Inference of 3D regulatory interactions from 2D genomic data

Katie Pollard

Gladstone Institutes, Institute for Human Genetics, Division of Biostatistics - UCSF

ENCODE Users Meeting Bolger Center - June 30, 2015

Eukaryotic gene regulation is 3D and complex

Eric Keller

Drew Berry

DNA

Cardiomyopathy associated variant or human-chimp difference

- Enhancers: individual ChIP-seq data sets identify <50% of known enhancers, plus many false positives
- Gene targets: closest gene is right ~10% of time

Can we reconstruct 3D interactions between enhancers and promoters from 2D genomic data?

Teach a machine learning algorithm to discriminate true versus false enhancer-promoter interactions based on their features.

Teach a machine learning algorithm to discriminate true versus false enhancer-promoter interactions based on their features.

Teach a machine learning algorithm to discriminate true versus false enhancer-promoter interactions based on their features.

Teach a machine learning algorithm to discriminate true versus false enhancer-promoter interactions based on their features.

Teach a machine learning algorithm to discriminate true versus false enhancer-promoter interactions based on their features.

Training Data
Active enhancer
expressed gene
Positives = Hi-C +
Negatives = Hi-C -
Rao et al 2014. 1-Kb resolution

Computational Algorithm

Decision trees: good for interacting features

Ensemble learning: build many imperfect classifiers and combine them to improve prediction accuracy

TargetFinder: Performance

AUC=0.94-0.96 Precision =90-95% Recall=76-83% Power=85-89% at 10% FPR

Significantly better than random and logistic regression

TargetFinder performs well at very long distances

TargetFinder: Feature Importance

TargetFinder: Feature Importance Most predictive features mark the *window between* the enhancer and the promoter

TargetFinder: Feature Importance Most predictive features mark the *window between* the enhancer and the promoter

TargetFinder: Feature Importance Most predictive features mark the *window between* the enhancer and the promoter

TargetFinder: Feature Importance

TargetFinder: Feature Importance Most useful features for prediction are TF and histone marks in the *window between* the enhancer and the promoter

- True interactions
 - Enhancer-associated proteins: P300, JUN, TFs
 - Marks of heterochromatin, lack of DNA methylation
 - Marks of paused or poised RNA polymerase

TargetFinder: Feature Importance Most useful features for prediction are TF and histone marks in the *window between* the enhancer and the promoter

- True interactions
 - Enhancer-associated proteins: P300, JUN, TFs
 - Marks of heterochromatin, lack of DNA methylation
 Marks of paused or poised RNA polymerase

False interactions

- Cohesin complex: CTCF, RAD21, SMC3, ZNF143
- Histone marks of open chromatin and elongation
- Marks of active promoters and gene bodies

TargetFinder: Feature Importance Most useful features for prediction are TF and histone marks in the *window between* the enhancer and the promoter

- True interactions
 - Enhancer-associated proteins: P300, JUN, TFs
 - Marks of heterochromatin, lack of DNA methylation
 Marks of paused or poised RNA polymerase

False interactions

- Cohesin complex: CTCF, RAD21, SMC3, ZNF143
- Histone marks of open chromatin and elongation
- Marks of active promoters and gene bodies

Many "window" features have a different meaning when marking promoters and enhancers (e.g., cohesin)

Predictive features colocate and form complexes

RAD21 (promo SMC3 (promo PHF8 (promo SMC3 (enhan ZMIZ1 (wino SPI1 (wino SMC3 (enhan ZMIZ1 (wino SPI2 (wino RAD21 (wino RAD21 (wino SPI1 (wino GATA2 (wino GATA2 (wino GATA2 (wino

K562

JUN (window) GATA2 (window) MEF2A (window) SPI1 (window) H2AZ (window) RAD21 (window) SMC3 (window) CTCF (window) H4K20me1 (window) H3K36me3 (window) SP2 (window) ZMIZ1 (window) SMC3 (enhancer) PHF8 (promoter) SMC3 (promoter) RAD21 (promoter)

Predictive features colocate and form complexes

What is a minimal set of experiments for accurate prediction?

What is a minimal set of experiments for accurate prediction? optimal: 16+ minimal: 8

Test if models generalize across cell types

Test if models generalize across cell types EVALUATE

	Fmax values	GM12878	K562	HeLa-S3	HUVEC
RAIN	GM12878	0.83	0.40	0.43	0.39
	K562	0.46	0.85	0.45	0.44
	HeLa-S3	0.43	0.38	0.88	0.41
	HUVEC	0.39	0.40	0.38	_

Test if models generalize across cell types EVALUATE

	Fmax values	GM12878	K562	HeLa-S3	HUVEC
RAIN	GM12878	0.83	0.40	0.43	0.39
	K562	0.46	0.85	0.45	0.44
	HeLa-S3	0.43	0.38	0.88	0.41
	HUVEC	0.39	0.40	0.38	_

Expect ~35% precision and 55% recall on a new cell type with ~10 ChIP-seq datasets

TargetFinder accurately annotates enhancer-promoter pairs

TargetFinder accurately annotates enhancer-promoter pairs

Massive data integration improves prediction

Closest gene

- Usually fails to identify the right promoter
- Many false positives

TargetFinder accurately annotates enhancer-promoter pairs

Massive data integration improves prediction

Closest gene

- Usually fails to identify the right promoter
- Many false positives
- TargetFinder
 - Identifies 95-90% of known pairs (55% with less data)
 - Few false positives

Which human genome sequences function as long-range enhancers?

Teach a machine learning algorithm to identify developmental enhancers active in different tissues based on their features.

Teach a machine learning algorithm to identify developmental enhancers active in different tissues based on their features.

Teach a machine learning algorithm to identify developmental enhancers active in different tissues based on their features.

Functional Genomics

ChIP-seq (TFs, histones) **DNase Hypersensitivity Epigenomics Roadmap Bench-to-Bassinet**

Teach a machine learning algorithm to identify developmental enhancers active in different tissues based on their features.

Functional Genomics

ChIP-seq (TFs, histones) DNase Hypersensitivity ENCODE Epigenomics Roadmap Bench-to-Bassinet

DNA Sequence Motifs

AAAA, AAAC, AAAG, AAAT, AACA, AACC, AACG, AACT, AAGA, AAGC, AAGG, AAGT, AATA, AATC, AATG, AATT, ACAA, ACAC, ACAG, ACAT,

short k-mers known TF motifs

• • •

Teach a machine learning algorithm to identify developmental enhancers active in different tissues based on their features.

Computational Algorithm

Support vector machine: separates 2 groups

Multi-kernel: good for combining heterogeneous data types with different weights $\int_{f(x) = \sum_{i=1}^{N} \alpha_{i} \sum_{j=1}^{M} \beta_{j}k_{j}(x, x_{i}) + b_{j}(x, y_{i}) + b_{j}(x, y$

Functional Genomics

DNA Sequence Motifs AAAA, AAAC, AAAG, AAAT, AACA, AACC, AACG, AACT, AAGA, AAGC, AAGG, AAGT, AATA, AATC, AATG, AATT, ACAA, ACAC, ACAG, ACAT,

ChIP-seq (TFs, histones) DNase Hypersensitivity ENCODE Epigenomics Roadmap Bench-to-Bassinet short k-mers known TF motifs

• • •

EnhancerFinder: Performance

AUC=0.96 Power=85% at 10% FPR, Recall=85% at 93% Precision

FDR ~10-50% Significantly better than other methods

>80% in vivo validation rate

Erwin et al. (2014) *PLoS Comp Bio*

Erwin et al. (2014) PLoS Comp Bio, Capra et al. (2014) PTRSB

- 84,301 developmental enhancer predictions
 - Cover 2% of the human genome
 - Nearby genes have high expression and annotated functions in the relevant fetal tissue
 - Significant overlap with disease mutations
 - Cluster around developmental transcription factors and signaling genes

- 84,301 developmental enhancer predictions
 - Cover 2% of the human genome
 - Nearby genes have high expression and annotated functions in the relevant fetal tissue
 - Significant overlap with disease mutations
 - Cluster around developmental transcription factors and signaling genes
- 239 predictions overlap a Human Accelerated Region (33% of HARs), 25/30 validated *in vivo*

- 84,301 developmental enhancer predictions
 - Cover 2% of the human genome
 - Nearby genes have high expression and annotated functions in the relevant fetal tissue
 - Significant overlap with disease mutations
 - Cluster around developmental transcription factors and signaling genes
- 239 predictions overlap a Human Accelerated Region (33% of HARs), 25/30 validated *in vivo*
- Identify sites with fitness effects (Gulko et al 2015)

Erwin et al. (2014) PLoS Comp Bio, Capra et al. (2014) PTRSB

Massively Parallel Reporter Assays and capture Hi-C for validation

Hane Ryu, Nadav Ahituv, Jay Shendure, Yin Shen

Induced pluripotent stem cell derived neuronal and cardiac lines

Human iPSC derived cardiomyocytes

Hane Ryu, Alex Pollen, Nadav Ahituv, Arnold Kriegstein

Bruce Conklin

Induced pluripotent stem cell derived neuronal and cardiac lines

Human iPSC derived cardiomyocytes

Hane Ryu, Alex Pollen, Nadav Ahituv, Arnold Kriegstein

Bruce Conklin

iPSC based screening

In vivo molecular studies

Collaborators

<u>EnhancerFinder</u> Gen Haliburton **Tony Capra** Dennis Kostka John Rubenstein

<u>TargetFinder</u> Sean Whalen Rebecca Truty Tara Friedrich Benoit Bruneau

MotifDiverge Dennis Kostka **Deb Ritter** Jeff Chuang

Funding from NHLBI, PhRMA Foundation, Gladstone Institutes