pugh^{1,2,3}, Nicolas Stransky¹, Melissa Parkin¹, Wendy Winckler¹, Scott Mahan¹, Kristin Ardlie¹, Jennifer Baldwin¹, Jennifer Wargo⁶, Dirk Schadendorf⁴, Matthew Meyerson^{1,2,3,7}, Stacey B. Gabriel¹, Todd R. Golub^{1,7,8,9}, Stephan N. Wagner¹⁰, Eric S. Lander^{1,11*}, Gad Getz^{1*}, Lynda Chin^{1,2,3}†* & Levi A. Garraway^{1,2,3,7}*

Reasons:

- 1) Multiple samples
- 2) Abundance of mutations
- 3) Most mutations originate from UV lesions repaired by NER

Continuous dependency on number of DNase I cleavages in melanoma samples

Potential mechanisms

- 1) Purifying selection in regulatory elements: *seems unlikely because the selection must be assumed much stronger than in coding regions.*
- 2) Association with replication timing: seems unlikely due to the scale of the effect and is not supported by multivariate regression analysis
- 3) Accessibility to DNA repair: *is the effect associated with NER function?*

Nucleotide excision repair

Implicating nucleotide excision repair (NER)

Implicating nucleotide excision repair (NER)

Mutation density is reduced in regulatory regions marked by DHS.

This effect is likely mediated by Global Genome Repair.

Epigenome Roadmap

Predicting local mutation rate at 1Mb scale

Polak, Karlic et al., Nature 2015

Cell type specificity

55-86% of regional variation is explained by 184 chromatin tracks from more than 80 tissues

Epigenetic Features

Epigenetic Features

Cancers

Cell type specificity

Cell type specificity

Predicting cell type of origin for 88% of samples

Is chromatin organization of cancer more informative?

Is chromatin organization of cancer more informative?

Conclusion

Mutation density at 1Mb scale is strongly associated with the chromatin organization.

This association is highly specific with respect to cell of origin.

Cancer genome sequence has enough information to predict cell of origin.

Acknowledgments

Acknowledgments

The lab: Daniel Jordan, Ivan Adzhubei, <u>Paz Polak</u>, Tobias Lenz, Mashaal Sohail, Dana Vuzman, Daniel Balick, Sung Chun, Jae-Hoon Sul, Chris Cassa, Sebastian Akle, David Radke

Collaborators:

John Stamatoyannopoulos, Bob Thurman, Rosa Karlic, Amnon Koren