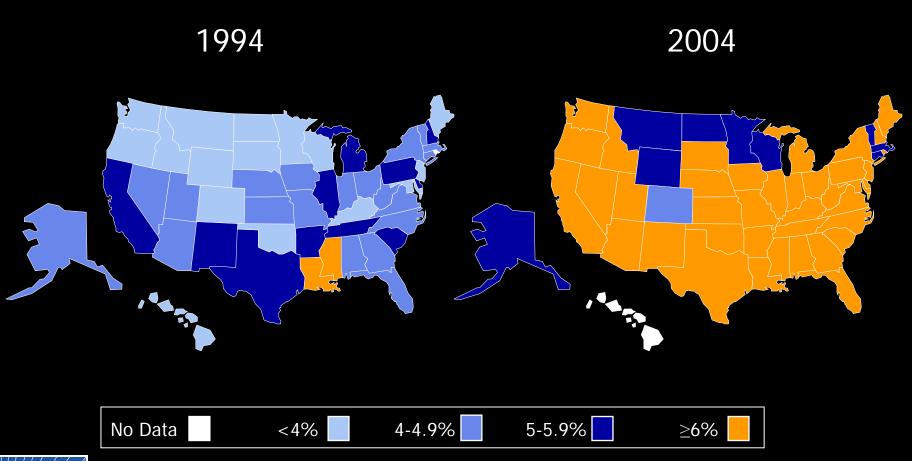
Dissemination/Publication: Case Study on Type 2 Diabetes

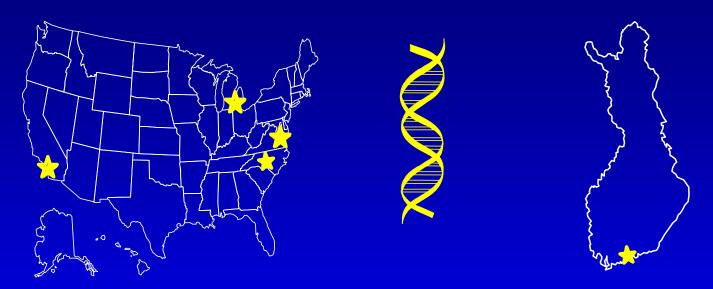

Multi-IC Symposium on GWAS

Francis S. Collins, M.D., Ph.D.

National Human Genome Research Institute

May 22, 2007

Estimates of Diagnosed Diabetes Among Adults in the U.S.



Type 2 Diabetes: "The geneticist's nightmare"

- Family history as a substantial risk factor
 - Relative risk to a sibling ~3.5
- Environment as a major contributor
- Family linkage studies relatively disappointing
- Validated genes prior to 2007:
 - PPARG (candidate gene)
 - KCNJ11 (candidate gene)
 - TCF7L2 (linkage study)

The FUSION Study <u>Finland-United States Investigation of NIDDM Genetics</u>

Subject Recruitment and Clinical Testing National Public Health Institute, Helsinki, Finland

Molecular Genetics

National Human Genome Research Institute, Bethesda, MD University of North Carolina, Chapel Hill, NC

Biochemical Measurements

USC Keck School of Medicine, Los Angeles, CA

Statistical Analysis

University of Michigan School of Public Health, Ann Arbor, MI

Applying Genome Wide Association to Type 2 Diabetes

- Three groups, each with 1000 1500 cases and 1000 3000 controls in Stage 1:
 - FUSION (Boehnke, Bergman, Collins, Mohlke, Tuomilehto)
 - Diabetes Genetics Initiative of Broad, Novartis, and Lund (Altshuler, Groop)
 - Wellcome Trust Case Control Consortium/UK Type 2
 Diabetes Consortium (McCarthy, Hattersley, Donnelly)
- Genotyped with Illumina 317K or Affy 500K panel
- Compared results across all three studies
- Followed up promising signals in Stage 2 validation set

cases + controls

Three Groups Working Together

FUSION

S1: 1161 + 1174

S2: 1215 + 1258

DGI

S1: 1464 + 1467

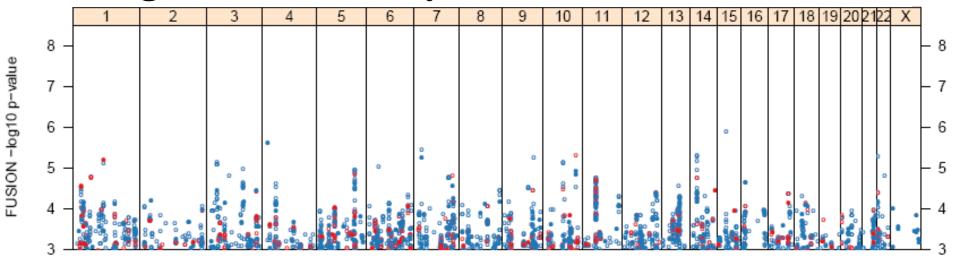
S2: 5065 + 5785

WTCCC/UKT2D

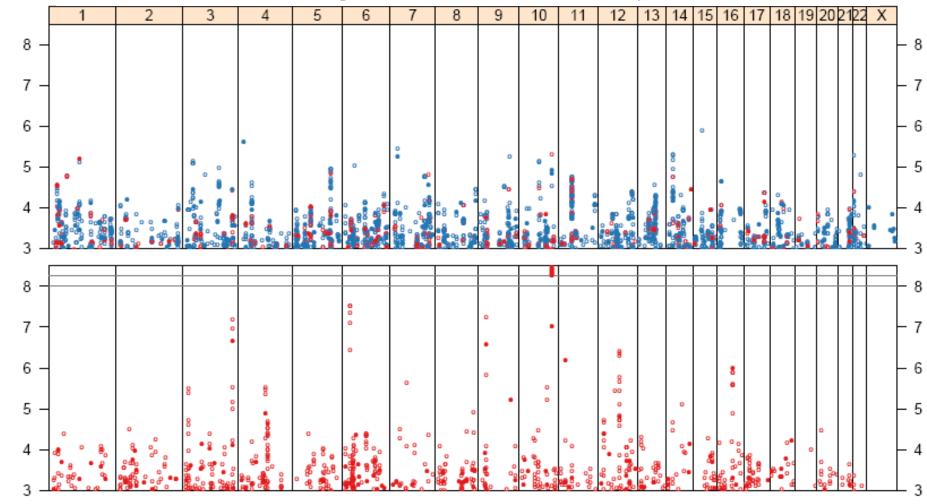
S1: 1924 + 2938

S2: 3757 + 5346

Totals


S1 = 4549 + 5579

S2 = 10053 + 12389



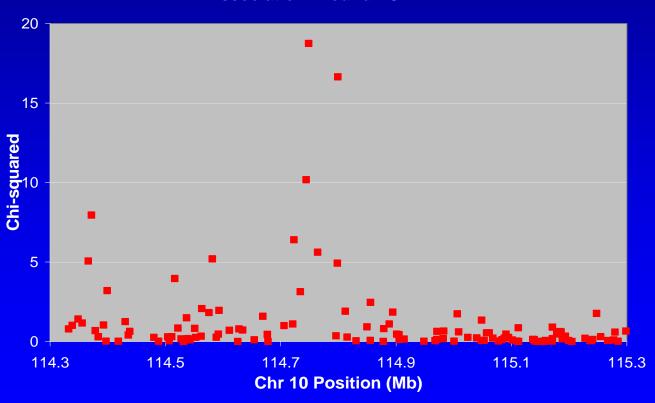
(n=32,554)

Stage 1: FUSION only (1161 cases + 1174 controls)

Stage 1 – FUSION only

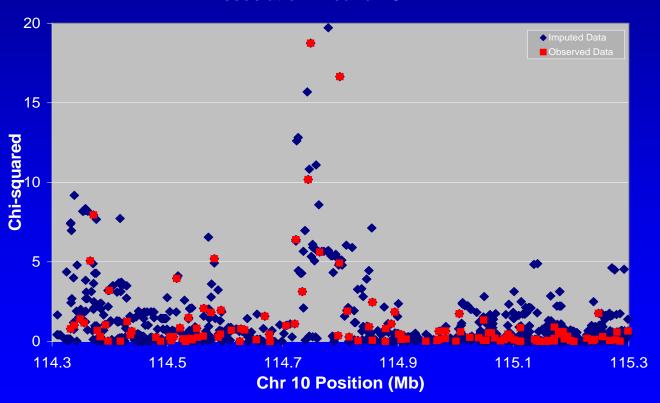
FUSION -log10 p-value

F/B/W Meta-analysis -log10 p-value


Stage 1 – FUSION + DGI + WTCCC (4549 cases + 5579 controls)

Imputing Missing Genotypes in Case Control Samples

- Methods and software have now been developed and tested by
 - Goncalo Abecasis, Michigan
 - Jonathan Marchini, Oxford
- Begins with GWA data from panel of choice
- Uses HapMap data from similar geographic origins to infer what alleles were most likely present at untyped loci
- Limited to SNPs in strong LD with typed SNPs
- Can produce quality score estimates
- Allows merging of data sets from Illumina, Affymetrix, or Perlegen panels


What We'd Like To Do: Start with Measured Genotypes

Association Around TCF7L2

What We'd Like To Do: Estimate Effects of Untyped Markers...

Association Around TCF7L2

Does This Actually Work?

- Used about ~300,000 SNPs from Illumina HumanHap300 to impute 2.1 million HapMap SNPs in ~2500 individuals from the FUSION study of type 2 diabetes
- Compared imputed genotypes with actual experimental genotypes in a candidate region on chromosome 14
 - 1190 individuals, 521 markers not on Illumina HumanHap300
- Results of comparison
 - Average r² with true genotypes 0.92
 - 1.4% of imputed alleles mismatch original
 - Most errors concentrated on worst 3% of SNPs

Top 10 Results From Combined Analysis Stage 1 + Stage 2, n = 32,554

	FUSION		DGI		WTCCC/UKT2D		All Samples	
Gene	OR	p-value	OR	p-value	OR	p-value	OR	p-value
TCF7L2	1.34	1.3 x 10 ⁻⁸	1.38	2.3 x 10 ⁻³¹	1.37	6.7 x 10 ⁻¹³	1.37	1.0 x 10 ⁻⁴⁸
IGF2BP2	1.18	2.1 x 10 ⁻⁴	1.17	1.7 x 10 ⁻⁹	1.11	1.6 x 10 ⁻⁴	1.14	8.9 x 10 ⁻¹⁶
CDKN2A/B	1.20	.0022	1.20	5.4 x 10 ⁻⁸	1.19	4.9 x 10 ⁻⁷	1.20	7.8 x 10 ⁻¹⁵
FTO	1.11	0.016	1.03	0.25	1.23	7.3 x 10 ⁻¹⁴	1.17	1.3 x 10 ⁻¹²
CDKAL1	1.12	0.0095	1.08	0.0024	1.16	1.3 x 10 ⁻⁸	1.12	4.1 x 10 ⁻¹¹
KCNJ11	1.11	0.013	1.15	1.0 x 10 ⁻⁷	1.15	0.0013	1.14	6.7 x 10 ⁻¹¹
HHEX	1.10	0.026	1.14	1.7 x 10 ⁻⁴	1.13	4.6 x 10 ⁻⁶	1.13	5.7 x 10 ⁻¹⁰
SLC30A8	1.18	7.0 x 10 ⁻⁵	1.07	0.047	1.12	7.0 x 10 ⁻⁵	1.12	5.3 x 10 ⁻⁸
Chr 11	1.48	5.7 x 10 ⁻⁸	1.16	0.12	1.13	0.068	1.23	4.3 x 10 ⁻⁷
PPARG	1.20	0.0014	1.09	0.019	1.23	0.0013	1.14	1.7 x 10 ⁻⁶

Sciencexpress

Report

A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants

Laura J. Scott, ¹ Karen L. Mohlke, ² Lori L. Bonnycastle, ³ Cristen J. Willer, ¹ Yun Li, ¹ William L. Duren, ¹ Michael R. Erdos, ³ Heather M. Stringham, ¹ Peter S. Chines, ³ Anne U. Jackson, ¹ Ludmila Prokunina-

Sciencexpress

Report

R. Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Fra Triglyceride Levels

Diab Rese

Ol: Ka

He

Sciencexpress

Report

Replication of Genome-Wide Association Signals in U.K. Samples Reveals Risk Loci for Type 2 Diabetes

Eleftheria Zeggini, ^{1,2*} Michael N. Weedon, ^{3,4*} Cecilia M. Lindgren, ^{1,2*} Timothy M. Frayling, ^{3,4*} Katherine S. Elliott, ² Hana Lango, ^{3,4} Nicholas J. Timpson, ^{2,5} John R. B. Perry, ^{3,4} Nigel W. Rayner, ^{1,2} Rachel M. Freathy, ^{3,4} Jeffrey C. Barrett, ² Beverley Shields, ⁴ Andrew P. Morris, ² Sian Ellard, ^{4,6} Christopher J. Groves, ¹ Lorna W. Harries, ⁴ Jonathan L. Marchini, ⁷ Katharine R. Owen, ¹ Beatrice Knight, ⁴ Lorna P. Condon ² Morte Wellton ⁸ Crobom A. Hitman ⁹ Andrew D. Morris ¹⁰ Alay S. E. Donoy ¹⁰

Sciencexpress / www.sciencexpress.org / 26 April 2007 /

A genome-wide association study identifies novel risk loci for type 2 diabetes

Robert Sladek^{1,2,4}, Ghislain Rocheleau^{1*}, Johan Rung^{4*}, Christian Dina^{5*}, Lishuang Shen¹, David Serre¹, Philippe Boutin⁵, Daniel Vincent⁴, Alexandre Belisle⁴, Samy Hadjadj⁶, Beverley Balkau⁷, Barbara Heude⁷, Guillaume Charpentier⁸, Thomas J. Hudson^{4,9}, Alexandre Montpetit⁴, Alexey V. Pshezhetsky¹⁰, Marc Prentki^{10,11}, Barry I. Posner^{2,12}, David J. Balding¹³, David Meyre⁵, Constantin Polychronakos^{1,3} & Philippe Froguel^{5,14}

Sciencexpress

Report

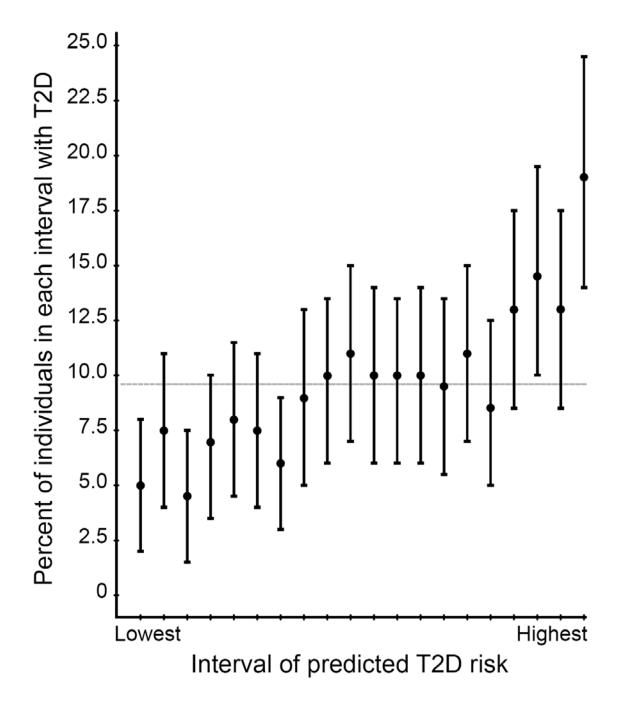
A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity

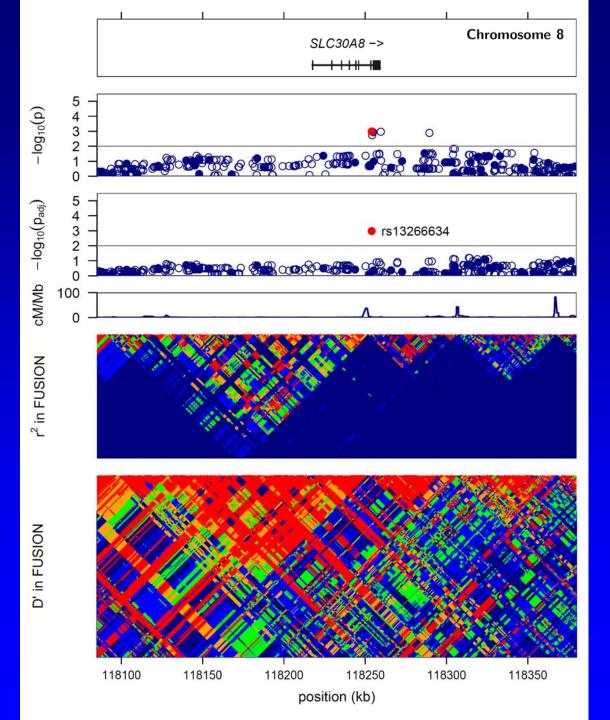
Timothy M. Frayling, 1,2* Nicholas J. Timpson, 3,4* Michael N. Weedon, 1,2* Eleftheria Zeggini, 3,5* Rachel M. Freathy, 1,2 Cecilia M. Lindgren, 3,5 John R. B. Perry, 1,2 Katherine S. Elliott, Hana Lango, 1,2 Nigel W. Rayner, 3,5 Beverley Shields, Lorna W. Harries, Jeffrey C. Barrett, Sian Ellard, 2,6 Christopher J. Groves, Bridget Knight, Ann-Marie Patch, Andrew R. Ness, Shah Ebrahim, Debbie A. Lawlor, Susan M. Ring, Yoav Ben-Shlomo, Marjo-Riitta Jarvelin, 10,11 Ulla Sovio, 10,11 Amanda J. Bennett, David Melzer, 1,12 Luigi Ferrucci, Ruth J. F. Loos, 14 Inês Barroso, 15 Nicholas J. Wareham, Fredrik Karpe, Katharine R. Owen, Lon R. Cardon, Mark Walker, Graham A. Hitman, Colin N. A. Palmer, Alex S. F. Doney, Andrew D. Morris, George Davey-Smith, The Wellcome Trust Case Control Consortium, Andrew T. Hattersley, 1,2†‡ Mark I. McCarthy, 5,5†

$\overline{\parallel}$

Top 10 Results From Combined Analysis

	FUSION		DGI		WTCCC/UKT2D		All Samples	
Gene	OR	p-value	OR	p-value	OR	p-value	OR	p-value
TCF7L2	1.34	1.3 x 10 ⁻⁸	1.38	2.3 x 10 ⁻³¹	1.37	6.7 x 10 ⁻¹³	1.37	1.0 x 10 ⁻⁴⁸
IGF2BP2	1.18	2.1 x 10 ⁻⁴	1.17	1.7 x 10 ⁻⁹	1.11	1.6 x 10 ⁻⁴	1.14	8.9 x 10 ⁻¹⁶
CDKN2A/B	1.20	.0022	1.20	5.4 x 10 ⁻⁸	1.19	4.9 x 10 ⁻⁷	1.20	7.8 x 10 ⁻¹⁵
FTO	1.11	0.016	1.03	0.25	1.23	7.3 x 10 ⁻¹⁴	1.17	1.3 x 10 ⁻¹²
CDKAL1	1.12	0.0095	1.08	0.0024	1.16	1.3 x 10 ⁻⁸	1.12	4.1 x 10 ⁻¹¹
KCNJ11	1.11	0.013	1.15	1.0 x 10 ⁻⁷	1.15	0.0013	1.14	6.7 x 10 ⁻¹¹
ННЕХ	1.10	0.026	1.14	1.7 x 10 ⁻⁴	1.13	4.6 x 10 ⁻⁶	1.13	5.7 x 10 ⁻¹⁰
SLC30A8	1.18	7.0 x 10 ⁻⁵	1.07	0.047	1.12	7.0 x 10 ⁻⁵	1.12	5.3 x 10 ⁻⁸
Chr 11	1.48	5.7 x 10 ⁻⁸	1.16	0.12	1.13	0.068	1.23	4.3 x 10 ⁻⁷
PPARG	1.20	0.0014	1.09	0.019	1.23	0.0013	1.14	1.7 x 10 ⁻⁶

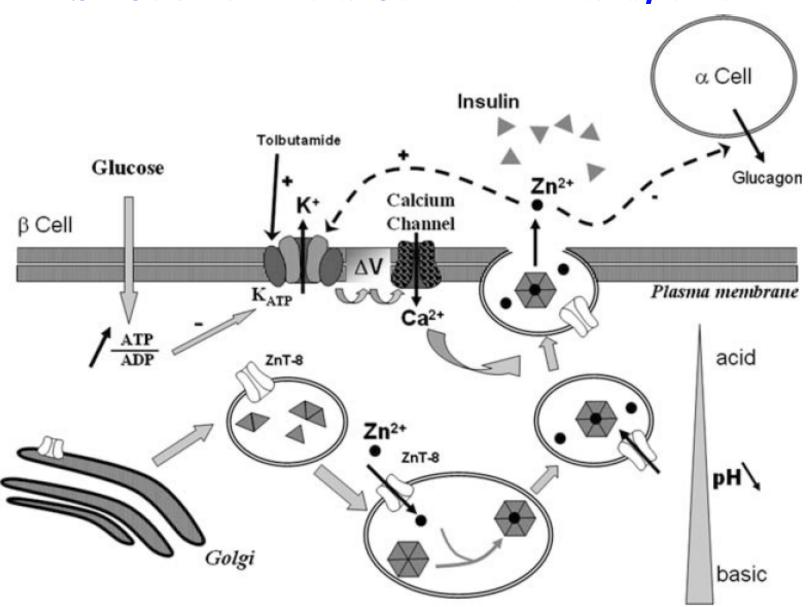

A variant in *CDKAL1* influences insulin response and risk of type 2 diabetes

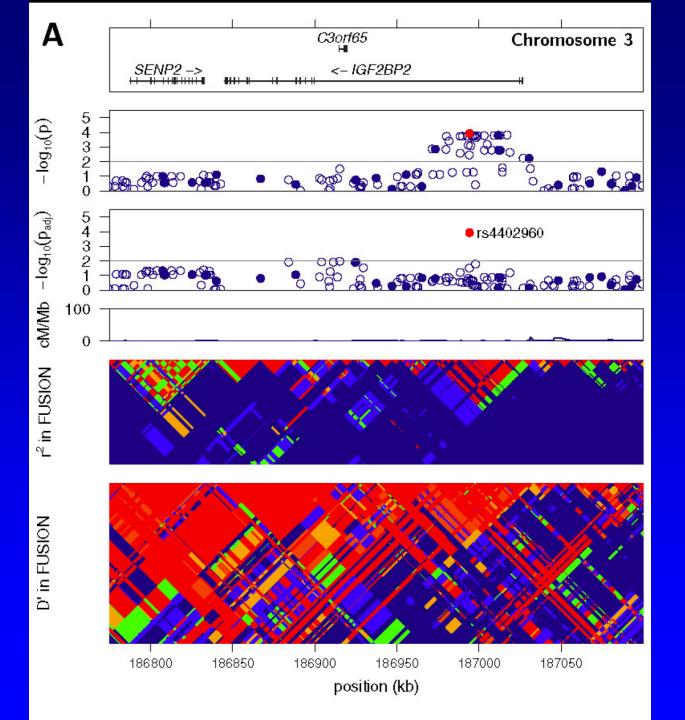

Valgerdur Steinthorsdottir^{1,15}, Gudmar Thorleifsson^{1,15}, Inga Reynisdottir¹, Rafn Benediktsson^{2,3}, Thorbjorg Jonsdottir¹, G Bragi Walters¹, Unnur Styrkarsdottir¹, Solveig Gretarsdottir¹, Valur Emilsson¹, Shyamali Ghosh¹, Adam Baker¹, Steinunn Snorradottir¹, Hjordis Bjarnason¹, Maggie C Y Ng⁴, Torben Hansen⁵, Yu Bagger⁶, Robert L Wilensky⁷, Muredach P Reilly⁷, Adebowale Adeyemo⁸, Yuanxiu Chen⁸, Jie Zhou⁸, Vilmundur Gudnason³, Guanjie Chen⁸, Hanxia Huang⁸, Kerrie Lashley⁸, Ayo Doumatey⁸, Wing-Yee So⁴, Ronald C Y Ma⁴, Gitte Andersen⁵, Knut Borch-Johnsen^{5,9,10}, Torben Jorgensen¹⁰, Jana V van Vliet-Ostaptchouk¹¹, Marten H Hofker^{11,12}, Cisca Wijmenga^{13,14}, Claus Christiansen⁶, Daniel J Rader⁷, Charles Rotimi⁸, Mark Gurney¹, Juliana C N Chan⁴, Oluf Pedersen^{5,9}, Gunnar Sigurdsson^{2,3}, Jeffrey R Gulcher¹, Unnur Thorsteinsdottir¹, Augustine Kong¹ & Kari Stefansson¹

$\overline{\parallel}$

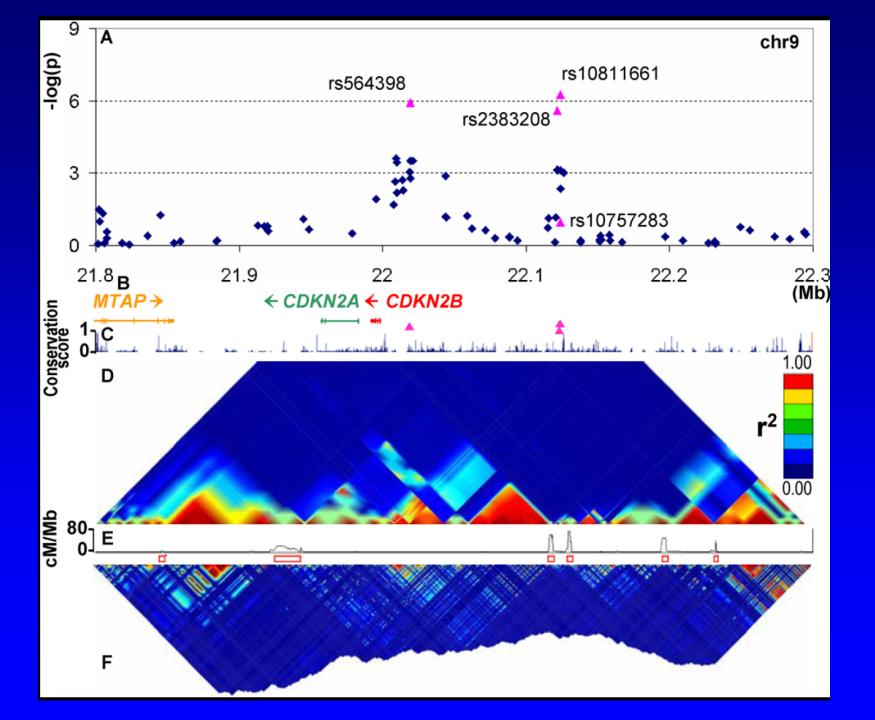
Top 10 Results From Combined Analysis

	FUSION		DGI		WTCCC/UKT2D		All Samples	
Gene	OR	p-value	OR	p-value	OR	p-value	OR	p-value
TCF7L2	1.34	1.3 x 10 ⁻⁸	1.38	2.3 x 10 ⁻³¹	1.37	6.7 x 10 ⁻¹³	1.37	1.0 x 10 ⁻⁴⁸
IGF2BP2	1.18	2.1 x 10 ⁻⁴	1.17	1.7 x 10 ⁻⁹	1.11	1.6 x 10 ⁻⁴	1.14	8.9 x 10 ⁻¹⁶
CDKN2A/B	1.20	.0022	1.20	5.4 x 10 ⁻⁸	1.19	4.9 x 10 ⁻⁷	1.20	7.8 x 10 ⁻¹⁵
FTO	1.11	0.016	1.03	0.25	1.23	7.3 x 10 ⁻¹⁴	1.17	1.3 x 10 ⁻¹²
CDKAL1	1.12	0.0095	1.08	0.0024	1.16	1.3 x 10 ⁻⁸	1.12	4.1 x 10 ⁻¹¹
KCNJ11	1.11	0.013	1.15	1.0 x 10 ⁻⁷	1.15	0.0013	1.14	6.7 x 10 ⁻¹¹
ННЕХ	1.10	0.026	1.14	1.7 x 10 ⁻⁴	1.13	4.6 x 10 ⁻⁶	1.13	5.7 x 10 ⁻¹⁰
SLC30A8	1.18	7.0 x 10 ⁻⁵	1.07	0.047	1.12	7.0 x 10 ⁻⁵	1.12	5.3 x 10 ⁻⁸
Chr 11	1.48	5.7 x 10 ⁻⁸	1.16	0.12	1.13	0.068	1.23	4.3 x 10 ⁻⁷
PPARG	1.20	0.0014	1.09	0.019	1.23	0.0013	1.14	1.7 x 10 ⁻⁶





rs13266634
is in the coding
region of
SLC30A8, and
changes a highly
conserved
arginine to a
tryptophan


SLC30A8 - Beta Cell Zinc Transporter

How could IGF2BP2 be related to diabetes?

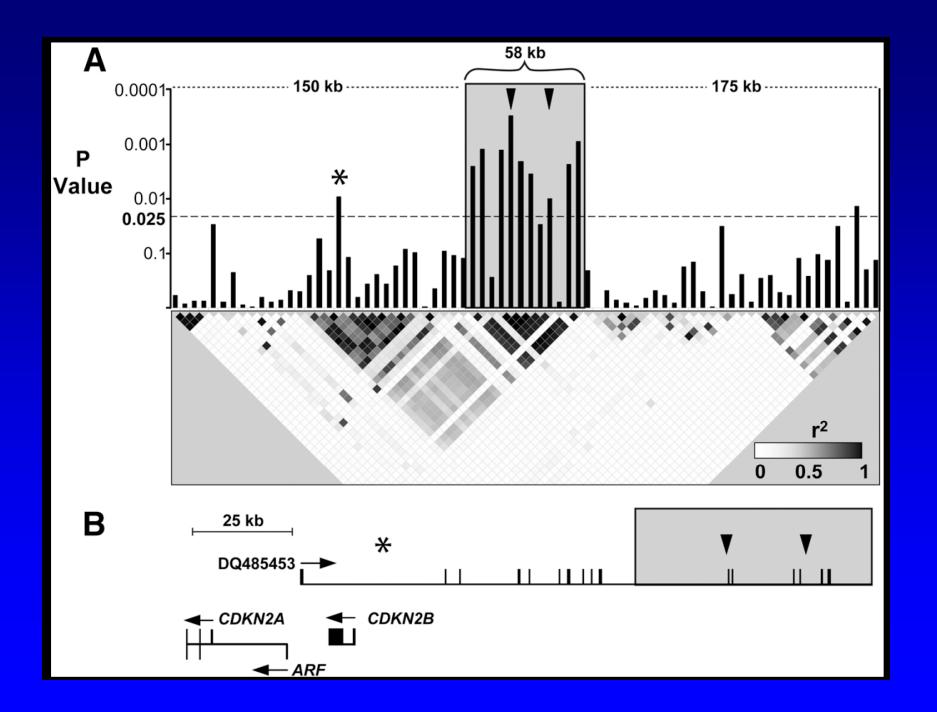
- IGF2BP2 codes for the insulin-like growth factor 2 mRNA binding protein 2
- But we know very little about what this does
- A related gene, *IGF2BP1*, codes for a protein that binds to the upstream leader sequence of the insulinlike growth factor 2 (IGF2) mRNA and regulates IGF2 protein production
- IGF2 is involved in development, growth, and stimulation of insulin action

Sciencexpress

Report

A Common Allele on Chromosome 9 Associated with Coronary Heart Disease

Ruth McPherson, * Alexander Pertsemlidis, * Nihan Kavaslar, Alexandre Stewart, Robert Roberts, David R. Cox, David A. Hinds, Len A. Pennacchio, Anne Tybjaerg-Hansen, Aaron R. Folsom, Eric Boerwinkle, Helen H. Hobbs, Jonathan C. Cohen, Pennacchio, Anne Tybjaerg-Hansen, Aaron R. Folsom, Eric Boerwinkle, Helen H. Hobbs, Jonathan C. Cohen, Pennacchio, Anne Tybjaerg-Hansen, Aaron R. Folsom, Aaron R. Folsom, Aaron R. Folsom, Aaron R. Folsom, Anne Tybjaerg-Hansen, Aaron R. Folsom, Aar


¹Division of Cardiology, University of Ottawa Heart Institute, Ottawa K1Y4W7, Canada. ²Donald W. Reynolds Cardiovascular Clinical Research Center and the Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ³Perlegen Sciences, Mountain View, CA 94043; USA. ⁴Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA & U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA. ⁵Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen DK-2100, Denmark. ⁶Division of Epidemiology and Community Health, University of Minnesota, Minneapolis MN 55454, USA. ⁷Human Genetics Center and Institute for Molecular Medicine, University of Texas Health

Sciencexpress

Report

A Common Variant on Chromosome 9p21 Affects the Risk of Myocardial Infarction

Anna Helgadottir, *Gudmar Thorleifsson, *Andrei Manolescu, *Solveig Gretarsdottir, Thorarinn Blondal, Aslaug Jonasdottir, Adalbjorg Jonasdottir, Asgeir Sigurdsson, Adam Baker, Arnar Palsson, Gisli Masson, Daniel Gudbjartsson, Kristinn P. Magnusson, Karl Andersen, Allan I. Levey, Valgerdur M. Backman, Sigurborg Matthiasdottir, Thorbjorg Jonsdottir, Stefan Palsson, Helga Einarsdottir, Steinunn Gunnarsdottir, Arnaldur Gylfason, Viola Vaccarino, W. Craig Hooper, Muredach P. Reilly, Christopher B. Granger, Harland Austin, Daniel J Rader, Svati H. Shah, Arshed A. Quyyumi, Jeffrey R. Gulcher, Gudmundur Thorgeirsson, Unnur Thorsteinsdottir, Augustine Kong, *Kari Stefansson**

Conclusions

- Early sharing of data with other groups was essential to successful discovery of risk variants
- Having "positive controls" was very helpful
- Merging genotype data across different GWA platforms is essentially a solved problem
- Delaying publication until the evidence was overwhelming was a wise choice
- These same data sets will no doubt reveal further gene variants that contribute to:
 - Type 2 diabetes
 - Related traits lipids, BP, anthropometrics,...
- Principles for GWA publication will soon appear

What Constitutes Replication of a Genotype-Phenotype Association? Summary of an NCI-NHGRI Working Group

NCI-NHGRI Working Group on Replication in Association Studies

[Nature, in press]