STUDY DESICN

Facilitating Collaboration in GenomeWide Association Studies

Robert N. Hoover, M.D., Sc.D.
Division of Cancer Epidemiology and Genetics
National Cancer Institute

General Strategy for Prostate \& Breast Cancer GWAS

Initial Study 1150 cases $/ 1150$ controls $\longrightarrow 540,000$ Tag SNPs

Follow-up Study \#1 4500 cases/ 4500 controls
~28,000 SNPs

Follow-up Study \#2 3500 cases/ 3500 controls \square

Fine Mapping

$$
\longrightarrow \begin{gathered}
30 \pm 20 \\
\text { loci }
\end{gathered}
$$

Considerations in Whole Genome Scans in
 Cancer

- Extent of Coverage of Genome
- Primary Scan
- Adequate Size
- Trade-off vith effect
- Study Design

Replication Strategy

- Power calculations for how many stages
- Joint vs consecutive analysis (Skol Nat Genet 2006)
- Study Design

Estimated number of SNPs in the human genome as a function of their minor allele frequency

Common SNP : a SNP with MAF >0.05; frequency of heterozytotes $>\approx 10 \%$

DESICNISSUES

Study Size
 - Chance

Bias

2-Stage WGS Strategy

Power as a function of MAF and sample sizes typed in the first stage

A quick note on 'ideal' power

- r^{2} represents the statistical correlation between two loci
- It is a useful measure for association between susceptibility loci and SNPs
- Suppose SNP1 is involved in disease susceptibility and we genotype cases and controls at a nearby site SNP2

r^{2}	Additional Samples Required
0.50	100%
0.64	56%
0.70	43%
0.80	25%
0.90	11%
0.95	5%
1.00	0%

- To achieve the same power to detect associations at SNP2 as we would have at SNP1, sample size must increase by a factor of $1 / r^{2}$

Power of the first two phases of CCEMS

Point wise significance 10 ; " "genome wide" significance 0.05

Rejection of H_{0} based on an alpha of 0.05 Power=0.8

Power of genome wide screen as a function of the number of retained false positive

Design Considerations

- Disease:
- Incident
- Prevalent
- Type:
- Cohort
- Case-control
- Population-based
- Hospital-based
- Quality:
- Diagnosis (phenotype)
- Study base
- Biases

BIAS

Lung Cancer Risk and CYP2D6*

	Study 1	Study 2	Study 3
Relative Risk	$15.6(4.8-55.9)$	$6.1(2.2-17.1)$	0.6 (0.3-1.2)
Epidemiologic	Low	Intermediate	High
Quality (\% participation)	$(?)$	(26%)	(80%)

* Risk of homozygous extensive metabolizers compared to homozygous poor metabolizers.

General Strategy for Prostate \& Breast Cancer GWAS

Initial Study 1150 cases $/ 1150$ controls $\longrightarrow 540,000$ Tag SNPs

Follow-up Study \#1 4500 cases/ 4500 controls
~28,000 SNPs

Follow-up Study \#2 3500 cases/ 3500 controls \square

Fine Mapping

$$
\longrightarrow \begin{gathered}
30 \pm 20 \\
\text { loci }
\end{gathered}
$$

Results: Overall

Schumacher FR et al., Cancer Res. 2007 Apr 1;67(7):2951-6.

GWAS: What is Working

- Very large studies
- Replication, replication, replication (planned and coordinated)
- Rigorous, high-quality design, conduct, analysis
- Genomics
- Epidemiology
- Statistics
- Informatics
- Data sharing
- Accomplished Through Consortia

COMPROMSES?

- Numbers
- Initial vs. subsequent stages of scan
- Replication studies
- Quality
- Examples:
- AMD
- Cambridge breast cancer
- PanScan
- Strategies for what to relax and in what order is complicated

National Cancer Institute

Complement Factor H Gene and Macular Degeneration

Cambridge University Breast Cancer GWAs

First Stage: 390 cases / 364 controls 267,000 SNPs

Second Stage: 4000 cases / 4000 controls 12,700 SNPs

Third Stage: 22,000 cases / 22,000 controls 30 SNPs

Breast Cancer Association Consortium

"In this issue, four investigative teams . . have sought to replicate the findings from a GWA study of PD by
Maraganore et al. Taken together these four studies appear to provide substantial evidence that none of the SNPs originally featured as potential PD loci are convincingly replicated and that all may be false positives."

\# of cases	\# of SNPs	
Tier 1	443	198,000
Tier 2	332	1800

"We identified 11 SNPs that were associated with $\mathrm{PD}(\mathrm{P}<.01)$ in both tier 1 and tier 2 samples and had the same direction of effect." (Maraganore et al)

GWAS: What is Working

- Very large studies
- Replication, replication, replication (planned and coordinated)
- Rigorous, high-quality design, conduct, analysis
- Genomics
- Epidemiology
- Statistics
- Informatics
- Data sharing
- Accomplished Through Consortia

COMPROMSES?

- Yes, BUT
- Strategies for what to relax and in what order is complicated

