U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Technologic Issues in GWAS and Follow-up Studies

Stephen Chanock, M.D. Senior Investigator, POB,CCR & Director, Core Genotyping Facility, DCEG NCI May 22, 2007

Types of Polymorphisms

Single nucleotide polymorphisms (SNPs) Common SNPs are defined as >1% in at least one population Rare SNPs are hard to identify and validate *But*, it is estimated that there are a large number per individual

MAF= minor allele frequency

SNP in Unique Sequence

SNPs & Function: We know so little..

- Majority are "silent" – No known functional change
- Alter gene expression/regulation
 - Promoter/enhancer/silencer
 - mRNA stability
 - Small RNAs
- Alter function of gene product

- Change sequence of protein

SNPs in Genes: Take one

Coding SNPs

Synonymous- no change in amino acid previously termed "silent" but..... Can alter mRNA stability *DRD2* (Duan et al 2002) Nonsynonymous- changes amino acid conservative and radical Nonsense- insertion of stop codon **Indel**- Disrupts codon sequence Rare but disruptive

SNPs Outside Genes: Take many....

- Majority distributed throughout genome are "silent" (excellent as markers)
- Alter transcription
 - Promoter, enhancer, silencer
- Regulate expression
 - Locus control region, mRNA stability
- Most are assumed to be 'silent hitchhikers'
 - No function by predictive models or analysis

Linkage disequilibrium (LD)

- The non-random association of alleles in the population
- Alleles at neighboring loci tend to cosegregate
- Linkage disequilibrium implies population allelic association

To test all SNPs is presently too costly Utilize a strategy that capitalizes on linkage disequilibrium between SNPs

Haplotype blocks defined by Gabriel et al Based on D' values for linkage disequilibrium

What can LD do for me?

- Knowledge of patterns of linkage disequilibrium can be quite useful in the design and analysis of genetic data
- Design:
 - Estimation of theoretical power to detect associations
 - Evaluation of degree completeness of sampling of genetic variants
 - Choice of most informative genetic variants to genotype

Genetic Association Testing: Finding Markers

Large and Small Scale Polymorphisms

• Copy Number of Polymorphisms

Regional "repeat" of sequence 10s to 100s kb of sequence Estimate of >10% of human genome Multi-copy in many individuals

• Duplicons

90-100% similarity for >1 kb

5-10% of genome (5% exons elsewhere) Multi-copy (high N) in all individuals

Germ-line DNA Copy Number Variation(CNV)

Copy Number Variation Across the Genome

Copy Number Variation

Across the Genome Frequency of CNVs Most are uncommon (<5%) Familial vs Unrelated Studies Associated with Disease **OPN1LW** Red/green colorblind **Reduced HIV Infection** CCL3L1 CYP2A6 Altered nicotine metabolism VKORC1 Warfarin metabolism

Most SNPs Are In Unique Sequence !

PSV (Paralogous Sequence Variant)

SNP in Duplicon Sequence

MSV: Multi-Site Variants

Genotype Technologies

- Dropping costs
- Smaller amounts of DNA
 < 1ug for > 1 Million SNPs
- Economy of scale Frequent Flier Paradigm
- Increased density but with fixed products
- Custom products bear high development cost
- Challenge of mid-range (50 to 500 SNPs)

TaqMan[™] (5' Exonuclease)

- 1) Amplify genome uniformly
- 2 Fragment, Denature and Hybridize to immobilized 50mers
- 3 Discriminate SNPs (enzyme-mediated)
- 4) Amplify signal and readout

Illumina HumanHap500

Good Cluster

Poor Cluster

Read in BeadStudio[™]

Affymetrix GeneChip® Mapping Assay

Affymetrix 500K Chips Poor Quality Good Quality

Important Points

- Too many data points to review individually
- Iterative algorithm for analysis
 - Still undergoing improvements
- Validation of notable SNPs with second technology
 - "Neighboring SNP-land mines"
- Do not do this at home- Only for highly trained personnel

Choice of Dense SNP Platforms

Affymetrix

Basic Points

Based on 'Spacing' 100k, 500k, 1 Million CNV Analysis WGA compatible

Issues

Lower price 2 Enzyme Problem Calling Algorithms Redundancy (useful)

Basic Points

Based on 'tagging' 317k, 550k, 1 Million CNV Analysis WGA not yet rec'd

Illumina

Issues

Higher price HapMap II Based

2007 What is Available for Whole Genome Scans

- Coverage analysis based on HapMap II Data
- Build 20 MAF <u>>5%</u>, r² <u>>0.8</u> (pair-wise)

•			CEU	YRI	JPT/CHB
•	Illumina	HumanHap300	80%	35%	40%
•	Illumina	HumanHap500	91%	58%	88%
•	Affymetrix*	500k Mapping	63*%	41%	63%

*77% (with 50k MegA)

Quality control of genotype calls & DNA handling

Quality Control for Called Genotypes

PURPOSE:

Identification of unreliable SNPs and DNAs to be *entirely* removed from the analysis . Evaluation of completion rate (DNAs) Evaluation of call rate (SNPs) Evaluation of discordance rate (error rate)

Discordance rate for CGEMS: HumanHap500 (Illumina) Participants CEPH-CGEMS 142 duplicate pairs 74 duplicate pairs CEPH-HapMap

Concordance rates >99.5% Subtle Differences in Quality of DNA

Quality Control for Recruitment DNA handling

Checking for:

Chromosome X Ploidy Identification of Familial Relationships Evaluation of Continental Admixture Population Stratification Principal Component Analysis (Hardy Weinberg Statistics)

Analysis of CGEMS Data Sets

	Chromosome X		Unexpected	1st & 2nd degree	Other 3rd to 5th	
	1 сору	2 copies	duplicates	relatives	degree relatives	
Prostate	2279	3	3 pairs	5	20*	
Breast	0	2299	3 pairs	1	to be done	

*It was noted subsequently that both members of each pair had been recruited in the same center.

Admixture coefficient in PLCO samples

CGEMS Prostate Cases & Controls Principal Component Analysis

Based on Price et al Nat Genet 2006

CGEMS Breast Cancer Scan

log quantile plot of p-values for the Entire Set of Markers

P values < 0.01

incidence density sampling

CGEMS Prostate Cancer GWAS

Replication Studies in CGEMS Prostate Cancer GWAS

rs6983267

rs1447295

1.43

2.23

	Subjects		sposing requency	P-value	Predisposing allele frequency		P-value	
			Cont.		Cases	Cont.		
PLCO	1157 1172	0.55	0.49	2.4×10 ⁻⁰⁵	0.14	0.10	9.8×10 ⁻⁰⁵	
ACS	1151 1150	0.55	0.50	3.2×10 ⁻⁰³	0.12	0.08	2.7×10 ⁻⁰⁵	
ATBC	896 8	04 0.57	0.51	1.9x10 ⁻⁰³	0.21	0.17	2.9x10 ⁻⁰²	
FPCC	459 4	5 0.56	0.51	1.2×10 ⁻⁰¹	0.12	0.07	4.4x10 ⁻⁰³	
HPFS	636 6	25 0.57	0.51	1.0×10 ⁻⁰²	0.13	0.09	2.7×10 ⁻⁰³	
ALL	4299 429	0.56	0.50	9.4x10 ⁻¹³	0.15	0.11	1.5×10 ⁻¹⁴	

Estimated Odds Ratios OverallHeterozygotes1.26Homozygotes1.58

Meta-Analysis of 8q24 papers in Nature Genetics: J Witte

J Witte Nature Genetics 2007