U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

STUDY DESIGN

Facilitating Collaboration in Genome-Wide Association Studies

Robert N. Hoover, M.D., Sc.D. Division of Cancer Epidemiology and Genetics National Cancer Institute

General Strategy for Prostate & Breast Cancer GWAS

Considerations in Whole Genome Scans in Cancer

- Extent of Coverage of Genome
- Primary Scan
 - Adequate Size
 - Trade-off with effect
 - Study Design

Replication Strategy

- Power calculations for how many stages
- Joint vs consecutive analysis (Skol Nat Genet 2006)
- Study Design

Estimated number of SNPs in the human genome as a function of their minor allele frequency

Adapted from Reich et al. Nat Genet (2003)

DESIGN ISSUES

- Study Size
- Chance

Bias

2-Stage WGS Strategy

Power as a function of MAF and sample sizes typed in the first stage

Disease model

- Prevalence 1%
- Single susceptibility SNP with a linkage disequilibrium $r^2 = 0.8$ with 1 genotyped SNP
- Dominant transmission
- Genotype relative risk : 1.5

Study design

Cases = # Controls
Cases in stage 1 : as indicated
SNPs in stage 1 : 500,000
Cases in stage 2 : 2,000
SNPs in stage 2 : 25,000
Significance level 0.00002

Note: Significance level = 0.00002 => 10 false positives

A quick note on 'ideal' power

- r² represents the statistical correlation between two loci
- It is a useful measure for association between susceptibility loci and SNPs
- Suppose SNP1 is involved in disease susceptibility and we genotype cases and controls at a nearby site SNP2
- To achieve the same power to detect associations at SNP2 as we would have at SNP1, sample size must increase by a factor of 1/r²

r ²	Additional Samples Required
0.50	100%
0.64	56%
0.70	43%
0.80	25%
0.90	11%
0.95	5%
1.00	0%

Power of the first two phases of CGEMS Point wise significance 10⁻⁷; "genome wide" significance 0.05

Skol et al. Nat Genet (2006)

Power of genome wide screen as a function of the number of retained false positive

Model :

One susceptibility allele : MAF = 0.1 , Odds Ratio = 1.4 LD of typed marker with susceptibility marker : $r^2 = 0.8$ Number of cases/control pairs : 1,200 Number of markers types : 500,000

Design Considerations

- Disease:
 - Incident
 - Prevalent
- Type:
 - Cohort
 - Case-control
 - Population-based
 - Hospital-based
- Quality:
 - Diagnosis (phenotype)
 - Study base
 - Biases

BIAS

Lung Cancer Risk and CYP2D6*

	Study 1	Study 2	Study 3	
Relative Risk	15. 6 (4.8 – 55.9)	6.1 (2.2 – 17.1)	0.6 (0.3 – 1.2)	
Epidemiologic Quality	Low	Intermediate	High	
(% participation)	(?)	(26%)	(80%)	

* Risk of homozygous extensive metabolizers compared to homozygous poor metabolizers.

General Strategy for Prostate & Breast Cancer GWAS

Results: Overall

					BPC3
Cohort	Genotype	Cases / Controls	OR (99%CI)	P-value	
All	CC	5,566 / 6,666	Ref.	4.00x10 ⁻¹⁹	0000/0000
(p _{het} =0.483)	AC	2,064 / 1,842	1.33 (1.20-1.46)		8000/8000
	AA	279/175	1.87 (1.44-2.42)		
ACS	СС	871 / 955	Ref.	2 63x10 ⁻⁵	· · · · · · · · · · · · · · · · · · ·
	AC	238 / 166	1.56 (1.17-2.08)	2.00010	0
	AA	21/9	2.61 (0.92-7.37)		
			· · · · · · · · · · · · · · · · · · ·		↔ ↔
ATBC	CC	606 / 623	Ref.	0.012	♦
	AC	312 / 260	1.23 (0.95-1.60)		
	AA	45 / 25	1.81 (0.94-3.51)		0
			_ /		d
EPIC	CC	551 / 869	Ref.	0.258	_
	AC	169 / 233	1.17 (0.87-1.58)		
	AA	12/12	1.57 (0.53-4.59)		
HDES	CC	195 / 515	Rof	$2 62 \times 10^{-3}$	
11110	40	493 / 343 157 / 114	1 53 (1 07-2 19)	3.03210	
		11/6	2.09 (0.56-7.80)		o ≣ <u>e</u>
	700	1170	2.00 (0.00 7.00)		~
MEC	CC	1,426 / 1,565	Ref.	2.58x10 ⁻⁷	
	AC	728 / 614	1.32 (1.11-1.58)		4 4
	AA	146 / 88	1.89 (1.30-2.75)		0 -
PHS	CC	801 / 1.123	Ref.	0.013	_
-	AC	200 / 220	1.27 (0.96-1.69)		_9- _ -~
	AA	21 / 15	2.06 (0.83-5.12)		·
PLCO	CC	816 / 986	Ref.	0.014	0
	AC	260 / 235	1.33 (1.02-1.72)		0
	AA	23 / 20	1.39 (0.63-3.10)		
			· · · · · ·		
				0	2 4 6 8

Odds Ratio

Schumacher FR et al., Cancer Res. 2007 Apr 1;67(7):2951-6.

GWAS: What is Working

- Very large studies
- Replication, replication, replication (planned and coordinated)
- Rigorous, high-quality design, conduct, analysis
 - Genomics
 - Epidemiology
 - Statistics
 - Informatics
- Data sharing
- Accomplished Through Consortia

COMPROMISES?

- Numbers
 - Initial vs. subsequent stages of scan
 - Replication studies
- Quality
- Examples:
 - AMD
 - Cambridge breast cancer
 - PanScan
- Strategies for what to relax and in what order is complicated

Complement Factor H Gene and Macular

Science. 2005 April 15; 308:385

First Stage: 390 cases / 364 controls 267,000 SNPs

Second Stage: 4000 cases / 4000 controls 12,700 SNPs

Third Stage: 22,000 cases / 22,000 controls 30 SNPs

Breast Cancer Association Consortium

"In this issue, four investigative teams ...have sought to replicate the findings from a GWA study of PD by Maraganore et al. Taken together these four studies appear to provide substantial evidence that none of the SNPs originally featured as potential PD loci are convincingly replicated and that all may be false positives."

# of cases		# of SNPs
Tier 1	443	198,000
Tier 2	332	1800

"We identified 11 SNPs that were associated with PD (P<.01) in both tier 1 and tier 2 samples and had the same direction of effect." (Maraganore et al)

GWAS: What is Working

- Very large studies
- Replication, replication, replication (planned and coordinated)
- Rigorous, high-quality design, conduct, analysis
 - Genomics
 - Epidemiology
 - Statistics
 - Informatics
- Data sharing
- Accomplished Through Consortia

COMPROMISES?

• Yes, BUT

Strategies for what to relax and in what order is complicated