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High-density phased individual genotypes and haplotypes will become the standard basis 
for analysis in every sequencing project.  The many software choices for alignment, variant 
detection, genotyping, and phasing will consolidate into community preferences in the next 
few years.  Our consideration of the needs for computational resources covers data 
coordination, exchange, and access.  We focus on unified presentations of data that could 
dramatically improve analysis across multiple sequencing projects. 
 
Sequence data 
 
The shape of next generation sequence (NGS) data 
 

The world's corpus of human variation data can be imagined as a single global 2D table 
aligning all individual genotypes (in columns) by genome position (rows).  Cell data are 
accessed by specifying a column and row index (e.g., sample ID and genome position).  
These indices are currently not normalized over all available data, making it impossible to 
perform global queries.  International agreements could establish standard indices for 
individuals and genome positions, but both dimensions are heterogeneous and many 
technical details require consideration.  
 

Columns (individuals) are naturally partitioned by the host data source, e.g., research 
archive, cloud repository, health care system, or company.  Hosts operate within a 
framework of national law, regulations, ethical oversight, and organizational goals.  
Collectively, these requirements produce access policies and data access decisions that 
determine the accessibility of groups of columns (research studies or collections).  Uniform 
principles of access would permit users to query across all sources and compile global 
query results.  
 

Rows are ordered by genome position using a reference sequence coordinate system.  
Ideally, all data are mapped and organized in a standard order.  The reference sequence 
needs a framework to describe alternative arrangements, unplaced sequence, and 
corrections/extensions.  
 
Larger-scale patterns in the matrix:  haplotypes and pedigrees 
 

Kinship, the history of human demography, and natural selection have imprinted larger 
patterns onto this global matrix of genotypes.  We identify patterns of allelic covariation as 
chromosome haplotypes.  Each haplotype typically spans thousands to several hundred 
thousand bases.  Columns can be organized by pedigree and ethnicity to group individuals 



by genetic similarity and shared genetic history.   
 

Sequence data in each cell likely have a triangular structure with the fundamental 
information axes of sequence, genotype, and haplotype.  The axis of sequence would 
include multiple sequence reads at each base, sequence quality scores, alignment 
properties, orientation, and other technical features of the experiment in cSRA/CRAM 
format.  The axis of genotype would include genotype likelihood, error mode, and 
functional annotation.  Where possible, genotypes would be phased into the third axis of 
chromosome haplotypes, including frequency in reference samples and measures of 
quality/support.  
 
Storage costs  
 
There are costs to storing extensive data, and data producers will make different decisions 
about the data types they will store online (disk) and nearline (e.g., tape).  Nearline 
hardware is about 50% of the cost of online storage and can re-provision archived data to 
disk for computation in minutes.  This storage format is useful for sequence data that are 
important to retain but are rarely used.   
 
What is needed? 

1. An assurance that we capture all the analysis metadata correctly in the Variant Call 
Format (VCF), including analysis results and confidence of variant calls.  Which 
regions of the genome are ignored in the VCF because calls cannot be made 
confidently?  We need a standard and more expressive way to describe where the 
"known unknowns" are than we currently have. 

2. SNP calling is still an issue for small research groups.  Keep the primary sequence 
data. 

3. Structural variant calling is far from mature, so the primary sequence data still need 
to be kept to allow SVs to be called when the methods are reliable.   

 
Phenotype data 
 
Phenotype data cover an immense range of measures, traits, responses, treatments, and 
medical conditions.  While values are carefully defined and collected within a study, little 
coordination or standard definitions exist across studies.  Projects like PhenX address this 
problem by constructing exact guidelines and coding standards for important measures.  
Data sources differ in the format and detail of term definitions, with solutions ranging from 
narrative text and study protocols to coded ontology terms for standard classification. 
 
What is needed? 
 
Sensible standards for basic phenotype data, including file formats that can be better 
harmonized across projects, would lower the barrier to data integration across studies.  
Too many efforts have tried to solve the entire phenotype ontology problem, and the 
absence of a general solution indicates that this is impossible or will take a long time, so 
solving smaller chunks is the way forward.   



 
It would be useful to get data on the differences in cost and quality of data analysis when 1) 
using older phenotyped samples that need data harmonization, 2) rephenotyping to a 
common standard, or 3) using new samples and new phenotyping.  Such data would help 
us estimate the percentage of existing data that would require exceptional treatment.  
Rephenotyping is costly, and should be considered only after community standards for the 
metrics are developed.  We could standardize metrics for data types that we are not 
currently collecting at large scale, such as environmental or pharmaceutical data. 
 
Queries 
 
Most queries are likely to be of the form "give me data from specified individuals for 
specified genome regions that have certain phenotypes".  Execution times for queries will 
vary by data source, the level of detail, and storage strategies.  VCF-based genotype data 
files are relatively small and can be served rapidly, even as inputs to real-time analyses or 
interactive tasks.  Performance for sequence data can be optimized with sufficient 
hardware and attention to engineering details.  Simpler systems may be slower, which 
might be acceptable for many tasks that could be queued for remote execution.  
 
What is needed? 
 
A standard message protocol would help engineers build systems that return results in 
standard forms.  The protocol should be able to specify individuals, genome positions, 
genotypes, haplotypes, and phenotypes in standard formats. 
 
Open vs. controlled data access management 
 
What is needed? 
 
Data that have personal identifiers (PHI) require controlled access.  Groups hosting data 
should provide access through coordinated and uniform methods.  NIH leverages the eRA 
Commons database to provide access control after Data Access Committees (DACs) 
approve researchers for data access.  This works for NIH-run systems, but does not work 
for data that will be stored and distributed outside the US, such as at the EBI.  One solution 
would be to provide the list of approved researchers to other databases, as a central 
approach to approving data access.   
 
Computational resources  
 

Generally, an ideal data source would feature: 
 efficient, cost-effective data storage;  
 descriptions of the types of data for each project; 
 access control systems to distribute data according to use conditions; 
 centralized access mechanisms for collaborating analysts to perform data QC and 

exchange pre-publication results in a secure fashion;  



 easy-to-use systems to make queries and download data; 
 systems to allow queries across the data from multiple projects; 
 data components that are archived as soon as possible; 
 sufficient resources for timely analyses at reasonable costs; 
 best practices for tools, formats, and analysis protocols. 

 
Some classes of data can be summarized from individual genotypes and phenotype 
measures.  These summary data sets could be distributed publicly or with a set of use 
conditions aligned with their risk to participant privacy and confidentiality.  Summary data 
sets may present fewer risks compared to individual-level data sets.  Compute resources 
placed next to the data could permit analyses to be performed in a firewalled area.  The 
performance parameters of such a service would need clear specification:  what types of 
analyses are permitted, who maintains the software and verifies correct execution on the 
hardware, who has access, and who is responsible for security of the system. 
 
Archives can offer data reduction services such as compression, filtering, and slicing so 
users can download and compute locally with modest resources.  Many questions involve 
genome regions much smaller than the full set of genomic data per sample.  Questions at 
the largest scales require investment in more local hardware (for intensive use) or access 
to cloud environments (for occasional use). 

 
 

Cloud solutions 
 

NCI is using the cloud for data distribution (this works very well), running well-established 
pipelines (this is challenging to set up, but works), and exploratory computational work 
(this is still very difficult at large scale).  In the latter two cases, it is much more efficient for 
users to work in-house.  The cloud infrastructure is good for some things but not others. 

 
The cloud is being explored for alignment, SNP calling, and data analysis.  The cloud is 
likely to be important for large genome computations and data integration, but this area 
still requires development.  EBI has been migrating parts of the Ensembl gene annotation 
pipeline to the Amazon Web Services cloud, where the infrastructure is most developed, 
and to other providers, which often have little support for the workflows that EBI uses.  
Cloud systems are well behind a standard compute cluster for large-scale internode 
communication and provisioning of large-memory machines, and the work required to 
adapt existing algorithms is significant.  EBI and NIH are developing trials of cloud services.  
A set of validated tools for alignment, SNP calling, and analysis may be assembled for 
smaller projects that do not require extensive engineering expertise.  
 
Clouds can charge for data transfers into the system, monthly data storage, and 
computation.  The storage and transfer charges are generally significant for large data sets 
and the strategy makes sense only if many users would compute on the data.  Generally, we 
cannot afford to keep a copy of SRA in every commercial cloud at taxpayer expense, since 
the data set is simply too large.  Most problems will require only a fraction of SRA content, 



although that fraction will differ among studies.  Data access could be provided in several 
ways:  1) agencies, advocate groups, etc. could pay for storage and community access to 
common subsets of data to promote research in their area; 2) individual investigators could 
search the archives, identify datasets relevant to their questions, and transfer the data to 
the cloud at their expense; or 3) individual investigators could pay to transfer a dataset into 
a common area on the cloud and then get proportional rebates as other investigators use 
the same data.  
 
All of the models that use data in the cloud are not applicable to dbGaP-protected data with 
the current policy of personalized data encryption for each approved user.  However, it 
could work well if the shared data were encrypted once, with decryption keys issued to 
approved users, as EGA does successfully. 
 
CPU costs associated with typical bioinformatics compute jobs are currently small.  There 
are significant costs, however, to develop and deploy stable and cloud-friendly applications 
that are well written, tested, and maintained.  There are additional costs to develop the 
platform layer discussed in the central analysis server position paper. 
 
What is needed? 
 
Development in this area is very important as many users simply can’t download large data 
sets but have analyses to run and methods to test.  
 
C apacity requirements for NGS projects 
 
Project sizes vary for sequences with quality scores (full, reduced, none) and mate pair 
data, alignments and mappings (with overhead for secondary placements and unmapped 
sequence), variants, genotypes, phased 
haplotypes, and coverage graphs.  
 
Here is an example of data for the 1000 Genomes 
Project as BAM, archive compressed cSRA, and 
VCF.  The difference between the largest and 
smallest versions of the data is 3 orders of 
magnitude. 
 
Questions about capacity planning 
 
How should archive requirements (data amount, 
fidelity, persistence, accuracy) be predicted?   
 
How much experience with large file management is necessary?  This includes sufficient 
bandwidth to move data in and out, high performance infrastructure/network to 
manipulate data internally, backup/fault tolerance for hardware failures, familiarity with 
handshake protocols with sequencing centers, and sample/consent tracking on all data.   



 
Resource requirements 
 
The data access position papers describe possibilities for data access through certified 
users, analysis services near repositories or in the cloud, and models that permit private 
data to be integrated with repository data during analysis.  It is impossible to estimate 
costs without having system requirements.  While hardware, software, staff, and 
institutional requirements are outlined below, discussions should establish the breadth of 
needed functions and estimate potential interest as system load.  Certified user access to a 
research commons would minimally include tasks to establish the partition, create a 
certified user authentication system, and deliver data slices.  Adding computational 
services would require creating an interface website, implementing permitted use policies, 
supporting standard execution interfaces, and developing a platform for third-party 
application development.  For analysis services in the cloud, a system would need to be 
established between the repositories and the servers to deliver analysis results or the 
individual-level data for computation.  Finally, if users could upload private data for their 
analysis sessions, then additional tasks involving data management, security, and 
virtualized application hosts likely would be necessary.  An ambitious program to provide 
all of these services in a robust, high-performance manner would likely need two to three 
dozen software developers.  
 
Hardware:  There is a significant cost to establish and maintain a large, local computing 
center.  These environments cannot be replicated at every research institution.  What are 
the possible alternatives? 

 Lease the hardware (cloud).  Does the cost advantage of clouds outweigh the 
challenges to computation for occasional users?  

 Reduce the size of the data sets by data compression. 
 Establish public resources that researchers can use.  

Hardware costs include 
 The CPUs.  
 The memory capacity. 
 The disk storage capacity. 
 The power consumption. 

 
Software:  There are several choices for analysis tools that affect the cost, quality, and 
reproducibility of results.  Software may be developed internally, be contributed to a 
community package, or be commercial.  There are differences in reliability, fault tolerance, 
performance, and cost of maintenance between academic and production-grade tools. 
 
Human:  Costs include the number of dedicated staff and their expertise in dataflow, 
analysis, and QC by data type/product.  There are additional costs for helpdesk service 
functions, collaboration/DCC, specialized analysis, and archive submission/operation.  
 
Institutional:  Requirements include managing access to data sets; security; 
restrictions/directives for  industry collaboration; IP policies; operating regulations, 



policies, and laws; and international coordination. 
 
What is needed? 
 
Depending on the design of an effort, the data (NGS, analysis products) may be compatible 
with NCBI/dbGaP and EBI/EGA.  Are there common data formats to archive data?  Are 
there common formats to exchange data with trusted partners or Data Coordination 
Centers (e.g., ICGC, CGHUB, deCODE)?  What about data at consortium sites or at 
clinical/translational sites? 
 
Data analysis tools 
 
What tools will be needed to analyze the data?  Some standard analyses (variant calling and 
imputation, loss-of-function variants, disease associations, gene x gene and gene x 
environment interactions) could be provided centrally.  These results could be computed 
by the data host or submitted by a data coordination center.  There are at least two analysis 
communities:  the project analysts who analyze their data, and the users who ask other 
questions of the data.  Deeper analyses are likely to be done locally by the first group.  The 
second group will include sophisticated users facile with local computation and smaller 
groups who need guidance on best practices and tools to ask their questions using shared 
computing spaces like the cloud.  The viability of particular pipelines or tools will depend 
on their ability to be distributed beyond their initial development environment.  
 
The space of analysis tools will continue to outpace the growth in sequence data.  We 
expect, however, that the space of computational tasks follows a power law and 80% of 
tasks could be accommodated with a manageably small list of tools.  Can the community 
establish a subset of tools for pilot Research Commons efforts?  Some questions to help 
improve the potential for long term success include: 

 Is re-engineering needed to meet performance expectations?  If so, are the resources 
available?  

 Are resources committed to support a tool's lifecycle maintenance (upgrades, 
security, etc.)? 

 Is there a user base for the tool?  What is the environment to bring the tool online 
(an institutional investment, protocol requirement, open source community project, 
commercial)? 

 Is there sufficient convergence on file formats, data quality, and exchange standards 
for the tool to work in an analysis environment without middleware conversion 
steps? 

 
Large projects create best practices, but few groups follow them, so we need to provide 
tools in a standard harness.  Steps such as recalibration, realignment, and variant filtering 
seem to have no widely adopted standards.  Providing robust tools in standard analysis 
pipelines would provide more standard ways of doing analyses, which may be especially 
useful for small groups.   
 



 
Appendix 1. 
 
Tools:  A partial list of tasks that require computational resources.  
 

Sequence read alignment/realignment 

Quality recalibration 

De novo assembly 

Variant detection (by variant class) 

Variant integration (across classes) 

Genotype calling 

Cryptic relatedness detection  

Phasing 

Haplotype estimation within sample 

Haplotype estimation from pooled data 

Imputation of variants 

Somatic mutation detection 

De novo mutation detection 

Functional classification 

Functional prediction (analytical validity) 

Network/pathway analysis 

Genotype and phenotype associations   

Clinical consequence (phenotypes, clinical significance, and clinical utility) 

Data visualization (browsers, other modes) 

Translational target prioritization 

 

 


