Vascular Biology and HHT

Michelle Letarte
Hospital for Sick Children
and University of Toronto
Toronto, Canada

The genes associated with HHT1 and HHT2 are implicated in vascular homeostasis

- HHT is characterized by focal loss of capillaries, dilated vessels and arteriovenous malformations
- Endoglin and ALK1 are expressed primarily in endothelial cells
- Mice with a single copy of these genes (*Eng* +/- and *Alk1*+/-) can develop clinical signs of HHT
- Mice lacking Endoglin or Alk1 genes die at midgestation of cardiovascular defects

Gastrointestinal telangiectases

Pulmonary Arteriovenous Malformations

Vascular Diseases associated with TGF-ß superfamily

Mechanisms of HHT pathogenesis

- Haploinsufficiency in endoglin or ALK1
- Impaired endothelial Nitric Oxide synthase (eNOS) activation leading to superoxide production
- Enhanced vasodilation and impaired myogenic response
- Dysfunctional TGF-β/endoglin/eNOS pathway

Haploinsufficiency is associated with HHT

Non-affected individual

HHT1 patient

Endothelial cells or activated monocytes

Endoglin levels are reduced in blood monocytes of HHT1 patients

Group	Mutation	Number	Age		Endoglin level		
	confirmed				(%)		
			Median	Range	Median	Range	
				(25-75%)		(25-75%)	
HHT1	Endoglin	109	42.4	21.3	48.0*	19.0	
HHT2	ALK1	61	42.2	22.3	91.0	37.0	
Control	None	84	37.9	38.9	88.5	29.5	

The two-sided pair normal approximation obtained from the Two-Sample Wilcoxon test is reported: * P<0.001 for HHT1 relative to HHT2 and control groups.

Abdalla and Letarte J Med Genet 43:97, 2006

Levels of endoglin and ALK1 are selectively reduced in endothelial cells of HHT1 and HHT2 newborns

Family	Newborn Status	#	Endoglin level (%)		#	ALK1 level (%)	
type			Median	Range		Median	Range
				(25-75%)			(25-75%)
HHT1	ENG mutation	30	45.0*	13.0	7	94.0	18.0
HHT1	No ENG mutation	18	98.0	17.0	3	92.0	23.0
HHT2	ALK1 mutation	8	98.5	25.5	4	60.5^	24.5
HHT2	No ALK1 mutation	6	106.5	31.0	3	96.0	3.0

^{*} The two-sided pair normal approximation (Two-Sample Wilcoxon test) for comparison to the group without Eng mutation (P < 0.001).

The t-test was used for comparison to the groups with and without an ALK-1 mutation (P = 0.0002 in both cases).

^Distribution of ALK1 levels for this group was P = 0.03 (by T-test), when compared to the combined HHT1 groups or to the last group.

Abdalla and Letarte J Med Genet 43:97, 2006

How can haploinsufficiency in ENG or ALK1 lead to dilated vessels and AVMs?

- We speculated that the production of Nitric Oxide (NO) by eNOS may be altered in HHT, where vessels are dilated.
- NO regulates vascular tone.
- Reduced NO levels are often associated with cardiovascular disease.
- Modeling of the hemodynamics of the microcirculation predicts that loss of local vasomotor control may cause AVMs. (Quick, CM. et al. 2001)
- •We hypothesized that:
- •Endoglin may modulate eNOS activation and thereby contribute to the local regulation of vascular tone and integrity.

eNOS levels are reduced in Eng +/- mice

Blood Vessels

Endothelial Cells

Toporsian et al, Circ. Res. 2005; 96:684-692

NO production is impaired in Eng +/- and Eng -/- endothelial cells

Could endoglin associate with eNOS and hsp90?

Pressure / Shear / Flow

Endoglin Associates with eNOS in Human Endothelial Cells

Endoglin Modulates the eNOS Activation Complex

Human Endothelial Cells

Murine Endothelial Cells

Increased Endothelium-Dependent Dilatation in Eng +/- Resistance Arteries

HHT1

Pressure on endothelial sites with reduced endoglin leads to uncouplin of eNOS activity and production of damaging superoxide and initiation of lesion

eNOS-derived O₂- Production in Eng +/- and Eng -/- Endothelial Cells

Reversal with the anti-oxidant **Tiron** of abnormal myogenic response and acetylcholineinduced dilatation

Model of HHT Pathogenesis

Normal

Normal Myogenic Constriction Pressure Blood Flow

HHT

Conclusions on endoglin and eNOS functional association

- Novel role for endoglin in the local regulation of vascular tone
- Endoglin resides in caveolae where it associates with and stabilizes eNOS, and enhances eNOS-Hsp90 association during Ca²⁺ activation
- In HHT1, eNOS activity is "uncoupled" generating superoxide instead of nitric oxide
- Eng+/- resistance arteries display impaired eNOS-dependent vasodilatation and myogenic reactivity which are restored by superoxide scavengers
- Can we link the role of endoglin in eNOS regulation to its function in the TGF-β1/β3 receptor complex?

How studying a different disease gave us clues about mechanisms of HHT?

Endoglin is upregulated in placenta during preeclampsia

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

What is pre-eclampsia?

- Associated with 5% of pregnancies worldwide
- A pregnancy-specific syndrome that causes hypertension and proteinuria in the third trimester
- Clinical manifestations reflect endothelial dysfunction, resulting in vasoconstriction
- High levels of circulating sVEGF-RI of placental origin were found in pre-eclamptic patients (*A. Karamanchi et al*)
- We now report a soluble form of endoglin (sEng) circulating at increased levels and causally related to the pathogenesis (S. Venkatesha, M. Toporsian et al. Nat Med June 4 2006)

Increased levels of Soluble Endoglin (sEng) in the sera of pre-eclamptic women

TGF- β 1 and - β 3 induce vasodilation via an endoglin-dependent mechanism

Soluble endoglin (sEng) contributes to the pathogenesis of pre-eclampsia

- Endoglin expression much higher in the placenta of preeclamptic women
- Elevated levels of a placenta derived 65kDa sEng in sera of pre-eclamptic women
- Recombinant sEng can induce pre-eclampsia in mice
- Recombinant sEng blocks:
 - -TGF-β1 binding and Smad2 signaling in endothelial cells,
 - -TGF-β1 effects on eNOS activation and vasodilation
 - -capillary formation

Model of pathogenesis of HHT

Normal HHT

Acknowledgements

Our lab:

- Dr Mourad Toporsian
- Sonia Vera
- Dr Mirjana Jerkic
- Dr Salma Abdalla

Lunenfeld Institute, Toronto:

- Dr Nadia Pece-Barbara
- Dr Jeffrey Wrana

University Health Network:

- Dr Mansoor Husain
- Dr Robert Gros
- Dr Golam Kabir

Collaborators:

- Dr Elisabetta Dejana
- Dr Stefan Liebner
- Dr Ananth Karumanchi
- Dr Carmelo Bernabeu
- Dr Jose-Miguel Lopez-Novoa
- Nadia Prigoda
- Dr Brenda Gallie
- Dr Claire Shovlin

Support:

- Canadian Institute of Heath Research
- Heart and Stroke Foundation of Canada
- March of Dimes