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Eukaryotic gene regulation
Is 3D and complex
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 Enhancers: individual ChIP-seq data sets identify <50% of
known enhancers, plus many false positives

* Gene targets: closest gene is right ~10% of time



Can we reconstruct 3D interactions
between enhancers and promoters
from 2D genomic data?
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TargetFinder: Training

Teach a machine learning algorithm to discriminate true versus
false enhancer-promoter interactions based on their features.

Training Data
Active enhancer
expressed gene
Positives = Hi-C +
Negatives = Hi-C -

Rao et al 2014, 1-Kb resolution
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TargetFinder: Training

Teach a machine learning algorithm to discriminate true versus
false enhancer-promoter interactions based on their features.

Training Data Computational Algorithm
Active enhancer
expressed gene
Positives = Hi-C + Ensemble learning: build many imperfect classifiers
Negatives = Hi-C - and combine them to improve prediction accuracy

Rao et al 2014, 1-Kb resolution

Decision trees: good for interacting features

Evolutionary Conservation Functional Genomics Sequence Annotations
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enhancer and promoter RNA-seq Annotated functions and

ChiIP-seq (TFs, histones) pathways of gene and
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TargetFinder: Performance

AUC=0.94-0.96
Precision
=90-95%
Recall=76-83%
Power=85-89%
at 10% FPR
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Significantly better
than random and
logistic regression

&
o
+—
=
oC
2 s0
K7
o
a
o
2
'—

25-

Cell Line

—— K562
GM12878
H1-hESC

25 50 75 100
False Positive Rate (%)



http:AUC=0.94-0.96

TargetFinder performs well at very
long distances
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TargetFinder: Feature Importance

Most predictive features mark the window
between the enhancer and the promoter
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Most useful features for prediction are TF and
histone marks in the window between the
enhancer and the promoter

e True interactions
- Enhancer-associated proteins: P300, JUN, TFs
- Marks of heterochromatin, lack of DNA methylation
- Marks of paused or poised RNA polymerase
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TargetFinder: Feature Importance

Most useful features for prediction are TF and
histone marks in the window between the
enhancer and the promoter

e True interactions
- Enhancer-associated proteins: P300, JUN, TFs
- Marks of heterochromatin, lack of DNA methylation
- Marks of paused or poised RNA polymerase

e False interactions
- Cohesin complex: CTCF, RAD21, SMC3, ZNF143
- Histone marks of open chromatin and elongation
- Marks of active promoters and gene bodies

Many “window” features have a different meaning when
marking promoters and enhancers (e.g., cohesin)



Predictive features colocate and
form complexes

Correlation

JUN (window)
GATA2 (window)
MEF2A (window)
SPI1 (window)
H2AZ (window)
RAD21 (window)
SMC3 (window)
CTCF (window)
H4K20me1 (window)
H3K36me3 (window)
SP2 (window)

ZMIZ1 (window)
SMC3 (enhancer)
PHF8 (promoter)
SMC3 (promoter)
RAD21 (promoter)

PHF8 (promoter

SMC3 (enha
CTCF
SMC3

RAD21

SMC3 (promoter
ZMIZA

RAD21 (promoter
SPI1
MEF2A

H3K36me3
H4K20me1
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Can TargetFinder work outside
ENCODE cell lines?
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Can TargetFinder work outside
ENCODE cell lines?

Cell Line -+ K562 - GM12878 HelLa-S3 -+ Combined

What is a
minimal set of
experiments
for accurate
prediction?

optimal: 16+
minimal: 8
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Can TargetFinder work outside
ENCODE cell lines?

Test if models generalize across cell types

EVALUATE
Fmax GM12878 |K562 HelLa-S3 |HUVEC
values
TRAIN |GM12878 |0.83 0.40 0.43 0.39
K562 0.46 0.85 0.45 0.44
Hela-S3 (0.43 0.38 0.88 0.41
HUVEC |0.39 0.40 0.38 -




Can TargetFinder work outside
ENCODE cell lines?

Test if models generalize across cell types
EVALUATE

TRAIN

Expect ~35% precision and 55% recall on a
new cell type with ~10 ChIP-seq datasets



TargetFinder accurately annotates
enhancer-promoter pairs
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TargetFinder accurately annotates
enhancer-promoter pairs
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Massive data integration improves prediction
* Closest gene

- Usually fails to identify the right promoter
- Many false positives



TargetFinder accurately annotates
enhancer-promoter pairs

DNA —2 B a
\ ,\)
Massive data integration improves prediction
* Closest gene
- Usually fails to identify the right promoter
- Many false positives
* TargetFinder

- Identifies 95-90% of known pairs (55% with less data)
- Few false positives



Which human genome sequences
function as long-range enhancers?



EnhancerFinder: Training

Teach a machine learning algorithm to identify developmental
enhancers active in different tissues based on their features.

Training Data
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EnhancerFinder: Training

Teach a machine learning algorithm to identify developmental
enhancers active in different tissues based on their features.

Training Data Computational Algorithm
Support vector machine: separates 2 groups
VISTA +
Browser Multi-kernel: good for combining heterogeneous
6 - data types with different weights :

Evolutionary Conservation Functional Genomics  pnNA Sequence Motifs

Human AAAA,AAAC,AAAG,AAAT,

Features Chimp AAGA, AAGC  AAGC, ARGT
Mouse AATA,AATC,AATG,AATT,
Rat ACAA,ACAC,ACAG,ACAT,
ChlP-seq (TFs, histones) short k-mers
DNase Hypersensitivity known TF motifs
ENCODE

Epigenomics Roadmap
Bench-to-Bassinet




EnhancerFinder: Performance
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EnhancerFinder
Overlapping H3K4mel
Overlapping p300
Overlapping H3K27ac
Overlapping the Union
Overlapping the Intersection

20 40 60 80
False Positive Rate (%)

AUC=0.96
Power=85%

at 10% FPR,
Recall=85% at
93% Precision

FDR ~10-50%
Significantly
better than
other methods

>80% in vivo

validation rate

Erwin et al. (2014)
PLoS Comp Bio
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EnhancerFinder: Predictions

Erwin et al. (2014) PLoS Comp Bio, Capra et al. (2014) PTRSB



EnhancerFinder: Predictions

e 84,301 developmental enhancer predictions
- Cover 2% of the human genome
- Nearby genes have high expression and
annotated functions in the relevant fetal tissue
- Significant overlap with disease mutations
- Cluster around developmental transcription
factors and signaling genes

Erwin et al. (2014) PLoS Comp Bio, Capra et al. (2014) PTRSB
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EnhancerFinder: Predictions

e 84,301 developmental enhancer predictions
- Cover 2% of the human genome
- Nearby genes have high expression and
annotated functions in the relevant fetal tissue
- Significant overlap with disease mutations
- Cluster around developmental transcription
factors and signaling genes

e 239 predictions overlap a Human Accelerated
Region (33% of HARSs), 25/30 validated in vivo

e |dentify sites with fithess effects (Gulko et al 2015)

Erwin et al. (2014) PLoS Comp Bio, Capra et al. (2014) PTRSB



Massively Parallel Reporter Assays
and capture Hi-C for validation

eTest >12,000 170bp
enhancers in parallel
Enhancers Transcribed barcodes | ® Quantitative activity
I assayed via RNA-seq
Ll « Compare genotypes
* Human vs. chimp
e Disease SNPs

=
o

N
Vector library

oONM~_O

iPS derived cells

Hane Ryu, Nadav Ahituv, Jay Shendure, Yin Shen



Induced pluripotent stem cell derived
neuronal and cardiac lines
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Human iPSC derived cardiomyocytes

Hane Ryu, Alex Pollen, Nadav Ahituv, Arnold Kriegstein Bruce Conklin
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Human iPSC derived cardiomyocytes

Hane Ryu, Alex Pollen, Nadav Ahituv, Arnold Kriegstein Bruce Conklin
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human biology and evolution



Discovering the role of enhancers in
human biology and evolution

T Computational
«— = -—» Characterization

Gene B & J Gene C




Discovering the role of enhancers in

human biology and evolution

10N

Computationa
Character

"
C

i

1Za

m—

iIPSC based screening



Discovering the role of enhancers in
human biology and evolution

T Computational
-—» Characterization

/‘ Gene C

IPSC based screening In vivo molecular studies
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