Integrative Analysis of Human and Mouse Regulomes

> John A. Stamatoyannopoulos, M.D. Depts. of Genome Sciences & Medicine University of Washington

Living genome features

Functional elements

Mapping human regulatory DNA

Functional elements

Mapping regulatory DNA using nucleases (DNase I)

DNase I hypersensitive sites precisely mark regulatory DNA

DNase I hypersensitive sites precisely mark regulatory DNA

Regulatory DNA

DNase I hypersensitive sites precisely mark regulatory DNA

DNase I hypersensitive sites precisely mark regulatory DNA

DNase I hypersensitive sites precisely mark regulatory DNA

~100,000 – 250,000 elements per cell type (0.5-1.5% of genome)

>400 cell/tissue types and developmental states studied to date >95% from primary cells and tissues

Mapping the human regulatory genome c. 2015

The human genome encodes at least 4 million DNasel hypersensitive sites
→ Virtually all (>>99%) are tissue/lineage or cell type-selective elements
→ >95% of these are distal non-promoter elements

 \rightarrow ~50% of DHSs are 'memory sites' – persistent marks of prior cell states

What other information is encoded in regulatory DNA patterns?

DHS patterns in fully differentiated cells encode memories of prior cell fate decisions

Abdomen fibroblast Toe fibroblast Pulmonary fibroblast Pulmonary fibroblast Conjunctival fibroblast Gingival fibroblast
Pulmonary fibroblast Conjunctival fibroblast
Pulmonary fibroblast Pulmonary fibroblast Conjunctival fibroblast Gingival fibroblast
Conjunctival fibroblast Gingival fibroblast
Gingival fibroblast
Gingival hbroblast
Gingiyal fibrahlast
Gingival hipfoblast
Ingin includes
Derma fibrobiast perpet
Mamary fibrolast Mesoderm
Cardiac fibroblast Derivatives
Cardiac fibroblast
Munfibrohast
Dermal führbildet adult
Chornia hervise enithelial
Pulmonary fibrohast
Non-nigmented ciliary enithelial
Atrial fibroblast
Villous mesenchymal fibroblast
Ampiotic epithelial Primitive Mesoderm
T-Lymphocyte (Th2)
T-Lymphocyte (Th1)
B-lymphocyte (Act.)
B-lymphocyte (Rest.)
NK-lymphocyte (CD56+) NK-cells 꽃 전 필
Lymphoblast (GM12865)
Lymphoblast (GM12864) Lymphoblasts 관 경
Lymphoblast (GM12878) 6 중 문 모
Erythroblasts
Myeloid Progenitor (CD34+) 😤 🚆 🔤
Myeloid Progenitor (CD34+) 호 현 현 환 현 환 현 환 현 환 현 환 현 환 현 환 현 환 현 환
Myeloid Progenitor (CD34+) 로 같 운 문 문
Dermal lymphatic endothelial, neonatal
Dermal blood endothelial, adult
Dermal blood endothelial, neonatal
Pulmonary Imyphatic endothelial
Dermal lymphatic endothelial, adult Endothelia
Dermal microvascular, neonatal
Pulmonary biode endothelial
Renai giomerular endochellai
Skin keratinocyte
Skin keratinocyte Ectoderm
Skill Keratinocyte
Small airway epithelial
Endoderm Endoderm

Stergachis et al, Cell, 2013

Extensive forward propagation of regulatory information during cell differentiation

Α

~1/2 of DHSs in definitive cells are 'memory sites' that encode information about prior cell states

Mapping the human regulatory genome c. 2015

The human genome encodes at least 4 million DNasel hypersensitive sites

- \rightarrow Virtually all (>>99%) are tissue/lineage or cell type-selective elements
- \rightarrow >95% of these are distal non-promoter elements
- \rightarrow ~50% of DHSs are 'memory sites' persistent marks of prior cell states
- → Nearly 1 million elements can be linked with likely target genes by co-activation across cell types
- → Individual cell types have hundreds to thousands of DHSs that are <u>completely unique</u> for that cell type

The genome encodes at least 20 million regulatory factor recognition sites

- \rightarrow Each cell type likely encodes ~2-5 million transcription factor footprints
- \rightarrow The average cell type utilizes a recognition 'lexicon' of ~2-300 'words
- \rightarrow We are closing in on a complete recognition lexicon for human TFs

Mapping the human regulatory genome c. 2015

The human genome encodes at least 4 million DNasel hypersensitive sites

We have little idea what most of these do

The genome encodes at least 20 million regulatory factor recognition sites

- \rightarrow Each cell type likely encodes ~2-5 million transcription factor footprints
- \rightarrow Each cell type utilizes a recognition 'lexicon' of ~2-300 'words
- \rightarrow We are closing in on a complete recognition lexicon for human TFs

<u>Not just 'enhancers</u>': Most regulatory regions likely encode novel and complex activities that will take some time to sort out

Mapping the human regulatory genome c. 2015

The human genome encodes at least 4 million DNasel hypersensitive sites

We have little idea what most of these do

The genome encodes at least 20 million regulatory factor recognition sites

- \rightarrow Each cell type likely encodes ~2-5 million transcription factor footprints
- \rightarrow Each cell type utilizes a recognition 'lexicon' of ~2-300 'words
- \rightarrow We are closing in on a complete recognition lexicon for human TFs

Mapping the human regulatory genome c. 2015

The human genome encodes at least 4 million DNasel hypersensitive sites

We have little idea what most of these do

The genome encodes at least 20 million regulatory factor recognition sites

Every regulatory region is built differently, and every TF must do its job (and cooperate with other TFs) in its local context.

How did the regulatory genome arise?

Part I:

Mouse and human regulatory regions Evolutionary dynamics of regulatory DNA regions

Part II:

Transcription factors and networks Conservation of *trans* vs. *cis* regulatory circuitry

Creating comprehensive maps of mouse regulatory DNA marked by DNase I hypersensitive sites (DHSs)

- 44 cells/tissues studied
- **1.3 million** distinct DHSs
- Avg. 150,000 per cell/ tissue type

Primitive cells / tissues: ES cells, limb, embyronic mesoderm

Integrative comparison with ~3 million DHSs from 230 human cell/tissue types

Comparative analysis of mouse and human regulatory DNA

Align sequence to human genome through pair-wise alignment

Overlap aligned segments with human DHSs (any cell type)

Comparative analysis of mouse and human regulatory DNA

Comparative analysis of mouse and human regulatory DNA

Pervasive turnover of regulatory DNA in placental mammals

Pervasive turnover of *cis*-regulatory DNA during mammalian evolution

Pervasive turnover of *cis*-regulatory DNA during mammalian evolution

Pervasive turnover of *cis*-regulatory DNA during mammalian evolution

The vast majority of mouse and human regulatory DNA is Placental mammal-specific and has undergone rapid evolution

Evolutionary mechanism #1:

Functional repurposing of regulatory DNA

Extensive functional 'repurposing' of regulatory DNA

Extensive functional 'repurposing' of regulatory DNA

Simple but pervasive sequence changes underlie tissue repurposing

Mechanism for functional repurposing: TF binding site turnover

Simple but pervasive sequence changes underlie tissue repurposing

Mechanism for functional repurposing: TF binding site turnover

Simple but pervasive sequence changes underlie tissue repurposing

Conserved TF binding sites are significantly enriched in DHSs with conserved activity

Tissue-specific DHS landscape

Tissue-specific DHS landscape

 21% of mouse DHS landscape is shared with a corresponding human tissue

Tissue-specific DHS landscape

- 21% of mouse DHS landscape is shared with a corresponding human tissue
- 11% has a conserved TF binding site

Tissue-specific DHS landscape

- 21% of mouse DHS landscape is shared with a corresponding human tissue
- 11% has a conserved TF binding site

Given divergent regulatory landscapes, what is maintaining functional conservation in mouse and human?

Evolutionary mechanism #2:

Conservation of global *cis*-regulatory 'content'

Despite poor conservation of individual binding sites, the overall proportion of regulatory DNA 'real estate' available to each TF in each organism remains nearly constant

Rigid conservation of global TF recognition landscapes

Every TF, every cell type \rightarrow Different sequence targets, same occupancy fraction

The regulatory DNA landscape has undergone wholesale rewiring during the mouse-human interval

Humans and mice share a core mammalian regulon encoding cell identity and lineage programs

Regulatory DNA landscape evolution involves

- Extensive repurposing of elements from one tissue context to another
 - Continuous 're-evolution' on the same ancestral DNA template
- Strict conservation of the proportion of regulatory DNA encoding binding sites for each transcription factor

Part I: Mouse and human regulatory regions Evolutionary dynamics of regulatory DNA regions

Part II:

Transcription factors and networks Conservation of *trans* vs. *cis* regulatory circuitry

Footprinting the mouse genome

ES cells, limb, embyronic mesoderm

Conservation of TF recognition repertoires

Deriving a mouse *cis*-regulatory lexicon

25.8 million mouse DNasel footprints Database independent, *de novo* motif discovery

604 unique motif models

Deriving a mouse *cis*-regulatory lexicon

Deriving a mouse cis-regulatory lexicon

Human footprint-derived motifs from Neph, Vierstra et al. Nature 2012

Mouse-specific motifs are largely selective for ES cells

Conservation of *trans* regulatory circuitry

Building direct TF networks using TF footprints

- Node: Transcription factor
- Edge: Regulatory interaction between 2 TFs

Direct TF footprint-derived networks accurately recapitulate known TF network relationships

Neph, Stergachis et al. Cell 2012

TF-to-TF connections are cell-selective

TF-to-TF connections are cell-selective

Conservation of TF-to-TF connections

Conservation of TF-to-TF connections

Conservation of global TF network architecture

Neph, Stergachis et al. Cell 2012

Conservation of global TF network architecture

Conservation of global TF network architecture

Conservation of fine network architecture

Conservation of fine network architecture

Stepping away from the genome: Where evolution is really acting

Acknowledgements - Mouse

Key experiments/analyses

Jeff Vierstra, Andrew Stergachis, Shane Neph Eric Rynes, Matthew Maurano, Eric Haugen, Richard Sandstrom, Richard Humbert, Bob Thurman, Alex Reynolds, Benjamin Vernot, Wenqing Fu

Mouse DNasel pipeline group

Miaohua Zhang, Rachael Byron, Peter Sabo, Theresa Cantwell, Kristen Lee Shinny Vong, Vaughan Roach, Erica Giste Sandra Stehling-Sun

<u>Collaborators</u> Mark Groudine (FHCRC) M.A. Bender (FHCRC) Piper Treuting (UW Comparative Med) Elhanan Borenstein (UW Genome Sciences) Joshua Akey (UW Genome Sciences) Shelly Heimfeld (FHCRC) <u>Mouse ENCODE Consortium</u>

NHGRI (MouseENCODE)