Integration of physical, breakpoint and genetic maps of chromosome 22. Localization of 587 yeast artificial chromosomes with 238 mapped markers

Callum J.Bell*, Marcia L.Budarf, Bart W.Nieuwenhuijsen ${ }^{1}$, Barry L.Barnoski, Kenneth H.Buetow², Keely Campbell, Angela M.E.Colbert ${ }^{3}$, Joelle Collins, Mark Daly ${ }^{3}$ Philippe R.Desjardins ${ }^{1}$, Todd DeZwaan¹, Barbara Eckman ${ }^{1}$, Simon Foote ${ }^{3,+}$, Kyle Hart ${ }^{1}$, Kevin Hiester ${ }^{1}$, Marius J.Van Het Hoog ${ }^{1}$, Elizabeth Hopper, Alan Kaufman ${ }^{3}$, Heather E.McDermid ${ }^{4}$, G.Christian Overton ${ }^{1}$, Mary Pat Reeve ${ }^{3}$, David B.Searls ${ }^{1}$, Lincoln Stein ${ }^{3}$, Vinay H.Valmiki ${ }^{1}$, Edward Watson, Sloan Williams, Rachel Winston ${ }^{1}$, Robert L.Nussbaum ${ }^{1, \xi}$, Eric S.Lander ${ }^{3}$, Kenneth H.Fischbeck ${ }^{1}$, Beverly S.Emanuel and Thomas J.Hudson ${ }^{3}$
Children's Hospital of Philadelphia, Division of Human Genetics and Molecular Biology, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104, 'University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104-6146, ${ }^{2}$ Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111-2412, ${ }^{3}$ Center for Genome Research, Whitehead Institute for Biological Sciences/Massachusetts Institute of Technology, 9 Cambridge Center. Cambridge. MA 02142, USA and
${ }^{4}$ Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada

Received October 17, 1994; Revised and Accepted November 2, 1994

Abstract

Detailed physical maps of the human genome are important resources for the identification and isolation of disease genes and for studying the structure and function of the genome. We used data from STS content mapping of YACs and natural and induced chromosomal breakpoints to anchor contigs of overlapping yeast artificial chromosome (YAC) clones spanning extensive regions of human chromosome 22. The STSs were assigned to specific regions (bins) on the chromosome using cell lines from a somatic hybrid mapping panel defining a maximum of 25 intervals. YAC librarles were screened by PCR amplificatlon of hlerarchical pools of yeast DNA with 238 markers, and a total of 587 YAC clones were identified. These YACs were assembled into contigs based upon their shared STS content using a simulated annealing algorithm. Fifteen contigs, containing between 2 and 74 STSs were assembled; and ordered along the chromosome based upon the cytogenetic breakpoint, meiotic and PFG maps. Additlonal singleton YACs were assigned to unique chromosomal bins. These ordered YAC contigs will be useful for identifying disease genes and chromosomal breakpoints by positional cioning and will provide the foundation for higher resolution physical maps for large scale sequencing of the chromosome.

INTRODUCTION

Human chromosome 22 constitutes approximately 1.9% of the haploid autosomal genome (1). Clinical disorders associated with this chromosome include several acquired, tumor-related translocations such as the $t(9 ; 22)$ of chronic myelogenous leukemia and acute lymphocytic leukemia $(2,3)$, the $\mathrm{t}(8 ; 22)$ variant translocation of Burkitt's lymphoma (4) and the $t(11$; 22) of Ewing's sarcoma $(5,6)$. Deletions of all or part of chromosome 22 are associated with meningiomas (7,8), acoustic neuromas $(9,10)$, Neurofibromatosis type 2 (NF2) $(11,12)$,
and rhabdoid tumors (13.14). Further, chromosome 22 is also involved in the only recurrent non-Robertsonian constitutional chromosomal translocation in humans $(15,16)$. In addition, a number of syndromes are caused by deletions or duplications of portions of 22q11, including DiGeorge syndrome (17-20), velo-cardio-facial syndrome (21), and cat-eye syndrome (22). Chromosome 22 has a high gene density and contains many duplicated sequences and gene families, which makes it an interesting model for mapping studies. The identification of

[^0]STRPs (simple tandem repeat polymorphisms) (32). expressed sequence tags (ESTs) (33.34). YAC vector-insert junction fragments (35), inter-Alu PCR fragments (36) and randomly sequenced plasmid clones (26.27). The loci at which STSs or probes were generated are shown in Table 1.

Chromosomal bin assignment of markers

Markers were assigned to chromosomal 'bin' locations by Southern blot hybridization or PCR analysis of DNA from cell lines in a 26 member somatic cell hybrid panel. These cell lines define 22 bins shown schematically in Figure 1. Three of these bins are each further subdivided into two subbins, making a total of 25 intervals. The majority of the hybrids have been previously described: GM10888 (37): Cl-6-2/EG, Cl-21-5/CV, Cl-9/GM05878 (38); Rad-110a; Rad 37a (39): GMIl220 = X/22 33-TG. GM11224C $=1 / 22 \mathrm{AM}-6$.

GM11223C $=1 / 22$ AM-27 (40); GMII $685(41): \mathrm{Cl}-4 / \mathrm{GB} . \mathrm{Cl}-$ 1-I/TW (42): AJO 9. APR 8.5 (43): $51+$ AA2 (44): WESP-2.A-TG8 = GM11221 (45): RAJ5BE (46): D6S5 (47). There are eight additional members of the hybrid panel ($\mathrm{Cl}-3 / 5878$: $\mathrm{Cl}-1 / 5878$: $\mathrm{Cl}-2 / 5878: \mathrm{Cl}-8 / 5878: \mathrm{Cl}-15-1 / \mathrm{PB} ; \mathrm{Cl}-21-2 / \mathrm{PB} ; \mathrm{Cl}-$ 2/DIBA: Cl-8-1/AMB6) which will be further described in another manuscript (26). Not all markers were assigned to a unique bin. STSs binned in the Whitehead Institute/MIT Genome Center were tested on a subset of six somatic cell hybrid lines (Fig. 1). whereas those binned in Philadelphia were tested on the complete panel. A small number of STSs could not be uniquely assigned for technical reasons.

Contained within this hybrid mapping panel are the breakpoints which have been designated by the chromosome 22 mapping community as anchor positions in the physical map. The anchor panel was recently updated (48) and now

Figure 1. Schematic of the somatic cell hybrid mapping panel used for bin assignment of markers. The heavy vertical black lines represent the segments of chromosome 22 retained in each hybrid. Shaded portions indicate that the extent of the p arm retained in a hybrid is unknown. The names of the hybrids are shown at the top of the figure. The fine horizontal lines indicate the breakpoints that divide the chromosome into 25 intervals, shown numbered from 1.1 through 22 (three 'bins'are further subdivided into two sub-bins). The upper case letters A-F indicate a subset of the 26 member panel defining six intervals that was used for bin assignment at the Whitehead Institute/MIT Genome Center. The full high resolution panel was used at the Children's Hospital of Philadelphia. The lower case letters a-j show the 10 interval panels defined by the 11 hybrid cell lines available from the NIGMS repository (48).
divides chromosome 22q into a total of 10 intervals which represents a subset of this mapping panel. The hybrids defining the anchor points are: GM11220. GM11685. GM11221. GM11222C. GM11224C. GM11223C. D6S5. Cl-15-1/PB (GM13498), Cl-21-2/PB (GM13499). Cl-2/DIBA (GM13501) and Cl-8-1/AMB6 (GM13500). The somatic cell hybrids defining the anchor points of chromosome 22 are available through the NIGMS genetic mutant cell repository, Camden, New Jersey. Since the chromosome 22 reference hybrids represent a subset of the panel utilized for binning markers described in this manuscript. the data presented here can be easily assessed by other groups in order to position markers which they have mapped using the reference panel.

YAC identification

Most YACs in the study were identified in the CEPH/Genethon libraries [original library (29) with an average insert size of 470 kb and mega-YAC library with an average insert size of $0.9 \mathrm{Mbp}(30)$], by PCR screening of yeast DNAs pooled in two or three dimensions. Additional YACs were isolated from the Washington University YAC library (31), and from a chromosome 22 specific YAC library constructed with DNA from hybrid cell line GM10888 (chromosome 22 in a Chinese hamster background). The chromosome 22 specific YAC library contains approximately 300 YACs with an average insert size of 200 kb , equivalent to $1 \times$ coverage of the chromosome. YACs isolated from the Washington University library were kindly provided by collaborators. In addition, limited use was made of a subset of YACs, kindly provided by Ilya Chumakov and Daniel Cohen, identified by hybridization of Alu-PCR products of a chromosome 22-only somatic cell hybrid to the CEPH mega-YAC library. YACs from this subset. and from the chromosome 22 -specific library were identified by colony hybridization.

Table I shows a summary of the YAC screening results. The left-most column shows the bin intervals, numbered $1.1-$ 22. The relative positions of the bins on the chromosome are displayed visually in Figure 1. Loci that were used to identify YACs are shown in boxes in the body of the table; the vertical extent of each box indicates the bin, or range of bins, to which each locus was mapped by referring to the left-most column, and the number of YACs detected by each locus is indicated in parentheses after the locus name. The majority of these results are YACs identified to single microtiter plate addresses, either from unequivocal PCR results in two or three dimensional screens, or from confirmatory PCR tests done on individual YACs. A YAC address consists of three dimensions: plate, row, and column. In initial screening of YAC pools, many of the addresses were incomplete (missing a dimension), or had more than one possible value in a dimension, which occurs when there is more than one positive YAC per block of eight microtiter plates (see Materials and Methods), or from false positive results. Such ambiguous addresses were resolved by several means including fingerprint analysis, comparison with verified YAC addresses of adjacent STSs, or PCR of all possible clones in the degenerate set of addresses. After preliminary contig assembly, most of the clones identified as well as the putative adjacent YACs were individually tested with each STS in the contig.

GGTX, GGTY and GGTZ (Table 1) refer to probes containing sequences homologous to γ-glutamyl transpeptidase 1
(GGT1) (49). These three GGT-like sequences have been shown to be physically linked to the BCR (break point cluster)like sequences $B C R L 2$ and $B C R L 4$. and to $B C R$ itself. respectively, in 22qII (50). These BCR-like sequences contain polymorphic HindIII sites and thus can be distinguished from each other (51), allowing assignment of the YACs detected by the GGT1 STS to be allocated to unique bins. Details of this study will be presented in a separate publication.

Primer sequences for each STS and YAC addresses may be found in the public FTP (file transfer protocol) sites of the Philadelphia (cbil.humgen.upenn.edu/pub/22f) and the Whitehead Institute/MIT (genome.wi.mit.edu /distribution/ human_STS_releases/) Genome Centers. World Wide Web access is available through HTTP://www.cis.upenn.edu/-cbil/ chr22db/chr22dbhome.html and HTTP://www-genome.wi.mit.edu.

In order to resolve confusion caused by possible crosscontamination among microtiter plate wells we adopted two approaches. The first approach compared the CEPH/Genethon fingerprints, where available, of the putative YAC positives with the fingerprints of other YACs known by STS content to overlap the YAC to be resolved. Shared fingerprint bands

Figure 2. Estimated coverage of the chromosome in contigs. The horizontal lines are the boundaries separating 25 intervals. Contigs are shown as blocks. The stippled block shows the location of a cosmid contig encompassing the DiGeorge critical region (DGCR).
among these YACs identified with a high degree of confidence the true positive YAC address among several neighboring candidates in several cases. The second approach was based on a calculation of the actual distances between wells of two YAC addresses sharing STSs, divided by the number of STS hits in common: when this measure fell below a certain threshold for any pair of addresses, they were consolidated into a single address. This heuristic in all cases corresponded well to human judgments about likely cross-contamination, and was shown to be justified in cases that were checked experimentally. Level 1 data from the CEPH/Genethon genome mapping project were confirmed and included in Table 1.

YAC contig assembly

To date. we have used 238 markers to identify 587 YACs. The YACs and STSs fall into 15 islands, defined as sets of STSs and sets of YACs all of which can be reached from each other by following a path of connectivity altemating between STSs and YACs. Singleton YACs detected by one STS each, numbering 25, are omitted from this total. Although the number of YACs we identified indicates nearly $5 \times$ coverage of the chromosome, the depth of coverage is uneven: all somatic cell hybrid bins contain YACs, but the 22q11.23-q12.31 region (bins 12-15; see below) has much deeper coverage than

Figure 3. Searls plot of simulated annealing data for the largest contig accumulated from multiple runs of the program. The list of loci down the left of the figure is the 'minimum energy' ordering of markers (see the text for detailed explanation). Gray boxes indicate the position on the horizontal axis at which the indicated STSs occurred during individual runs. Darker boxes indicate that an STS was positioned in the same location in multiple runs. Boxes falling repeatedly on the diagonal indicate high confidence in the minimum energy ordering. Horizontal dotted lines indicate the chromosomal bin location of each STS. The bin intervals are shown at the top of the figure. Circles indicate the consensus positions of markers that are present on the meiotic map.
elsewhere. We had difficulty obtaining unequivocal clone and STS order within the largest of these islands. and a clear clone tiling path. even with deep YAC coverage of the area and many STSs. In the central portion of the chromosome YAC connectivity has been achieved over a distance exceeding 10 Mb . yet an unbroken clone tiling path remains elusive despite extensive testing of YACs versus STSs in that region. This may be due in part to false positive and negative YAC/ STS results (although results have been carefully confirmed), internal deletions within YAC clones, and sequences present at more than one location on the chromosome. Given these problems. the objective becomes to find an ordering of STSs that minimizes gaps. In ideal data. there should be an order of STSs. corresponding to a true YAC contig, such that there are no such gaps. However, in our data all postulated orders of STSs in an island result in some number of 'gaps' within YACs in the island. defined as cases where a YAC is negative for some STS but positive for STSs located to both the left and right in the ordering.
For very large islands, finding the STS order with the absolute
minimum number of gaps is computationally intractable. but several approaches have been developed to finding approximate solutions. A simulated annealing (52.53) program we developed employs a random search strategy that seeks local energy minima in the space of all possible orderings, where energy is defined in terms of numbers and sizes of gaps (see Materials and Methods). This approach can be expected to yield somewhat different results for multiple runs, both because there may be more than one valid ordering even for ideal data, and because for 'noisy' data the search may find different local energy minima which are near the actual optimum. In practice, the results of multiple runs of simulated annealing are generally similar, although not identical. We refer to these orderings of STSs and YACs as contigs, though it should be emphasized that the larger islands should be viewed as putative contigs at present.
A schematic representation of the coverage of the chromosome in contigs is shown in Figure 2. The chromosome is shown divided into 25 intervals derived from the somatic cell hybrid map of Budarf et al. (26). Bin I formally includes the

Figure 4. A single solution for the largest contig in the central region of chromosome 22 q . The contig was constructed as follows: YACs and STSs were selected by connectivity to D22SI, obeying the double linkage rule. Singletons (YACs detected by one STS only) were then eliminated, as were markers that detected more than 14 YACs. Singletons were eliminated a second time, and the resulting set of markers and YaCs were subjected to simulated annealing. Marker order is shown along the top of the figure. Above each marker name is the bin interval that the marker was mapped to, e.g. $15 / 16$ indicates the marker is in bin 15-16. YACs are shown as heavy horizontal black lines.
short arm of the chromosome. The contigs. based on the bin assignment of the STSs that detected the YACs in each. are shown as dark blocks. Since STS content mapping provides only limited information on contig size. the true extent of coverage and the sizes of the gaps separating the contigs are unknown. The stippled block represents a contig of cosmids in a region that proved difficult to clone in YACs. YACs detected by STSs in this part of the chromosome were unstable. and were underrepresented in the libraries screened (M.Budarf. unpublished observations). The cosmid map of this region will be described in a separate publication. Figure 2 makes clear the low coverage of the distal portion of the chromosome. This arises in part from the lower density of markers but is largely due to underrepresentation of the region in the megaYAC library.

Figure 3 shows simulated annealing results for the largest contig, using a novel method of representing such data to which we have given the name 'Searls plot'. after the author of the program. As noted. results of simulated annealing tend toward local minima of the objective function that may differ among runs. The relative merits of these STS orderings and implied YAC contigs cannot be judged with confidence on the basis of the STS data alone. On the other hand. a number of such orderings independently arrived at may be expected to represent a reasonable sampling of the contours of the search space of possible STS orderings. If the predicted orderings do not resemble each other. then little can be said about which is closest to the true optimum, but if they are all similar. one may be more confident in their consensus. Figure 3 shows the degree and nature of the consensus for multiple simulated annealings. The minimum energy ordering among all runs is indicated by the list of STSs running down the left hand side. The gray boxes in the diagram show the positions along the horizontal axis at which the indicated STS occurs in a run, so that the major diagonal denotes complete agreement with the minimum energy run. Other gray boxes indicate positions at which that STS occurred in other runs. and the shading of a box reflects the number of times a particular STS occurred at the same position in a run. If the predictions for an STS tend to cluster at more than one position in multiple runs. one may infer that the evidence is not strong enough to greatly favor one position over another, though it may be possible to narrow the possibilities to a few regions.
As noted above, even with ideal data it may be possible to have more than one ordering, particularly over subregions of the contig. Obviously, a given ordering of STSs may be reversed in its entirety, without changing the apparent fit to the YAC data in isolation, and for that reason each simulated annealing run is reversed, if necessary, to more closely approach the consensus. However, there may also be subregions over which the STSs can be reversed without affecting the energy materially, and in this case the Searls plot will display a characteristic ' X ' pattern across the diagonal, representing the alternative orderings. Another characteristic pattern is a displacement of a subregion laterally on the plot, with either a forward or reversed directionality, indicating parts of the contig that display local integrity but which can be moved elsewhere in the larger scheme of things, with little or no penalty. Finally, there are subregions where STSs tend to be in proximity to each other, but where there is little support for ordering them with respect to each other. This may occur, for
example, where there are multiple YACs with the same STS hits. but no YACs with only partial overiap to split the STSs and provide order information. These appear as 'clouds' of points at or near the diagonal: it can be seen that with a sufficient sample size such regions would approach a uniform distribution of points within a diffuse 'superblock'. Figure 3 shows a major ' X ' indicating that the ordering in the distal half of the contig was inverted in a significant number of the simulated annealing runs. We interpret this to mean that the link between D22S591 and D22S47 should be viewed with caution. We have yet to confirm by other means whether actual continuity of YAC coverage exists in this region.
Figure 3 suggests, with some confidence, a general ordering of STSs in most sections of this region of the chromosome, but in some areas there is significant scatter. Some of this deviation is systematic in nature, as described in the previous paragraph, and some in all likelihood merely reflects regions where the data is error-prone. An external test of the accuracy of this method is provided not only by bin information but by the meiotic and pulsed-field gel maps (54,55) of the region; the orders of the subsets of markers in both of these maps are similar in the converged order arrived at by simulated annealing, which in this case was done without regard to information from any of these other methods. Figure 4 shows a single simulated annealing solution to the largest contig.

DISCUSSION

We used physical. breakpoint. and meiotic maps of human chromosome 22 to localize contigs of overlapping YAC clones that provide extensive coverage of the long arm of the chromosome. The physical map is developing rapidly due to considerable new data obtained by screening YAC libraries with STSs. The contigs. most of which are anchored by landmarks that have been ordered by meiotic or hybrid mapping, provide extensive coverage of the long arm of the chromosome. Although long range continuity of the contigs is not yet complete, the present information is of immediate use to the human genetic mapping community for identifying disease genes and chromosomal breakpoints. The current state of the physical map reported here reflects the fundamental characteristics of the reagents and methods used, as well as the inherent nature of chromosome 22 itself.

STSs that were developed for chromosome 22 are not randomly distributed along the chromosome. The contig spanning interval 22q11.2-q13.1 is the most evolved as the result of the high density of markers in this region and greater than average representation of the region in the YAC libraries. The distribution of markers shows a bias towards the center of the long arm of the chromosome $(26,27)$. This is partly because many STRP markers were used as STSs, and these are known to be concentrated in the 22 q 12 Giemsa-dark chromosomal band (55). However, it is not known why other randomly chosen STSs generated from flow-sorted material should also be biased in this way. The distal third of the long arm is correspondingly poor in STSs, and appears to be underrepresented in the YAC libraries, and as a consequence, contains only two small contigs and seven singleton YACs. Interestingly, the distal portion of the long arm appears to be resistant to cloning in both plasmid and YAC libraries, and the consequent paucity of mapping information indicates the need for alternat-
ive strategies for covering this region. Currently, we are targetting the region by generating STSs from inter-Alu plasmid libraries made from radiation hybrid cell lines that retain only the distal portion of the chromosome. Success in developing new STSs in this way has shown that YACs. not markers, are likely to be limiting for YAC-STS contig mapping, and that complete coverage of this region will probably depend on a different cloning vehicle. Current candidate systems are bacterial artificial chromosomes (BACs) (56), Pl phage clones (57), Pl artificial chromosomes (PACs) (58), and cosmids.

Screening multi-dimensional pools of YACs was the only practical way to test all 25,000 .mega-YACs for the presence or absence of a given STS, but created several types of problems. Contamination of adjacent wells during preparation of the pools, absence of amplification in one dimension, or the presence of more than one positive YAC in the same pool were examples of difficulties that are inherent to pooling schemes which can result in false positive, false negative, and ambiguous YAC addresses. Most of the results obtained from the pool screenings have been resolved by a variety of methods, including analysis of YACs seen with adjacent STSs, fingerprint analysis of selected YACs, and ultimately, the verification of the PCR on the individual YAC. To decrease the errors caused by false negatives on STS order, most STSs were screened on adjacent YACs as well.

The CEPH mega-YACs, which have an average insert size of $0.9 \mathrm{Mb}(30)$, provided the best tool for linking STSs and assembling contigs, and were screened with all available markers. By requiring double linkage (59) before declaring contiguity among STSs in the largest contig, large clones were required, and YACs from the other libraries, while contributing to deep coverage in most regions, did not, in general, contribute to contig assembly. However, in some notable cases contig construction was dependent upon the smaller clones, and as the map matures, they will be useful in resolving the order of closely spaced STSs, and as tools for isolating cosmids or other smaller clones as the map moves towards a higher level of resolution required for eventual sequencing.

In addition to the known families of chromosome 22 specific repeats on long arm, such as the $B C R$, immunoglobulin and GGT gene families, we observed several markers which appear to behave as low copy repeats. In such cases, the PCR assay amplifies two identical or related sequences with products of similar molecular weights. Examples of this were D22S33 and D22S275, which gave several bands of similar size, and detected 15 and 14 YACs respectively. Repetitive STSs created inconsistencies in the data, manifested as large apparent gaps in YAC clones, since contig assembly software tries to assign them single contig locations. In fact, they may be present at two or more locations. Repeats therefore artificially connect YACs at disparate locations. We arbitrarily decided that STSs detecting 14 or more mega-YACs would be declared potentially repetitive and excluded them from contig construction.

The CEPH-Genethon tiling paths (60), provided relatively little additional information because the areas covered by tiling paths coincided with the region where the STS physical map was already well covered. We independently screened the mega-YAC library for the same Genethon genetic markers $(61,62)$, and confirmed the YAC addresses and the level-1 tiling paths present in the November 1993 CEPH-Genethon data release (60). We extracted a few YAC addresses derived
by Alu-PCR hybridizations in 22q11.2-q13.1 region that were missed during YAC pool screening. Unfortunately, the areas where the STS content map was poor were also not represented in the tiling paths, or present only in higher level paths that could not be confirmed. Fingerprint analysis on the megaYACs generated by CEPH (60.63), was used to resolve ambiguous addresses derived from screening pools of YACs. This method, successful in one third of ambiguous addresses tested, reduced the number of alternate addresses that need to be verified for YAC determination. We did try to assemble the 22q11.2-q13.1 contig by fingerprint analysis alone using only the fingerprints of YACs that were previously identified to this region. The results had only limited success, yielding small contigs with less than 10 YACs that were already shown to have extensive overlap in STS content.

We chose to represent the data for the large contig in two ways: a single simulated annealing solution, and the Searls plot, derived from multiple runs of simulated annealing. These representations, combined with the YAC-STS results shown in Table 1, provide an objective and useful means of using these data. Previous localization of markers by recombination or breakpoints greatly facilitated the evaluation of the STS content map. The marker order in region 22q11.2-q13.1, spanning more than 11 cM , was broadly consistent with the orders of subsets of markers arrived at by meiotic and pulsedfield gel mapping (54,55). The smaller contigs contain, at most, two genetically ordered markers, which does not allow real comparisons of marker order with the meiotic map. In essence, we have made the assumption that the framework linkage map (55) is correct, and used it to anchor and orient the smaller contigs. The best validation of the smaller contigs came from concordance with the somatic cell hybrid binning results.

It is clear that, due to problems inherent to YACs, the STScontent mapping results from the large contig did not allow us to obtain a fine structure order of the region. This may well be true for many other regions in the genome. The need for additional methodologies to obtain a finer scaffold map of STSs is evident. Radiation hybrids, which allow the study of multiple, larger DNA fragments at a higher redundancy may provide more confidence in generating a high resolution STS order. They will also allow contiguity of the STS map in regions where YAC clones are few or absent.

The contigs reported in this paper will facilitate the study of several disease-related and structural regions of interest on chromosome 22. The YACs that have been localized to bins 1 and 2 (22q1l.1-qll.2) form contigs that almost completely cover the cat eye syndrome critical region (CECR). The most proximal of these will allow us to address the problem of defining the physical boundary of the centromere. The completion of a contig containing all of the CECR, facilitated by a pulsed field gel electrophoresis map (64), will permit detailed transcription mapping of the region as a first approach to defining genes that contribute to this syndrome. In the region distal to the CECR, 22q11.2, difficulty was encountered in obtaining stable YACs in bins 3, 4 and 5. YACs identified in this region were frequently smaller than the mean insert sizes of the libraries, indicating that they contained deletions, and several probes failed to detect YACs. These bins represent the DiGeorge syndrome commonly deleted region which is notably unstable in humans giving rise to the deletions seen
atients with DiGeorge syndrome and velo-cardio-facial drome (65). It is interesting to note that these. and other uences mapping to the sites of frequent chromosomal angements in cat eye syndrome are also unstable when ed in yeast. Further characterization of these sequences allow us to investigate the possible causes of instability. e constitutional t(11:22) translocation breakpoint is the recurrent, non-Robertsonian. constitutional translocation umans (15,16). and defines the boundary between bins 7 8. Contigs spanning this region may help in revealing ctural features on the chromosome that underlie this angement, as well as the identification of genes suspected nvolvement in breast cancer tumorigenesis (66). Identificaof clones that span the $t(11 ; 22)$ breakpoint has been plicated by the presence of several duplicated regions in 11 which include the GGT and BCRL loci. In addition to e known ancestral duplications, STS screening results oest the presence of other low-copy repeat families that e the construction of a contiguous clone map of 22q11 icularly challenging. The largest contig, connecting bins and 15 ($22 \mathrm{q} 11.2-\mathrm{q} 13.1$) contains several interesting feas that have already been well characterized, including the ng 's sarcoma breakpoint $(5,6)$, the NF2 gene $(11,12)$ and candidate meningioma gene β-adaptin (67).
conclusion, the physical map of human chromosome 22 advanced considerably, due to the large. scale screening of CEPH mega-YAC library with chromosome 22 specific s. and several regions of interest are now contained within contigs. Current efforts to achieve a complete set of rlapping clones for the long arm of the chromosome are cted at the generation of additional STSs for clone screenas well as targeted strategies for the distal third of the mosome using Alu-PCR hybridization methods.

TERIALS AND METHODS

ing of YAC libraries

e Philadelphia genome center, two dimensional pools of the CEPH thon YAC libraries were constructed as described (68). A Biomek 1000 \because workstation (Beckman Instruments) was used for yeast DNA isolation -ling. In brief, yeast clones were grown to saturation in ura-tipnedium in microciter plates at $30^{\circ} \mathrm{C}$. $50-75 \mu \mathrm{l}$ of each clone was Ho a 1 ml deep-well plate (Beckman Instruments) in which spheroplast tion and lysis were performed as described elsewhere (69). The was extracted twice with Strataclean resin (Stratagene) according lanufacurers recommendations. The DNA was then precipitated with opanol and the pellet was allowed to dry. After resuspension in TE (10 Tris- HCl pH $8.0,1 \mathrm{mM}$ EDTA, pH 8.0) and treatment with DNAaseRNAase, the DNA was precipitated with isopropanol and the pellet was and resuspended in water. Limited use was also made of commercially ased DNA pools constructed in three dimensional blocks equivalent to microtiter plates each (Research Genetics, Huntsville, Albama).
R was performed in $20 \mu \mathrm{r}$ reactions using approximately 20 ng of pooled DNA in standard PCR buffer ($1 \times$ buffer (Boehringher-Mannheim): 10 Tris $-\mathrm{HCl}, 1.5 \mathrm{mM} \mathrm{Mg}{ }^{2+}, 50 \mathrm{mM} \mathrm{KCl}, \mathrm{pH} 8.3$) with 20 nM (final entration) primers and 0.5 'U Taq polymerase (Perkin Elmer Cetus or ringher Mannheim). PCR conditions were: a 5 min denaturation step at followed by 45 cycles of $94^{\circ} \mathrm{C}$ for 20 s , annealing for $20 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for - and a 7 min extension at $72^{\circ} \mathrm{C}$. Suitable annealing temperatures were ined for each STS. The majority of the PCR assays were performed J Research PTC-100 thermal cyclers. Products were analyzed by gel rophoresis using 1.5% agarose.
Ss sereened at the Whitehead Instiute/MIT Center for Genome Research analyzed using a semi-automated system. The STSs were screened on s 709 to 972 of the CEPH mega-YAC library, generously provided by el Cohen. The YAC library was screened by a two-level pooling scheme.

At the first level, there are 32 superpools consisting of DNA from the 768 YACs in a block of eight 96 well plates. Corresponding to each block, there are 8 row. 12 column, and 8 plate subpools. STSs positive at the superpool screen were then screened on the corresponding subpools to identify YAC addresses.

PCRs were prepared by a robotic station built by ROSYS and modified by LAS (Intelligent Automation Systems, Inc.. Cambridge. MA). PCR was performed in $20 \mu \mathrm{l}$ volumes containing 10 ng target DNA, $1 \times P C R$ Buffer (10 mM Tris-HCI, $50 \mathrm{mM} \mathrm{KCl} .1 .5 \mathrm{mM} \mathrm{Mg}=$. and 0.001% gelatin), 4 nmol dNTP, 5 pmol each primer, and 0.5 U Taq. PCRs were completed on custom built thermocyclers (locally called waffle irons, by LAS) each having a capacity of 16192 well plates (Costar, Cambridge MA). PCR conditions were: an initial 4 min denaturation at $94^{\circ} \mathrm{C}$ followed by 30 cycles of 50 s at $94^{\circ} \mathrm{C}$, 1.5 \min at $58^{\circ} \mathrm{C}$, I min at $72^{\circ} \mathrm{C}$, and a final extension period of 10 min at $72^{\circ} \mathrm{C}$.

STSs were screened by either standard agarose gel stained with ethidium bromide or by high throughput chemiluminescence dot-blot analysis: The PCR products were transferred from the 192 well plates to nylon membranes using a custom built 96 pin pipettor (LAS) and a 6144 reaction capacity dotblotting apparatus ($96 \times 16 \times 4$ well density, LAS). Subsequent hybridization and detection of the Hybond $\mathrm{N}+$ membrane (Amersharn) membranes was done using the ECL kit (Amersham). Hybridization was done ovemight using non-radioactive probes designed from PCR products. STSs known to contain an internal repeat sequence such as CA or AGAT were probed with a molecule coniaining the repeat structure which had also been labelled with horseradish peroxidase (HRP). All blots were stringently washed with urea, $2 \times$ SSC and SDS at $42^{\circ} \mathrm{C}$ and detected using the standard ECL reagents. Computer images of each autoradiograph were obrained using a CCD camera. The VIEW software (Carl Rosenberg, Whitehead Instirute) was used to locate and identify the positive dots, as well as to generate an intensity reading.

Fingerprint resolution of degenerate addresses

The STS screening on YAC pools yielded many degenerate YAC addresses, which occurred as a result of having more than one positive YAC per block of eight microtiter plates, from having one dimension in a two or three dimensional screen consistently fail to amplify, and from false positive results. These degenerate addresses represented a small set of addresses, from 2 to 12, of which usually one or two addresses contained the specific STS. We used fingerprint data to establish overlaps between the set of ambiguous YACs and the set of definite YACs. We applied a simple band-matching test to the CEPH-genethon fingerprint data set and declared pairs of clones with a statistically significant number of matching bands as overlapping. Parameters for declaring overlap were stringent, allowing resolution of only $1 / 3$ of degenerate addresses. However, empirical testing of over 500 fingerprint resolved addresses from random STSs demonstrated that greater than 95% could be confirmed by testing the individual YAC DNAs.
Most YAC addresses obtained by screening the YAC pools, fingerprint analysis, and those derived from adjacent STSs during contig building were verified by testing DNA prepared from individual YACs in the library.

Construction of a chromosome 22 specific YAC library

DNA from hybrid cell line GM10888 (chromosome 22 in a Chinese hamster background) was used to create a chromosome 22 specific YAC library essentially as described (70). In brief, high molecular weight DNA from this cell line was partially digested with EcoRI and after ligation to pYAC4 was size selected on a 1% FMC Seaplaque GTG low melting agarose gel in a CHEF-DRII apparatus (BioRad). YACs containing human chromosome 22 DNA were identified by colony hybridization using total human DNA or human C_{0} tl DNA as probes.

[^1]data: our energy function involves examining the number and size of apparent gaps required in YACs to account tor an ordering of STSs. i.e. positions where an expected STS hit is not observed. as well as arbitrary other objectives reflecting additional sources of information about probe order. The objective is to minimize this energy by accepting moves that reduce the overall energy. In order to avoid being trapped in a local energy minimum. the process takes place in the context of an abstract 'temperature': a good energy minimum is sought by gradually 'cooling' the random search. so that the entire search space is accessible and poor local minima can be escaped. yet there is a gradual convergence (though it cannot be guaranteed that any one solution is optimal). The graphical user interface was designed for maximum interaction with the user, who has the option of reordering probes manually by any of the operations described above, or of asking the program to do so via simulated annealing. for the entire working probe set or any subregion. Islands of connected probe sets can be accumulated in a controlled fashion and with varying stringency as to degree of connectedness. These sets may then be winnowed based on a variety of heuristics to eliminate non-informative or doubtful probes, clones, or points. For example, adjacent or nearby wells with similar reactivities, likely to be due to cross-contamination, may be automatically combined, or YACs that appear to span non-continuous bins may be removed. etc. The contig assembly software may be obtained by sending a request by email to dsearls@cbil.humgen.upenn.edu.

ACKNOWLEDGEMENTS

The work undertaken in the Human Genome Center for Chromosome 22 in Philadelphia was supported by grant numbers P50-HG00425 (NCHGR) and CA39926 (NCI) from the NIH. Studies in the Whitehead Institute/MIT Center for Genome Research were supported by National Institute of Health Center for Genome Research Grant P50-HG00098. We wish to thank Eric Green and Glen Evans for screening for Washington University YACs. Eckart Meese and Marco Giovannini for providing STSs prior to publication, Daniel Cohen, Ilya Chumakov and Jean Weissenbach for the CEPH YAC libraries and the Alu-PCR generated chromosome 22 subset, and Willem Van Loon for biomek routines. Thomas Hudson is a recipient of a Clinician-Scientist Award from the Medical Research Council of Canada.

REFERENCES

1. Morton.N.E. (1991) Parameters of the human genome. Proc. Natl Acad. Sci. USA 88, 7474-7476.
2. Nowell,P.C. and Hungerford,D.A. (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132, 1497-1499.
3. Rowley,J.D. (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290-293.
t. Berger,R., Bemheim,A., Weh,H.J., Flandrin,G., Danjel.M.T., Brouet.J.C. and Colbert.N. (1979) A new translocation in Burkitt's tumor cells. Hum. Genet. 53. 111-112.
4. Aurias,A., Rimbaut,C., Buffe,D., Dubousset.J. and Mazabraud.A. (1983) Chromosomal translocations in Ewing's sarcoma. N. Engl. J. Med. 309, 496-497.
5. Turc-Carel,C., Philip,I., Berger,M.P., Philip.T. and Lenoir,G.M. (1983) Chromosomal translocations in Ewing's sarcoma. N. Engl. J. Med. 309. 497-498.
6. Zang.K.D. (1982) Cytological and cytogenetical studies on human meningioma. Cancer Cenet. Cytogenet. 6, 249-274.
7. Dumanski.J.P., Carlbom,E., Collins,V.P. and Nordenskjold.M. (1987) Deletion mapping of a locus on human chromosome 22 involved in the oncogenesis of meningioma. Proc. Natl Acad. Sci. USA 84, 9275-9279.
8. Seizinger,B.R., Martuza,R.L. and Gusella,J.F. (1986) Loss of genes on chromosome 22 in tumorigenesis of human acoustic neuroma. Nature 322. 644-647.
9. Seizinger,B.R., Rouleau,G., Ozelius,L.J., Lane.A.H., ST. GeorgeHyslop,P., Huson,S., Gusella,J.F. and Martuza,R.L. (1987) Common pathogenetic mechanism for three tumor types in bilateral acoustic neurofibromatosis. Science 236, 317-319.
10. Trofatter.J.A., MacCollin.M.M.. Rutter,J.L.. Murell.J.R., Duyao.M.P., Parry.D.M., Eldridge.R., Kley,N., Menon,A.G., Pulaski,K., Haase,V.H., Ambrose,C.M., Munroe,D., Bove,C., Haines.J.L., Martuza,R.L., MacDonald,M.E., Seizinger,B.R., Short,M.P., Buckler,A.J. and Gusella,J.F. (1993) A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72, 791-800.
11. Rouleau.G.A., Merel.P.. Lutchman.M.. Sanson.M.. Zucman.J.. Marineau.C.. Hoang-Xuan.K.. Demczuk.S.. Desmaze.C.. Plougastel.B.. Pulst.S.M.. Lenoir.G.. Bijlsma.E.. Fashold.R.. Dumanski.J.. de Jong.P.. Parry.D.. Eldridge.R.. Aurias.A.. Delattre.O. and Thomas.G. 11993) Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-ibromatosis type 2. .Vature 363. 515-521.
12. Biegel.J.A., Rorke.L.B.. Packer.R.J. and Emanuel.B.S. 119901 Monosomy 22 in rhabdoid or atypical tumors of the brain. J. Veuresurg. 73. 710-714.
13. Biegel.J.A., Burk.C.D.. Parmiter.A.H. and Emanuel.B.S. (1992) Molecular analysis of a partial deletion of 22q in a central nervous system rhabdoid tumor. Genes Chromosom. Cancer 5. 104-108.
14. Zackai.E.H. and Emanuel.B.S. (1980) Site-specific reciprocal translocation, $1(11: 22)$ (q23:q11). in several unrelated families with $3: 1$ meiotic disjunction. Am. J. Med. Gener. 7. 507-521.
15. Fraccaro.M.. Lindsten.J.. Ford.C.E. and Iselius.L. (1980) The 11q:22q translocation: a European collaborative analysis of 43 cases. Hum. Gener. 56. 21-51.
16. De La Chapelle.A., Herva.R.. Koivisto.M. and Aula.P. (1981) A deletion in chromosome 22 can cause DiGeorge syndrome. Hum. Genet. 57. 253-256.
17. Kelley.R.I., Zackai.E.H.. Emanuel.B.S., Kistenmacher,M.. Greenberg.F. and Punnett.H.H. (1982) The association of the DiGeorge anomalad with partial monosomy of chromosome 22. J. Pediatr. 101. 197-200.
18. Driscoll, D.A., Budart, M.L.. Emanuel. B.S. (1992) A genetic etiology for DiGeorge syndrome: Consistent deletions and microdeletions of 22q11. Am. J. Hum. Genet. 50. 924-933
19. Carey,A.H., Roach.S.. Williamson.R.. Dumanski.J.P.. Nordenskjold.M., Collins, V.P., Rouleau.G.. Blin.N., Jalbert.P. and Scambler.P. (1990) Localization of 27 DNA markers to the region of human chromosome 22qll-pter deleted in patients with the DiGeorge syndrome and duplicated in the der22 syndrome. Genomics 7, 299-306.
20. Driscoll, D.A.. Spinner. N.B.. Budarf. M.L.. McDonald-McGinn. D.M.. Zackai, E.H., Goldberg. R.B.. Shprintzen. R.J.. Saal. H.M.. Zonana. J.. Jones. M.C., Mascarello. J.T.. Emanuel. B.S. (1992) Deletions and microdeletions of 22q11.2 in velo-cardio-facial syndrome. Am. J. Med. Genet. 44, 261-268
21. McDermid,H.E., Duncan.A.M.V., Brasch.K.R., Holden.J.J.A.. Magenis.E., Sheehy,R., Bum.J.. Kardon.N., Noel.B.. Schinzel.A.. Teshima.I. and White.B.N. (1986) Characterization of the supernumery chromosome in cat eye syndrome. Science 232. 646-648.
22. Olson.M., Hood.L.. Cantor.C. and Botstein.D. (1989) A common language for physical mapping of the human genome. Science 245, 143 1435 .
23. Green.E.D. and Olson.M. (1990) Chromosomal region of the cystic fibrosis gene in yeast artificial chromosomes: a model for human genome mapping. Science 250. 94-98.
24. Green,E.D. and Green.P. (1991) Sequence-tagged site (STS) content mapping of human chromosomes: theoretical considerations and early experiences. PCR Methods Applic. 1, 77-90.
25. Budarf, M.L., Eckman. B.. Michaud. D.. Buetow, K.H., Williams, S.. McDermid, H.. Goldmuntz. E.. Gavigan. S.. Meese. E.. Biegel, J.. Dumanski. J., Bell. C.J. and Emanuel. B.S. (1994) Regional localization of over 300 loci on human chromosome 22 with an extended regional mapping panel. Submitted.
26. Hudson, T.J., Colbert, A.M.E., Reeve, M.P., Bae, J.S., Lee, M.K., Nussbaum, R.L., Budari. M.L.. Emanuel. B.S. and Foote: S. (1994) Isolation and regional mapping of 110 chromosome 22 STSs.Genomics. in press.
27. Burke.D.T., Carle.G.F. and Olson.M.V. (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806-812.
28. Albertsen,H.M., Abderrahim.H.. Cann.H.M., Dausset,J., Le Paslier.D. and Cohen,D. (1990) Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc. Natl Acad. Sci. USA 87. 4256-4260.
29. Chumakov.1., Rigault.P.. Guillou.S.. Ougen.P., Billaut.A.. Guasconi.G.. Gervy,P., LeGall.1., Soularue.P.. Grinas.L., Bougueleret.L.. BellaneChantelot,C., Lacroix,B.. Barillot.E., Gesnouin,P., Pook,S., Vaysseix.G., Frelat,G., Schmitz,A., Sambucy.J., Bosch.A., Estivill,X., Weissenbach.J., Vignal,A., Reithman.H., Cox.D., Patterson.D., Gardiner.K., Hattori.M., Sakaki. Y., Ichikawa.H.. Ohki.M.. Le Paslier,D., Heilig.R., Antonarakis,S. and Cohen,D. (1992) Continuum of overlapping clones spanning the entire human chromosome 21q. Nature 359, 380-387.
30. Brownstein,B.H., Silverman.G.A., Little,R.D., Burke.D.T., Korsmeyer,S.J., Schlessinger,D. and Olson,M.V. (1989) Isolation of
single-copy human genes from a library of yeast artiticial chromosome clones. Science 24. 1348-1351.
31. Weber.J.L. and May.P.E. (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum.Genet. H. 388-396.
32. Wilcox. A.S.. Khan.A.S.. Hopkins.J.A. and Sikela.J.M. 11991) Use of 3' untranslated sequences of human eDNAs for rapid chromosome assignment and conversion to STS: implications for an expression map of the genome. Nucleic Acids Res. 19. 1837-18+3.
33. Adams.M.D.. Kelley.J.M.. Gucayne.J.D.. Dubnick.M.. Polymeropoulos.M.H.. Xiao.H.. Merril.C.R., Wu.A.. Olde.B. and Moreno.R.F. (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252. 1651-1656.
34. Riley.J.. Butler.R., Ogilvie.D.J.. Finniear.R., Jenner.D.. Anand.R., Smith.J.C. and Markham.A.F. (1990) A novel. rapid method for the isolation of terminal sequences from yeast artiticial chromosome (YAC) clones. Vucleic Acids Res. 18. 2887-2890.
35. Velson.D.L., Ledbetter.S.A., Corbo,L., Victoria.M.F.. Ramirez-Solis.R., Webster,T.D.. Ledbetter,D.H. and Caskey.C.T. (1989) A/u polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. Proc. Natl Acad. Sci. USA 86. 6686-6690.
36. Lichter, P., Ledbetter. S.A., Ledbetter. D.H. and Ward. D.C. (1980) Fluorescence in situ hybridization with $A l l u$ and Ll polymerase chain reaction probes for rapid characterization of human chromosomes in hybrid cell lines. Proc. Narl Acad. Sci. USA 87. 663\$-6638.
37. Emanuel. B.S.. Driscoll, D.. Goldmuntz. E.. Baldwin. S.. Biegel. J.. Zackai. E.H., McDonald-McGinn, D., Sellinger. B.. Gorman, N., Williams, S.. and Budarf, M.L. (1993) Molecular and phenotypic analysis of the chromosome 22 microdeletion syndromes. In Epstein. CJ. (ed.), Phenonpic Mapping of Down Syndmone and Other Aneuploid Conditions. Wiley Liss. New York, NY. 207-224.
38. Frazer. K.A., Boehnke, M., Budart. M.L.. Wolff. R.K.. Emanuel, B.S., Myers. R.M. and Cox, D.R. (1992) A radiation hybrid map of the region on human chromosome 22 containing the neurotibromatosis type 2 locus. Genomics 14. 574-584.
39. Geurts van Kessel. A.H.M.. Westerveld, A.. de Groot. P.G.. Meera Khan, P. and Hagemeijer. A. (1980) Regional localization of the genes coding for human ACO2, ARSA, and NAGA on chromosome 22. Cytogenet. Cell. Genet. 28. 169-172.
40. Ledbetter. D.H.. Rich. D.C.. O'Connell. P.. Leppert. M. and Carey, J.C. (1989) Precise localization of NFI to $17 \mathrm{ql\mid} .2$ by balanced translocation. Am. J. Hum. Genet. 44, 20-24.
41. Budarf, M.L., Sellinger, B., Griftin, C., Emanuel. B.S. (1989) Comparative mapping of the constitutional and tumor associated $11: 22$ translocations. din. J. Hum. Genet. 45. 128-139.
42. Delattre, O., Azambuja, C.J., Aurias, A., Zucman. J.. Peter, M., Zhang, F.. Hors-Cayla, M.C., Rouleau. G., and Thomas. G. (1991) Mapping of human chromosome 22 with a panel of somatic cell hybrids. Cenomics 9. 721-727.
H. Erikson. J., Griflin. C.. ar-Rushdi. A.. Valtieri. M.. Hoxie, J.. Finan, J., Emanuel. B.S.. Rovera. G., Nowell. P.C., Croce. C.M. (1986) Heterogeneity of chromosome 22 breakpoint in Ph-positive acute lymphocytic leukemia. Proc. Natl Acad. Sci. USA 83. 1807-1811.
43. Geurts van Kessel. A.H.M.. Tetteroo, P.A.T., von dem Bome. A.E.G.Kr., Hagemeijer, A. and Bootsma, D. (1983) Expression of human myeloidassociated surface antigens in human-mouse myeloid cell hybriuds. Proc. Natl Acad. Sci. USA 80, 3748-3752.
44. Bauer.T.R.. McDermid.H.E., Budarf, M.L., Van Keuren, M.L. and Bloomberg, B.B. (1993) Physical location of the human immunoglobulin lambda-like genes 14.1, 16.1 and 16.2. Immunogenetics 38. 387-399.
45. Croce. C.M., Huebner, K., Isobe, M., Fainstein, E., Lifshitz, B., Shivelman. E., Canaani. E. (1987) Mapping of the four distinct BCRrelated loci to chromosome region 22q11: order of BCR loci relative to chronic myelogeneous leukemia and acute lymphoblastic leukemia breakpoints. Proc. Natl Acad. Sci USA 84, 717+7178.
46. Scambler. P.J. (1994) Report of the Fourth Intemational Workshop on Human Chromosome 22 Mapping. Cyrogener. Cell Genet. 67. 277-319.
47. Figlewicz, D.A., Delatre, O., Guellaen, G., Krizus, A., Thomas, G., Zucman.J., and Roulcau. G.A. (1993) Mapping of human γ-glutamyl transpeptidase genes on chromosome 22 and other autosomes. Cenomics 17. 299-305.
48. Heisterkamp,N. and Groffen.J. (1988) Duplication of the bcr and gammaglutamyl transpeptidase genes. Nucleic Acids Res. 16, 8045-8056.
49. Budarf, M.L., Canaani. E. and Emanuel, B.S. (1988) Linear order of the four BCR-related loci in 22q11. Genomics 3, 168-172.
50. Cuticchia.A.J.. Amold.J. and Timberlake,W.E. (1992) The use of simulated annealing in chromosome reconstruction experiments based on binary scoring. Genetics 132.591-601.
51. Rigault. P. (1993) In Lim.H.A.. Fickett.J.. Cantor.C.R. and Robbins.R.J. (eds) Clone Ordering by Simulated Annealing: Application to the STSContent Map of Chromosome 21. Proceedings of the Second International Conference on Bioinformatics. Supercomputing, and Complex Genome Analysis. World Scientitic Publishing: 169-183.
52. McDermid.H.E., Budari.M.L. and Emanuel.B.S: (1993) Long-range restriction map of human chromosome 22q11-22q12 between the lambda immunoglobulin locus and the Ewing sarcoma breakpoint. Genomics 18. 308-318.
53. Buetow,K.H., Duggan.D.. Yang,B.. Ludwigsen,S., Puck,J.. Porter.J.. Budarf.M., Spielman.R. and Emanuel.B.S. (1993) A microsatellite-based multipoint index map of human chromosome 22. Genomics 18, 329-339.
54. Shizuya.H., Birten.B.. Kim.U.J.. Mancino,V.. Slepak,T., Tachiiri,Y. and Simon.M. (1992) Cloning and stable maintenance of 300 -kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl Acad. Sci. USA 89, 8794-8797.
55. Sternberg.N. (1990) Bacteriophage Pl cloning system for the isolation. amplification. and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Natl Acad. Sci. USA 87, 103-107.
56. Ioannou,P.A., Amemiya.C.T., Garnes,J., Kroisel.P.M., Shizuya,H., Chen,C., Batzer,M.A. and de Jong,P.J. (1994) A new bacteriophage PIderived vector for the propagation of large human DNA fragments. Nature Genet. 6. 84-89.
57. Arratia.R., Lander.E.. Tavare.S. and Waterman.M. (1992) Genomic mapping by anchoring random clones: a mathematical analysis. Genomics 11, 806-827.
58. Cohen.D., Chumakov.I. and Weissenbach.J. (1993) A first-generation physical map of the human genome. Nature 366. 698-701.
59. Weissenbach, J.. Gyapay, G.. Dib. C., Vignal. A., Morissette. J., Millasseau. P., Vaysseix. G. and Lathrop M. (1992) A second-generation linkage map of the human genome. Nature 359, 777-778.
60. Gyapay, G., Morrisette, J.. Vignal, A.. Dib. C.. Fizames, C., Millaseau, P., Marc, S., Bernardi. G.. Lathrop, M. and Weissenbach. J. (1994) The 1993-94 genethon human genetic linkage map. Nature Genet. 7, 246-339.
61. Barillot,E., Lacroix,B. and Cohen,D. (1991) Theoretical analysis of library screening using a N -dimensional pooling strategy. Nucleic Acids Res. 19. 6241-6247.
62. Riazi, M.A., Mears. A.J.. Bell, C.J., Budarf, M.L., Emanuel, B.S., Murray, J.C., Patil. S.R., and McDermid, H.E.(1994) Long range mapping and construction of a YAC contig within the cat eye syndrome critical region. Am. J. Hum. Genet. 55, A268.
63. Driscoll, D.A., Salvin, J.. Sellinger, B.. McGinn-McDonald, D., Zackai, E.H., Emanuel, B.S. (1993) Prevalence of 22q1I microdeletions in DGS and VCFS: implications for genetic counseling and prenatal diagnosis. J. Med. Genet. 30, 813-817.
64. Lindblom, A., Sandelin,K., Iselius.L., Dumanski.J.. White.I., Nordenskjold.M. and Larsson. C. (1994) Predisposition for breast cancer in carriers of constitutional translocation $11 q ; 22 q$. Am.J. Hum. Genet. 54, 871-876.
65. Peyard,M., Fransson,I., Xie. Y.-G., Han, F.-Y.. Ruttledge,M.H., Swahn,S., Collins.J.E., Dunham.I.. Collins,V.P., and Dumanski,J.P. (1994) Characterization of a new member of the human β-adaptin gene family from chromosome 22q12, a candidate meningioma gene. Hum. Mol. Genet.3, 1393-1399.
66. Amemiya,C.T., Alegria-Hartman,M.J., Aslanidis,C., Chen,C., Nikolic,J ., Gingrich.J.C. and de Jong.P.J. (I992) A two-dimensional YAC pooling strategy for library screening via STS and A/u-PCR methods. Nucleic Acids Res. 20, 2559-2563.
67. Green,E.D and Olson,M.V. (1990) Systematic screening of yeast artificialchromosome libraries by use of the polymerase chain reaction. Proc. Nar/ Acad. Sci. USA 87, 1213-1217.
68. Lee,J.T., Murgia,A., Sosnoski,D.M., Olivos,I.M. and Nussbaum,R.L. (1992) Construction and characterization of a yeast artificial chromosome library for Xpter-Xq27.3: a systematic determination of cocloning rate and X-chromosome representation. Genomics 12, 526-533.
69. Ousterhout,J.K. (1994) Tcl and the Tk Toolkit. Addison-Wesley, Reading, MA.
70. MotL.R., Grigoriev,A., Maier,E., Hoheisel,J. and Lehrach,H. (1993) Algorithms and software tools for ordering clone libraries: application to the mapping of the genome of Schizosaccharomyces pombe. Nucleic Acids Res. 21, 1965-1974.

Integration of physical, breakpoint and genetic maps of chromosome 22. Localization of 587 yeast artificial chromosomes with 238 mapped markers

Callum J.Bell*, Marcia L.Budarf, Bart W.Nieuwenhuijsen¹, Barry L.Barnoski, Kenneth H.Buetow², Keely Campbell, Angela M.E.Colbert ${ }^{3}$, Joelle Collins, Mark Daly ${ }^{3}$ Philippe R.Desjardins ${ }^{1}$, Todd DeZwaan¹, Barbara Eckman ${ }^{1}$, Simon Foote ${ }^{3,+}$, Kyle Hart ${ }^{1}$, Kevin Hiester ${ }^{1}$, Marius J.Van Het Hoog ${ }^{1}$, Elizabeth Hopper, Alan Kaufman ${ }^{3}$, Heather E.McDermid ${ }^{4}$, G.Christian Overton ${ }^{1}$, Mary Pat Reeve ${ }^{3}$, David B.Searls ${ }^{1}$, Lincoln Stein ${ }^{3}$, Vinay H.Valmiki ${ }^{1}$, Edward Watson, Sloan Williams, Rachel Winston ${ }^{1}$, Robert L.Nussbaum ${ }^{1,5}$, Eric S.Lander ${ }^{3}$, Kenneth H.Fischbeck ${ }^{1}$, Beverly S.Emanuel and Thomas J.Hudson ${ }^{3}$
Children's Hospital of Philadelphia, Division of Human Genetics and Molecular Biology, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104, ${ }^{1}$ University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104-6146, ${ }^{2}$ Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111-2412, ${ }^{3}$ Center for Genome Research, Whitehead Institute for Biological Sciences/Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA and
${ }^{4}$ Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada

Received October 17, 1994; Revised and Accepted November 2, 1994

Abstract

Detailed physical maps of the human genome are important resources for the identification and isolation of disease genes and for studying the structure and function of the genome. We used data from STS content mapping of YACs and natural and induced chromosomal breakpoints to anchor contigs of overlapping yeast artificial chromosome (YAC) clones spanning extensive regions of human chromosome 22. The STSs were assigned to specific regions (bins) on the chromosome using cell lines from a somatic hybrid mapping panel defining a maximum of 25 intervals. YAC libraries were screened by PCR amplification of hierarchical pools of yeast DNA with 238 markers, and a total of 587 YAC clones were identified. These YACs were assembled into contigs based upon their shared STS content using a simulated annealing algorithm. Fifteen contigs, containing between 2 and 74 STSs were assembled, and ordered along the chromosome based upon the cytogenetic breakpoint, meiotic and PFG maps. Additional singleton YACs were assigned to unique chromosomal bins. These ordered YAC contigs will be useful for identifying disease genes and chromosomal breakpoints by positional cioning and will provide the foundation for higher resolution physical maps for large scale sequencing of the chromosome.

INTRODUCTION

Human chromosome 22 constitutes approximately 1.9% of the haploid autosomal genome (1). Clinical disorders associated with this chromosome include several acquired, tumor-related translocations such as the $t(9 ; 22)$ of chronic myelogenous leukemia and acute lymphocytic leukemia (2,3), the $\mathrm{t}(8 ; 22)$ variant translocation of Burkitt's lymphoma (4) and the $t(11$; 22) of Ewing's sarcoma (5,6). Deletions of all or part of chromosome 22 are associated with meningiomas (7,8), acoustic neuromas $(9,10)$, Neurofibromatosis type 2 (NF2) (11,12),
and rhabdoid tumors (13,14). Further, chromosome 22 is also involved in the only recurrent non-Robertsonian constitutional chromosomal translocation in humans (15,16). In addition, a number of syndromes are caused by deletions or duplications of portions of 22q11, including DiGeorge syndrome (17-20), velo-cardio-facial syndrome (21), and cat-eye syndrome (22). Chromosome 22 has a high gene density and contains many duplicated sequences and gene families, which makes it an interesting model for mapping studies. The identification of

[^2]new disease genes will be facilitated by the integration of detailed genetic and physical maps of this chromosome. Moreover, integrated maps can be used to make sequenceready DNA templates, to facilitate the identification of novel structural elements and to study chromosome structure.
We have used STS-content mapping (23-25) to assemble contigs representing most of the chromosome. 316 STSs and 22 hybridization probes were developed by our centers and outside investigators. Markers suspected of containing repeats, and others giving unsatisfactory results in control experiments were eliminated. The remainder were localized by PCR or Southern hybridization to 'bins', which are defined by breakpoints in a somatic cell hybrid mapping panel $(26,27)$.

These markers were used to identify YACs (28) in four libraries: the CEPH/Genethon YAC libraries (29,30), a chromosome 22 only hybrid cell line derived YAC library, and the Washington University YAC library (31). 216 STSs and 22 hybridization probes identified a total of 587 individual YACs which were then assembled into 15 contigs containing between 2 and 196 YACs.

RESULTS

Marker generation

The STSs and hybridization probes used in this study were derived from genes and other sequences in the public domain,

Table 1. Loci used to identify YACs ${ }^{2}$

[^3]STRPs (simple tandem repeat polymorphisms) (32), expressed sequence tags (ESTs) (33,34), YAC vector-insert junction fragments (35), inter-Alu PCR fragments (36) and randomly sequenced plasmid clones $(26,27)$. The loci at which STSs or probes were generated are shown in Table 1.

Chromosomal bin assignment of markers

Markers were assigned to chromosomal 'bin' locations by Southem blot hybridization or PCR analysis of DNA from cell lines in a 26 member somatic cell hybrid panel. These cell lines define 22 bins shown schematically in Figure 1. Three of these bins are each further subdivided into two subbins, making a total of 25 intervals. The majority of the hybrids have been previously described: GM10888 (37); Cl-6-2/EG, Cl-21-5/CV, Cl-9/GM05878 (38); Rad-110a; Rad 37a (39); GMIl220 $=$ X/22 33-TG, GMII224C $=1 / 22 \mathrm{AM}-6$,

GM11223C $=1 / 22 \mathrm{AM}-27$ (40); GM1I685 (41); Cl-4/GB, Cl-1-I/TW (42): AJO 9, APR 8.5 (43): 514 AA2 (44); WESP-2A-TG8 = GMII221 (45): RAJSBE (46): D6S5 (47). There are eight additional members of the hybrid panel ($\mathrm{Cl}-3 / 5878$: Cl-1/5878: Cl-2/5878: Cl-8/5878: Cl-15-1/PB; Cl-21-2/PB; Cl2/DIBA; Cl-8-1/AMB6) which will be further described in another manuscript (26). Not all markers were assigned to a unique bin. STSs binned in the Whitehead Institute/MIT Genome Center were tested on a subset of six somatic cell hybrid lines (Fig. 1), whereas those binned in Philadelphia were tested on the complete panel. A small number of STSs could not be uniquely assigned for technical reasons.

Contained within this hybrid mapping panel are the breakpoints which have been designated by the chromosome 22 mapping community as anchor positions in the physical map. The anchor panel was recently updated (48) and now

Figure 1. Schematic of the somatic cell hybrid mapping panel used for bin assignment of markers. The heavy vertical black lines represent the segments of chromosome 22 retained in each hybrid. Shaded portions indicate that the extent of the p arm retained in a hybrid is unknown. The names of the hybrids are shown at the top of the figure. The fine horizontal lines indicate the breakpoints that divide the chromosome into 25 intervals, shown numbered from 1.1 through 22 (three 'bins'are further subdivided into two sub-bins). The upper case letters A-F indicate a subset of the 26 member panel defining six intervals that was used for bin assignment at the Whitehead Institute/MIT Genome Center. The full high resolution panel was used at the Children's Hospital of Philadelphia. The lower case letters a-j show the 10 interval panels defined by the 11 hybrid cell lines available from the NIGMS repository (48).
divides chromosome $22 q$ into a total of 10 intervals which represents a subset of this mapping panel. The hybrids defining the anchor points are: GM11220, GM11685, GM11221, GM11222C, GM11224C, GM11223C, D6S5, Cl-15-I/PB (GM13498), Cl-2I-2/PB (GM13499), Cl-2/DIBA (GM13501) and Cl-8-1/AMB6 (GM13500). The somatic cell hybrids defining the anchor points of chromosome 22 are available through the NIGMS genetic mutant cell repository, Camden, New Jersey. Since the chromosome 22 reference hybrids represent a subset of the panel utilized for binning markers described in this manuscript, the data presented here can be easily assessed by other groups in order to position markers which they have mapped using the reference panel.

YAC identification

Most YACs in the study were identified in the CEPH/Genethon Iibraries [original library (29) with an average insert size of 470 kb and mega-YAC library with an average insert size of $0.9 \mathrm{Mbp}(30)$], by PCR screening of yeast DNAs pooled in two or three dimensions. Additional YACs were isolated from the Washington University YAC library (31), and from a chromosome 22 specific YAC library constructed with DNA from hybrid cell line GM10888 (chromosome 22 in a Chinese hamster background). The chromosome 22 specific YAC library contains approximately 300 YACs with an average insert size of 200 kb , equivalent to $1 \times$ coverage of the chromosome. YACs isolated from the Washington University library were kindly provided by collaborators. In addition, limited use was made of a subset of YACs, kindly provided by Ilya Chumakov and Daniel Cohen, identified by hybridization of Alu-PCR products of a chromosome 22-only somatic cell hybrid to the CEPH mega-YAC library. YACs from this subset, and from the chromosome 22 -specific library were identified by colony hybridization.

Table 1 shows a summary of the YAC screening results. The left-most column shows the bin intervals, numbered 1.122. The relative positions of the bins on the chromosome are displayed visually in Figure 1. Loci that were used to identify YACs are shown in boxes in the body of the table; the vertical extent of each box indicates the bin, or range of bins, to which each locus was mapped by referring to the left-most column, and the number of YACs detected by each locus is indicated in parentheses after the locus name. The majority of these results are YACs identified to single microtiter plate addresses, either from unequivocal PCR results in two or three dimensional screens, or from confirmatory PCR tests done on individual YACs. A YAC address consists of three dimensions: plate, row, and column. In initial screening of YAC pools, many of the addresses were incomplete (missing a dimension), or had more than one possible value in a dimension, which occurs when there is more than one positive YAC per block of eight microtiter plates (see Materials and Methods), or from false positive results. Such ambiguous addresses were resolved by several means including fingerprint analysis, comparison with verified YAC addresses of adjacent STSs, or PCR of all possible clones in the degenerate set of addresses. After preliminary contig assembly, most of the clones identified as well as the putative adjacent YACs were individually tested with each STS in the contig.

GGTX, GGTY and GGTZ (Table l) refer to probes containing sequences homologous to γ-glutamyl transpeptidase 1
(GGT1) (49). These three GGT-like sequences have been shown to be physically linked to the BCR (break point cluster)like sequences BCRL2 and BCRL4, and to BCR itself, respectively, in 22qII (50). These BCR-like sequences contain polymorphic HindIII sites and thus can be distinguished from each other (51), allowing assignment of the YACs detected by the GGT1 STS to be allocated to unique bins. Details of this study will be presented in a separate publication.

Primer sequences for each STS and YAC addresses may be found in the public FTP (file transfer protocol) sites of the Philadelphia (cbil.humgen.upenn.edu/pub/22/) and the Whitehead Institute/MIT (genome.wi.mit.edu /distribution/ human_STS_releases/) Genome Centers. World Wide Web access is available through HTTP://www.cis.upenn.edu/~cbil/ chr22db/chr22dbhome.html and HTTP://www-genome.wi.mit.edu.

In order to resolve confusion caused by possible crosscontamination among microtiter plate wells we adopted two approaches. The first approach compared the CEPH/Genethon fingerprints, where available, of the putative YAC positives with the fingerprints of other YACs known by STS content to overlap the YAC to be resolved. Shared fingerprint bands

Figure 2. Estimated coverage of the chromosome in contigs. The horizontal lines are the boundaries separating 25 intervals. Contigs are shown as blocks. The stippled block shows the location of a cosmid contig encompassing the DiGeorge critical region (DGCR).
among these YACs identified with a high degree of confidence the true positive YAC address among several neighboring candidates in several cases. The second approach was based on a calculation of the actual distances between wells of two YAC addresses sharing STSs, divided by the number of STS hits in common; when this measure fell below a certain threshold for any pair of addresses, they were consolidated into a single address. This heuristic in all cases corresponded well to human judgments about likely cross-contamination, and was shown to be justified in cases that were checked experimentally. Level 1 data from the CEPH/Genethon genome mapping project were confirmed and included in Table 1.

YAC contig assembly

To date, we have used 238 markers to identify 587 YACs. The YACs and STSs fall into 15 islands, defined as sets of STSs and sets of YACs all of which can be reached from each other by following a path of connectivity alternating between STSs and YACs. Singleton YACs detected by one STS each, numbering 25, are omitted from this total. Although the number of YACs we identified indicates nearly $5 \times$ coverage of the chromosome, the depth of coverage is uneven: all somatic cell hybrid bins contain YACs, but the 22q11.23-q12.31 region (bins 12-15; see below) has much deeper coverage than

Figure 3. Searls plot of simulated annealing data for the largest contig accumulated from multiple runs of the program. The list of loci down the left of the figure is the 'minimum energy' ordering of markers (see the text for detailed explanation). Gray boxes indicate the position on the horizontal axis at which the indicated STSs occurred during individual runs. Darker boxes indicate that an STS was positioned in the same location in multiple runs. Boxes falling repeatedly on the diagonal indicate high confidence in the minimum energy ordering. Horizontal dotted lines indicate the chromosomal bin location of each STS. The bin intervals are shown at the top of the figure. Circles indicate the consensus positions of markers that are present on the meiotic map.
elsewhere. We had difficulty obtaining unequivocal clone and STS order within the largest of these islands, and a clear clone tiling path, even with deep YAC coverage of the area and many STS. In the central portion of the chromosome YAC connectivity has been achieved over a distance exceeding 10 Mb . yet an unbroken clone tiling path remains elusive despite extensive testing of YACs versus STSs in that region. This may be due in part to false positive and negative YAC/ STS results (although results have been carefully confirmed), internal deletions within YAC clones, and sequences present at more than one location on the chromosome. Given these problems, the objective becomes to find an ordering of STSs that minimizes gaps. In ideal data, there should be an order of STSs, corresponding to a true YAC contig, such that there are no such gaps. However, in our data all postulated orders of STSs in an island result in some number of 'gaps' within YACs in the island, defined as cases where a YAC is negative for some STS but positive for STSs located to both the left and right in the ordering.
For very large islands, finding the STS order with the absolute
minimum number of gaps is computationally intractable, but several approaches have been developed to finding approximate solutions. A simulated annealing $(52,53)$ program we developed employs a random search strategy that seeks local energy minima in the space of all possible orderings, where energy is defined in terms of numbers and sizes of gaps (see Materials and Methods). This approach can be expected to yield somewhat different results for multiple runs, both because there may be more than one valid ordering even for ideal data, and because for 'noisy' data the search may find different local energy minima which are near the actual optimum. In practice, the results of multiple runs of simulated annealing are generally similar, although not identical. We refer to these orderings of STSs and YACs as contigs, though it should be emphasized that the larger islands should be viewed as putative contigs at present.

A schematic representation of the coverage of the chromosome in contigs is shown in Figure 2. The chromosome is shown divided into 25 intervals derived from the somatic cell hybrid map of Budarf et al. (26). Bin 1 formally includes the

Figure 4. A single solution for the largest contig in the central region of chromosome 22q. The contig was constructed as follows: YACs and STSs were selected by connectivity to D22SI, obeying the double linkage rule. Singletons (YACs detected by one STS only) were then eliminated, as were markers that detected more than 14 YACs. Singletons were eliminated a second time, and the resulting set of markers and YACs were subjected to simulated annealing. Marker order is shown along the top of the figure. Above each marker name is the bin interval that the marker was mapped to, e.g. $15 / 16$ indicates the marker is in bin 15-16. YACs are shown as heavy horizontal black lines.
short arm of the chromosome. The contigs, based on the bin assignment of the STSs that detected the YACs in each. are shown as dark blocks. Since STS content mapping provides only limited information on contig size, the true extent of coverage and the sizes of the gaps separating the contigs are unknown. The stippled block represents a contig of cosmids in a region that proved difficult to clone in YACs. YACs detected by STSs in this part of the chromosome were unstable. and were underrepresented in the libraries screened (M.Budarf, unpublished observations). The cosmid map of this region will be described in a separate publication. Figure 2 makes clear the low coverage of the distal portion of the chromosome. This arises in part from the lower density of markers but is largely due to underrepresentation of the region in the megaYAC library.

Figure 3 shows simulated annealing results for the largest contig, using a novel method of representing such data to which we have given the name 'Searls plot', after the author of the program. As noted, results of simulated annealing tend toward local minima of the objective function that may differ among runs. The relative merits of these STS orderings and implied YAC contigs cannot be judged with confidence on the basis of the STS data alone. On the other hand. a number of such orderings independently arrived at may be expected to represent a reasonable sampling of the contours of the search space of possible STS orderings. If the predicted orderings do not resemble each other, then little can be said about which is closest to the true optimum, but if they are all similar, one may be more confident in their consensus. Figure 3 shows the degree and nature of the consensus for multiple simulated annealings. The minimum energy ordering among all runs is indicated by the list of STSs running down the left hand side. The gray boxes in the diagram show the positions along the horizontal axis at which the indicated STS occurs in a run, so that the major diagonal denotes complete agreement with the minimum energy run. Other gray boxes indicate positions at which that STS occurred in other runs, and the shading of a box reflects the number of times a particular STS occurred at the same position in a run. If the predictions for an STS tend to cluster at more than one position in multiple runs, one may infer that the evidence is not strong enough to greatly favor one position over another, though it may be possible to narrow the possibilities to a few regions.

As noted above, even with ideal data it may be possible to have more than one ordering, particularly over subregions of the contig. Obviously, a given ordering of STSs may be reversed in its entirety, without changing the apparent fit to the YAC data in isolation, and for that reason each simulated annealing run is reversed, if necessary, to more closely approach the consensus. However, there may also be subregions over which the STSs can be reversed without affecting the energy materially, and in this case the Searls plot will display a characteristic ' X ' pattern across the diagonal, representing the alternative orderings. Another characteristic pattern is a displacement of a subregion laterally on the plot, with either a forward or reversed directionality, indicating parts of the contig that display local integrity but which can be moved elsewhere in the larger scheme of things, with little or no penalty. Finally, there are subregions where STSs tend to be in proximity to each other, but where there is little support for ordering them with respect to each other. This may occur, for
example, where there are multiple YACs with the same STS hits, but no YACs with only partial overlap to split the STSs and provide order information. These appear as 'clouds' of points at or near the diagonal; it can be seen that with a sufficient sample size such regions would approach a uniform distribution of points within a diffuse 'superblock'. Figure 3 shows a major ' X ' indicating that the ordering in the distal half of the contig was inverted in a significant number of the simulated annealing runs. We interpret this to mean that the link between D22S591 and D22S47 should be viewed with caution. We have yet to confirm by other means whether actual continuity of YAC coverage exists in this region:
Figure 3 suggests, with some confidence, a general ordering of STSs in most sections of this region of the chromosome, but in some areas there is significant scatter. Some of this deviation is systematic in nature, as described in the previous paragraph, and some in all likelihood merely reflects regions where the data is error-prone. An extermal test of the accuracy of this method is provided not only by bin information but by the meiotic and pulsed-field gel maps $(54,55)$ of the region; the orders of the subsets of markers in both of these maps are similar in the converged order arrived at by simulated annealing, which in this case was done without regard to information from any of these other methods. Figure 4 shows a single simulated annealing solution to the largest contig.

DISCUSSION

We used physical, breakpoint, and meiotic maps of human chromosome 22 to localize contigs of overlapping YAC clones that provide extensive coverage of the long arm of the chromosome. The physical map is developing rapidly due to considerable new data obtained by screening YAC libraries with STSs. The contigs, most of which are anchored by landmarks that have been ordered by meiotic or hybrid mapping, provide extensive coverage of the long arm of the chromosome. Although long range continuity of the contigs is not yet complete, the present information is of immediate use to the human genetic mapping community for identifying disease genes and chromosomal breakpoints. The current state of the physical map reported here reflects the fundamental characteristics of the reagents and methods used, as well as the inherent nature of chromosome 22 itself.

STSs that were developed for chromosome 22 are not randomly distributed along the chromosome. The contig spanning interval 22q11.2-q13.1 is the most evolved as the result of the high density of markers in this region and greater than average representation of the region in the YAC libraries. The distribution of markers shows a bias towards the center of the long arm of the chromosome (26,27). This is partly because many STRP markers were used as STSs, and these are known to be concentrated in the 22q12 Giemsa-dark chromosomal band (55). However, it is not known why other randomly chosen STSs generated from flow-sorted material should also be biased in this way. The distal third of the long arm is correspondingly poor in STSs, and appears to be underrepresented in the YAC libraries, and as a consequence, contains only two small contigs and seven singleton YACs. Interestingly, the distal portion of the long arm appears to be resistant to cloning in both plasmid and YAC libraries, and the consequent paucity of mapping information indicates the need for alternat-
ive strategies for covering this region. Currently, we are targetting the region by generating STSs from inter-Alu plasmid libraries made from radiation hybrid cell lines that retain only the distal portion of the chromosome. Success in developing new STSs in this way has shown that YACs, not markers, are likely to be limiting for YAC-STS contig mapping, and that complete coverage of this region will probably depend on a different cloning vehicle. Current candidate systems are bacterial artificial chromosomes (BACs) (56), Pl phage clones (57), Pl artificial chromosomes (PACs) (58), and cosmids.

Screening multi-dimensional pools of YACs was the only practical way to test all 25,000 mega-YACs for the presence or absence of a given STS, but created several types of problems. Contamination of adjacent wells during preparation of the pools, absence of amplification in one dimension, or the presence of more than one positive. YAC in the same pool were examples of difficulties that are inherent to pooling schemes which can result in false positive, false negative, and ambiguous YAC addresses. Most of the results obtained from the pool screenings have been resolved by a variety of methods, including analysis of YACs seen with adjacent STSs, fingerprint analysis of selected YACs, and ultimately, the verification of the PCR on the individual YAC. To decrease the errors caused by false negatives on STS order, most STSs were screened on adjacent YACs as well.

The CEPH mega-YACs, which have an average insert size of $0.9 \mathrm{Mb}(30)$, provided the best tool for linking STSs and assembling contigs, and were screened with all available markers. By requiring double linkage (59) before declaring contiguity among STSs in the largest contig, large clones were required, and YACs from the other libraries, while contributing to deep coverage in most regions, did not, in general, contribute to contig assembly. However, in some notable cases contig construction was dependent upon the smaller clones, and as the map matures, they will be useful in resolving the order of closely spaced STSs, and as tools for isolating cosmids or other smaller clones as the map moves towards a higher level of resolution required for eventual sequencing.

In addition to the known families of chromosome 22 specific repeats on long arm, such as the $B C R$, immunoglobulin and GGT gene families, we observed several markers which appear to behave as low copy repeats. In such cases, the PCR assay amplifies two identical or related sequences with products of similar molecular weights. Examples of this were D22S33 and D22S275, which gave several bands of similar size, and detected 15 and 14 YACs respectively. Repetitive STSs created inconsistencies in the data, manifested as large apparent gaps in YAC clones, since contig assembly software tries to assign them single contig locations. In fact, they may be present at two or more locations. Repeats therefore artificially connect YACs at disparate locations. We arbitrarily decided that STSs detecting 14 or more mega-YACs would be declared potentially repetitive and excluded them from contig construction.
The CEPH-Genethon tiling paths (60), provided relatively little additional information because the areas covered by tiling paths coincided with the region where the STS physical map was already well covered. We independently screened the mega-YAC library for the same Genethon genetic markers $(61,62)$, and confirmed the YAC addresses and the level-1 tiling paths present in the November 1993 CEPH-Genethon data release (60). We extracted a few YAC addresses derived
by Alu-PCR hybridizations in 22q11.2-q13.1 region that were missed during YAC pool screening. Unfortunately, the areas where the STS content map was poor were also not represented in the tiling paths, or present only in higher level paths that could not be confirmed. Fingerprint analysis on the megaYACs generated by CEPH $(60,63)$, was used to resolve ambiguous addresses derived from screening pools of YACs. This method, successful in one third of ambiguous addresses tested, reduced the number of alternate addresses that need to be verified for YAC determination. We did try to assemble the 22q11.2-q13.1 contig by fingerprint analysis alone using only the fingerprints of YACs that were previously identified to this region. The results had only limited success, yielding small contigs with less than 10 YACs that were already shown to have extensive overlap in STS content.

We chose to represent the data for the large contig in two ways: a single simulated annealing solution, and the Searls plot, derived from multiple runs of simulated annealing. These representations, combined with the YAC-STS results shown in Table 1, provide an objective and useful means of using these data. Previous localization of markers by recombination or breakpoints greatly facilitated the evaluation of the STS content map. The marker order in region 22q11.2-q13.1, spanning more than 11 cM , was broadly consistent with the orders of subsets of markers arrived at by meiotic and pulsedfield gel mapping $(54,55)$. The smaller contigs contain, at most, two genetically ordered markers, which does not allow real comparisons of marker order with the meiotic map. In essence, we have made the assumption that the framework linkage map (55) is correct, and used it to anchor and orient the smaller contigs. The best validation of the smaller contigs came from concordance with the somatic cell hybrid binning results.

It is clear that, due to problems inherent to YACs, the STScontent mapping results from the large contig did not allow us to obtain a fine structure order of the region. This may well be true for many other regions in the genome. The need for additional methodologies to obtain a finer scaffold map of STSs is evident. Radiation hybrids, which allow the study of multiple, larger DNA fragments at a higher redundancy may provide more confidence in generating a high resolution STS order. They will also allow contiguity of the STS map in regions where YAC clones are few or absent.

The contigs reported in this paper will facilitate the study of several disease-related and structural regions of interest on chromosome 22. The YACs that have been localized to bins 1 and 2 (22 q 11.1 -ql1.2) form contigs that almost completely cover the cat eye syndrome critical region (CECR). The most proximal of these will allow us to address the problem of defining the physical boundary of the centromere. The completion of a contig containing all of the CECR, facilitated by a pulsed field gel electrophoresis map (64), will permit detailed transcription mapping of the region as a first approach to defining genes that contribute to this syndrome. In the region distal to the CECR, 22q11.2, difficulty was encountered in obtaining stable YACs in bins 3,4 and 5 . YACs identified in this region were frequently smaller than the mean insert sizes of the libraries, indicating that they contained deletions, and several probes failed to detect YACs. These bins represent the DiGeorge syndrome commonly deleted region which is notably unstable in humans giving rise to the deletions seen
.atients with DiGeorge syndrome and velo-cardio-facial drome (65). It is interesting to note that these, and other uences mapping to the sites of frequent chromosomal angements in cat eye syndrome are also unstable when ed in yeast. Further characterization of these sequences allow us to investigate the possible causes of instability.
e constitutional $t(11 ; 22)$ translocation breakpoint is the recurrent, non-Robertsonian, constitutional translocation umans $(15,16)$, and defines the boundary between bins 7 8. Contigs spanning this region may help in revealing ctural features on the chromosome that underlie this angement, as well as the identification of genes suspected nvolvement in breast cancer tumorigenesis (66). Identifica-
of clones that span the $t(11 ; 22)$ breakpoint has been plicated by the presence of several duplicated regions in 11 which include the GGT and BCRL loci. In addition to e known ancestral duplications, STS screening results gest the presence of other low-copy repeat families that e the construction of a contiguous clone map of 22 q 11 icularly challenging. The largest contig, connecting bins and 15 (22q11.2-q13.1) contains several interesting feas that have already been well characterized, including the ing's sarcoma breakpoint $(5,6)$, the NF2 gene $(11,12)$ and candidate meningioma gene β-adaptin (67).
n conclusion, the physical map of human chromosome 22 advanced considerably, due to the large scale screening of CEPH mega-YAC library with chromosome 22 specific s , and several regions of interest are now contained within C contigs. Current efforts to achieve a complete set of rlapping clones for the long arm of the chromosome are cted at the generation of additional STSs for clone screen, as well as targeted strategies for the distal third of the mosome using Alu-PCR hybridization methods.

TERIALS AND METHODS

ling of YAC libraries

he Philadelphia genome center, two dimensional pools of the CEPH/ ethon YAC libraries were constructed as described (68). A Biomek 1000 :c workstation (Beckman Instruments) was used for yeast DNA isolation

- sling. In brief, yeast clones were grown to saturation in ura- trp-
nedium in microtiter plates at $30^{\circ} \mathrm{C} .50-75 \mu \mathrm{l}$ of each clone was ato a I ml deep-well plate (Beckman Instruments) in which spheroplast : ation and lysis were performed as described elsewhere (69). The : was extracted twice with Strataclean resin (Stratagene) according :ranufacturers recommendations. The DNA was then precipitated with ropanol and the pellet was allowed to dry. After resuspension in TE (10 Tris $-\mathrm{HCl} \mathrm{pH} 8.0,1 \mathrm{mM}$ EDTA, pH 8.0) and treatment with DNAaseRNAase, the DNA was precipitated with isopropanol and the pellet was and resuspended in water. Limited use was also made of commercially hased DNA pools constructed in three dimensional blocks equivalent to t microtiter plates each (Research Genetics, Huntsville, Albama).
CR was performed in 20μ reactions using approximately 20 ng of pooled I DNA in standard PCR buffer ($1 \times$ buffer (Boehringher-Mannheim): 10 Tris- $\mathrm{HCl}, \mathrm{I} .5 \mathrm{mM} \mathrm{Mg}{ }^{2+}, 50 \mathrm{mM} \mathrm{KCl}, \mathrm{pH} 8.3$) with 20 nM (final entration) primers and 0.5 U Taq polymerase (Perkin Elmer Cetus or hringher Mannheim). PCR conditions were: a 5 min denaturation step at followed by 45 cycles of $94^{\circ} \mathrm{C}$ for 20 s , annealing for $20 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for , and a 7 min extension at $72^{\circ} \mathrm{C}$. Suitable annealing temperatures were rmined for each STS. The majority of the PCR assays were performed J Research PTC-100 thermal cyclers. Products were analyzed by gel trophoresis using I.5\% agarose.
Ss screened at the Whitehead Institute/MIT Center for Genome Research analyzed using a semi-automated system. The STSs were screened on s 709 to 972 of the CEPH mega-YAC library, generously provided by iel Cohen. The YAC library was screened by a two-level pooling scheme.

At the first level, there are 32 superpools consisting of DNA from the 768 YACs in a block of eight 96 well plates. Corresponding to each block, there are 8 row, 12 column, and 8 plate subpools. STSs positive at the superpool screen were then screened on the corresponding subpools to identify YAC addresses.

PCRs were prepared by a robotic station built by ROSYS and modified by IAS (Intelligent Automation Systems, Inc., Cambridge, MA). PCR was performed in $20 \mu \mathrm{l}$ volumes containing 10 ng target DNA, $1 \times$ PCR Buffer (10 mM Tris $-\mathrm{HCl}, 50 \mathrm{mM} \mathrm{KCl}, 1.5 \mathrm{mM} \mathrm{Mg}{ }^{2+}$, and 0.001% gelatin), 4 nmol dNTP, 5 pmol each primer, and 0.5 U Taq. PCRs were completed on custom built thermocyclers (locally called waffle irons, by IAS) each having a capacity of 16192 well plates (Costar, Cambridge MA). PCR conditions were: an initial 4 min denaturation at $94^{\circ} \mathrm{C}$ followed by 30 cycles of 50 s at $94^{\circ} \mathrm{C}, 1.5$ min at $58^{\circ} \mathrm{C}, 1 \mathrm{~min}$ at $72^{\circ} \mathrm{C}$, and a final extension period of 10 min at $72^{\circ} \mathrm{C}$.
STSs were screened by either standard agarose gel stained with ethidium bromide or by high throughput chemiluminescence dot-blot analysis: The PCR products were transferred from the 192 well plates to nylon membranes using a custom built 96 pin pipettor (IAS) and a 6144 reaction capacity dotblotting apparatus ($96 \times 16 \times 4$ well density, IAS). Subsequent hybridization and detection of the Hybond $\mathrm{N}+$ membrane (Amersham) membranes was done using the ECL kit (Amersham). Hybridization was done overnight using non-radioactive probes designed from PCR products. STSs known to contain an internal repeat sequence such as CA or AGAT were probed with a molecule containing the repeat structure which had also been labelled with horseradish peroxidase (HRP). All blots were stringently washed with urea, $2 \times S S C$ and SDS at $42^{\circ} \mathrm{C}$ and detected using the standard ECL reagents. Computer images of each autoradiograph were obtained using a CCD camera. The VIEW software (Carl Rosenberg, Whitehead Institute) was used to locate and identify the positive dots, as well as to generate an intensity reading.

Fingerprint resolution of degenerate addresses

The STS screening on YAC pools yielded many degenerate YAC addresses, which occurred as a result of having more than one positive YAC per block of eight microtiter plates, from having one dimension in a two or three dimensional screen consistently fail to amplify, and from false positive results. These degenerate addresses represented a small set of addresses, from 2 to 12 , of which usually one or two addresses contained the specific STS. We used fingerprint data to establish overlaps between the set of ambiguous YACs and the set of definite YACs. We applied a simple band-matching test to the CEPH-genethon fingerprint data set and declared pairs of clones with a statistically significant number of matching bands as overlapping. Parameters for declaring overlap were stringent, allowing resolution of only $1 / 3$ of degenerate addresses. However, empirical testing of over 500 fingerprint resolved addresses from random STSs demonstrated that greater than 95% could be confirmed by testing the individual YAC DNAs.

Most YAC addresses obtained by screening the YAC pools, fingerprint analysis, and those derived from adjacent STSs during contig building were verified by testing DNA prepared from individual YACs in the library.

Construction of a chromosome 22 specific YAC library

DNA from hybrid cell line GM10888 (chromosome 22 in a Chinese hamster background) was used to create a chromosome 22 specific YAC library essentially as described (70). In brief, high molecular weight DNA from this cell line was partially digested with EcoRI and after ligation to pYAC4 was size selected on a 1% FMC Seaplaque GTG low melting agarose gel in a CHEF-DRII apparatus (BioRad). YACs containing human chromosome 22 DNA were identified by colony hybridization using total human DNA or human C_{0} tl DNA as probes.

Contig assembly

Contig assembly was performed using a new software package written for use on SPARCstation Unix workstations (Sun Microsystems, Mountain View CA) in a combination of ' C ', the logic programming language Prolog (SICStus Prolog, Swedish Institute of Computer Science, PO Box 1263, S-164 28 KISTA, Sweden), and the graphical user interface language Tc/Tk (71). The algorithm is based on the technique of simulated annealing, used by a number of others for contig assembly (52,72); our implementation in particular is similar in broad outline to one developed by CEPH for this purpose (53). Briefly, in this technique a search space of probe (STS) order permutations, which would be intractable to explore exhaustively, is randomly reordered by selecting from a set of operations such as movement of single probes, swapping of probes, moving of clusters, and inversion of clusters. Any ordering is assigned a notional 'energy' that reflects its fit to the YAC-STS
data: our energy function involves examining the number and size of apparent gaps required in YACs to account for an ordering of STSs, i.e. positions where an expected STS hit is not observed, as well as arbitrary other objectives reflecting additional sources of information about probe order. The objective is to minimize this energy by accepting moves that reduce the overall energy. In order to avoid being trapped in a local energy minimum, the process takes place in the context of an abstract 'temperature'; a good energy minimum is sought by gradually 'cooling' the random search, so that the entire search space is accessible and poor local minima can be escaped, yet there is a gradual convergence (though it cannot be guaranteed that any one solution is optimal). The graphical user interface was designed for maximum interaction with the user, who has the option of reordering probes manually by any of the operations described above, or of asking the program to do so via simulated annealing, for the entire working probe set or any subregion. Islands of connected probe sets can be accumulated in a controlled fashion and with varying stringency as to degree of connectedness. These sets may then be winnowed based on a variety of heuristics to eliminate non-informative or doubtful probes, clones, or points. For example, adjacent or nearby wells with similar reactivities, likely to be due to cross-contamination, may be automatically combined, or YACs that appear to span non-continuous bins may be removed, etc. The contig assembly software may be obtained by sending a request by email to dsearls@cbil.humgen.upenn.edu.

ACKNOWLEDGEMENTS

The work undertaken in the Human Genome Center for Chromosome 22 in Philadelphia was supported by grant numbers P50-HG00425 (NCHGR) and CA 39926 (NCI) from the NIH. Studies in the Whitehead Institute/MIT Center for Genome Research were supported by National Institute of Health Center for Genome Research Grant P50-HG00098. We wish to thank Eric Green and Glen Evans for screening for Washington University YACs. Eckart Meese and Marco Giovannini for providing STSs prior to publication, Daniel Cohen, Ilya Chumakov and Jean Weissenbach for the CEPH YAC libraries and the Alu-PCR generated chromosome 22 subset, and Willem Van Loon for biomek routines. Thomas Hudson is a recipient of a Clinician-Scientist Award from the Medical Research Council of Canada.

REFERENCES

1. Morton,N.E. (1991) Parameters of the human genome. Proc. Natl Acad. Sci. USA 88, 7474-7476.
2. Nowell,P.C. and Hungerford,D.A. (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132, 1497-1499.
3. Rowley,J.D. (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290-293.
4. Berger,R., Bernheim,A., Weh,H.J., Flandrin,G., Daniel,M.T., Brouet,J.C. and Colbert,N. (1979) A new translocation in Burkitt's tumor cells. Hum. Genet. 53, 111-112.
5. Aurias,A., Rimbaut,C., Buffe,D., Dubousset,J. and Mazabraud.A. (1983) Chromosomal translocations in Ewing's sarcoma. N. Engl. J. Med. 309, 496-497.
6. Turc-Carel,C., Philip,I., Berger,M.P., Philip,T. and Lenoir,G.M. (1983) Chromosomal translocations in Ewing's sarcoma. N. Engl. J. Med. 309, 497-498.
7. Zang,K.D. (1982) Cytological and cytogenetical studies on human meningioma. Cancer Genet. Cytogenet. 6, 249-274.
8. Dumanski,J.P., Carlbom,E., Collins,V.P. and Nordenskjold,M. (1987) Deletion mapping of a locus on human chromosome 22 involved in the oncogenesis of meningioma. Proc. Natl Acad. Sci. USA 84, 9275-9279.
9. Seizinger,B.R., Martuza,R.L. and Gusella,J.F. (1986) Loss of genes on chromosome 22 in tumorigenesis of human acoustic neuroma. Nature 322, 644-647.
10. Seizinger,B.R., Rouleau,G., Ozelius,L.J., Lane,A.H., ST. GeorgeHyslop,P., Huson,S., Gusella,J.F. and Martuza,R.L. (1987) Common pathogenetic mechanism for three tumor types in bilateral acoustic neurofibromatosis. Science 236, 317-319.
11. Trofatter,J.A., MacCollin,M.M., Rutter.J.L., Murell,J.R., Duyao,M.P., Parry,D.M., Eldridge,R., Kley,N., Menon,A.G., Pulaski,K., Haase, V.H., Ambrose,C.M., Munroe,D., Bove,C., Haines,J.L., Martuza,R.L., MacDonald,M.E., Seizinger,B.R., Short,M.P., Buckler,A.J. and Gusella,J.F. (1993) A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72, 791-800.
12. Rouleau,G.A.. Merel.P., Lutchman.M.. Sanson,M.. Zucman.J., Marineau,C., Hoang-Xuan.K., Demczuk,S.. Desmaze,C., Plougastel,B., Pulst.S.M., Lenoir,G., Bijlsma,E., Fashold.R.. Dumanski.J., de Jong,P.. Parry,D., Eldridge.R., Aurias,A., Delatre.O. and Thomas.G. (1993) Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nallıre 363, 515-521.
13. Biegel.J.A., Rorke.L.B.. Packer.R.J. and Emanuel.B.S. (1990) Monosomy 22 in rhabdoid or atypical tumors of the brain. J. Neurosurg. 73, 710-714.
14. Biegel,J.A., Burk,C.D., Parmiter,A.H. and Emanuel,B.S. (1992) Molecular analysis of a partial deletion of $22 q$ in a central nervous system rhabdoid tumor. Genes Chromosom. Cancer 5, 104-108.
15. Zackai,E.H. and Emanuel,B.S. (1980) Site-specific reciprocal translocation, $t(11 ; 22)$ ($\mathbf{q} 23 ; q 11$), in several unrelated families with $3: 1$ meiotic disjunction. Am. J. Med. Genet. 7, 507-521.
16. Fraccaro,M., Lindsten,J., Ford,C.E. and Iselius,L. (1980) The 11q;22q translocation: a European collaborative analysis of 43 cases. Hum. Genet. 56, 21-51.
17. De La Chapelle,A., Herva,R., Koivisto,M. and Aula,P. (1981) A deletion in chromosome 22 can cause DiGeorge syndrome. Hum. Genet. 57, 253-256.
18. Kelley,R.I., Zackai.E.H.. Emanuel.B.S., Kistenmacher,M., Greenberg,F. and Punnett,H.H. (1982) The association of the DiGeorge anomalad with partial monosomy of chromosome 22. J. Pediatr. 101, 197-200.
19. Driscoll, D.A., Budarf, M.L., Emanuel, B.S. (1992) A genetic etiology for DiGeorge syndrome: Consistent deletions and microdeletions of 22qII. Am. J. Hum. Genet. 50, 924-933
20. Carey,A.H., Roach.S., Williamson,R., Dumanski.J.P.. Nordenskjold.M.. Collins,V.P., Rouleau,G., Blin,N., Jalbert,P. and Scambler,P. (1990) Localization of 27 DNA markers to the region of human chromosome 22q11-pter deleted in patients with the DiGeorge syndrome and duplicated in the der22 syndrome. Genomics 7, 299-306.
21. Driscoll, D.A., Spinner, N.B., Budarf, M.L., McDonald-McGinn, D.M.. Zackai, E.H., Goldberg, R.B., Shprintzen, R.J., Saal, H.M., Zonana, J., Jones, M.C., Mascarello, J.T., Emanuel, B.S. (1992) Deletions and microdeletions of 22q 11.2 in velo-cardio-facial syndrome. Am. J. Med. Genet. 44, 261-268
22. McDermid,H.E., Duncan,A.M.V., Brasch,K.R., Holden.J.J.A., Magenis.E., Sheehy,R., Burn,J., Kardon,N., Noel,B., Schinzel,A., Teshima,I. and White,B.N. (1986) Characterization of the supernumery chromosome in cat eye syndrome. Science 232. 646-648.
23. Olson,M., Hood,L., Cantor.C. and Botstein,D. (1989) A common language for physical mapping of the human genome. Science 245, 1434-1435.
24. Green,E.D. and Olson,M. (1990) Chromosomal region of the cystic fibrosis gene in yeast artificial chromosomes: a model for human genome mapping. Science 250. 94-98.
25. Green,E.D. and Green.P. (1991) Sequence-tagged site (STS) content mapping of human chromosomes: theoretical considerations and early experiences. PCR Methods Applic. 1, 77-90.
26. Budarf, M.L., Eckman, B., Michaud, D., Buetow, K.H., Williams, S., McDermid, H., Goldmuntz. E., Gavigan, S., Meese, E., Biegel, J.. Dumanski, J., Bell, C.J. and Emanuel, B.S. (1994) Regional localization of over 300 loci on human chromosome 22 with an extended regional mapping panel. Submitted.
27. Hudson, TJ., Colbert, A.M.E., Reeve, M.P., Bae, J.S., Lee, M.K., Nussbaum, R.L., Budart, M.L., Emanuel, B.S. and Foote, S. (1994) Isolation and regional mapping of 110 chromosome 22 STSs.Genomics, in press.
28. Burke,D.T., Carle,G.F. and Olson,M.V. (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806-812.
29. Albertsen,H.M., Abderrahim,H., Cann,H.M., Dausset,J., Le Paslier,D. and Cohen,D. (1990) Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc. Natl Acad. Sci. USA 87, 4256-4260.
30. Chumakov,I., Rigault,P., Guillou,S., Ougen,P., Billaut,A., Guasconi,G., Gervy,P., LeGall,I., Soularue,P., Grinas,L., Bougueleret,L., BellaneChantelot,C., Lacroix,B., Barillot,E., Gesnouin,P., Pook,S., Vaysseix,G., Frelat.G., Schmitz,A., Sambucy,J.. Bosch.A., Estivill,X., Weissenbach.J., Vignal,A., Reithman,H., Cox,D., Patterson,D., Gardiner,K., Hattori,M., Sakaki, Y., Ichikawa,H., Ohki,M., Le Paslier,D., Heilig,R., Antonarakis,S. and Cohen,D. (1992) Continuum of overlapping clones spanning the entire human chromosome 21q. Nature 359, 380-387.
31. Brownstein,B.H., Silverman,G.A., Little,R.D., Burke.D.T., Korsmeyer,S.J., Schlessinger.D. and Olson,M.V. (1989) Isolation of
single-copy human genes from a library of yeast artificial chromosome clones. Science 244. 13+8-1351.
32. Weber.J.L. and May.P.E. (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum.Gener. H. 388-396.
33. Wilcox. A.S., Khan.A.S., Hopkins.J.A. and Sikela.J.M. (1991) Use of 3^{\prime} untranslated sequences of human cDNAs for rapid chromosome assignment and conversion to STSs: implications for an expression map of the genome. Nucleic dcids Res. 19. 1837-1843.
34. Adams.M.D., Kelley,J.M., Gocayne,J.D., Dubnick.M., Polymeropoulos,M.H., Xiao,H., Merril,C.R., Wu,A., Olde.B. and Moreno,R.F. (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 165i-1656.
35. Riley.J., Butler,R., Ogilvie,D.J., Finniear,R., Jenner,D., Anand,R., Smith.J.C. and Markham,A.F. (1990) A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res. 18, 2887-2890.
36. Nelson,D.L., Ledbetter.S.A., Corbo,L., Victoria,M.F., Ramirez-Solis,R., Webster,T.D., Ledbetter.D.H. and Caskey,C.T. (1989) Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. Proc. Natl Acad. Sci. USA 86, 6686-6690.
37. Lichter, P., Ledbetter, S.A., Ledbetter, D.H. and Ward, D.C. (1980) Fluorescence in situ hybridization with Alu and LI polymerase chain reaction probes for rapid characterization of human chromosomes in hybrid cell lines. Proc. Natl Acad. Sci. USA 87, 6634-6638.
38. Emanuel, B.S., Driscoll, D., Goldmuntz, E., Baldwin, S., Biegel, J., Zackai, E.H., McDonald-McGinn, D., Sellinger, B., Gorman, N., Williams, S., and Budarf, M.L. (1993) Molecular and phenotypic analysis of the chromosome 22 microdeletion syndromes. In Epstein, C.J. (ed.), Phenotypic Mapping of Down Syndrome and Other Aneuploid Conditions. Wiley Liss, New York, NY, 207-224.
39. Frazer, K.A., Boehnke, M., Budarf, M.L., Wolff, R.K., Emanuel, B.S., Myers. R.M. and Cox, D.R. (1992) A radiation hybrid map of the region on human chromosome 22 containing the neurofibromatosis type 2 locus. Genonics 14, 574-584.
t0. Geurts van Kessel, A.H.M., Westerveld, A., de Groot, P.G., Meera Khan, P. and Hagemeijer, A. (1980) Regional localization of the genes coding for human ACO2, ARSA, and NAGA on chromosome 22. Cyrogenet. Cell. Genet. 28. 169-172.
40. Ledbetter, D.H.. Rich, D.C., O'Connell. P.. Leppert. M. and Carey, J.C. (1989) Precise localization of NF1 to 17q11.2 by balanced translocation. Am. J. Hum. Genet. 44, 20-24.
+2. Budarf, M.L., Sellinger, B., Griffin, C., Emanuel. B.S. (1989) Comparative mapping of the constitutional and tumor associated 11:22 translocations. Am. J. Hum. Genet. 45, 128-139.
41. Delattre, O., Azambuja, C.J., Aurias, A., Zucman, J., Peter, M., Zhang, F.. Hors-Cayla, M.C., Rouleau, G., and Thomas, G. (1991) Mapping of human chromosome 22 with a panel of somatic cell hybrids. Genomics 9. 721-727.
42. Erikson, J., Griftin, C., ar-Rushdi, A., Valtieri. M., Hoxie, J., Finan, J., Emanuel, B.S., Rovera. G., Nowell, P.C., Croce, C.M. (1986) Heterogeneity of chromosome 22 breakpoint in Ph-positive acute lymphocytic leukemia. Proc. Natl Acad. Sci. USA 83, 1807-1811.
43. Geurts van Kessel, A.H.M., Tetteroo, P.A.T., von dem Bome, A.E.G.Kr., Hagemeijer, A. and Bootsma, D. (1983) Expression of human myeloidassociated surface antigens in human-mouse myeloid cell hybriuds. Proc. Natl Acad. Sci. USA 80, 3748-3752.
44. Bauer.T.R., McDermid.H.E., Budarf, M.L., Van Keuren, M.L. and Bloomberg, B.B. (1993) Physical location of the hurnan immunoglobulin lambda-like genes 14.1, 16.1 and 16.2. Immunogenetics 38, 387-399.
45. Croce, C.M., Huebner, K., Isobe, M., Fainstein, E., Lifshitz, B., Shtivelman, E., Canaani, E. (1987) Mapping of the four distinct BCRrelated loci to chromosome region 22q11: order of BCR loci relative to chronic myelogeneous leukemia and acute lymphoblastic leukemia breakpoints. Proc. Natl Acad. Sci USA 84, 7174-7178.
46. Scambler, P.J. (1994) Report of the Fourth International Workshop on Human Chromosome 22 Mapping. Cytogenet. Cell Genet. 67, 277-319.
47. Figlewicz, D.A., Delattre, O., Guellaen, G., Krizus, A., Thomas, G., Zucman.J., and Rouleau, G.A. (1993) Mapping of human γ-glutamyl transpeptidase genes on chromosome 22 and other autosomes. Genomics 17. 299-305.
48. Heisterkamp,N. and Groffen,J. (1988) Duplication of the ber and gammaglutamyl transpeptidase genes. Nucleic Acids Res. 16, 8045-8056.
49. Budarf, M.L., Canaani, E. and Emanuel, B.S. (1988) Linear order of the four BCR-related loci in 22q11. Genomics 3, 168-172.
50. Cuticchia,A.J., Arnold.J. and Timberlake,W.E. (1992) The use of simulated annealing in chromosome reconstruction experiments based on binary scoring. Genetics 132, 591-601.
51. Rigault, P. (1993) In Lim,H.A., Fickett,J., Cantor,C.R. and Robbins,R.J. (eds) Clone Ordering by Simulated Annealing: Application to the STSContent Map of Chromosome 21. Proceedings of the Second International Conference on Bioinformatics, Supercomputing, and Complex Genome Analysis. World Scientific Publishing: 169-183.
52. McDermid.H.E., Budarf,M.L. and Emanuel,B.S. (1993) Long-range restriction map of human chromosome 22q11-22q12 between the lambda immunoglobulin locus and the Ewing sarcoma breakpoint. Genomics 18, 308-318.
53. Buetow,K.H., Duggan,D.. Yang.B., Ludwigsen,S., Puck,J.. Porter,J., Budarf,M., Spielman,R. and Emanuel,B.S. (1993) A microsatellite-based multipoint index map of human chromosome 22. Genomics 18, 329-339.
54. Shizuya.H., Birren,B., Kim,U.J., Mancino,V., Slepak,T., Tachiiri,Y. and Simon,M. (1992) Cloning and stable maintenance of 300 -kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl Acad. Sci. USA 89, 8794-8797.
55. Sternberg.N. (1990) Bacteriophage PI cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Natl Acad. Sci. USA 87, 103-107.
56. Ioannou,P.A., Amemiya,C.T., Garnes,J., Kroisel,P.M., Shizuya,H., Chen,C., Batzer,M.A. and de Jong,P.J. (1994) A new bacteriophage PIderived vector for the propagation of large human DNA fragments. Nature Gente. 6, 84-89.
57. Arratia,R., Lander,E., Tavare.S. and Waterman,M. (1992) Genomic mapping by anchoring random clones: a mathematical analysis. Genomics 11, 806-827.
58. Cohen,D., Chumakov,I. and Weissenbach,J. (1993) A first-generation physical map of the human genome. Nature 366, 698-701.
59. Weissenbach, J., Gyapay, G., Dib. C., Vignal. A., Morissette. J., Millasseau. P., Vaysseix. G. and Lathrop M. (1992) A second-generation linkage map of the human genome. Nature 359, 777-778.
60. Gyapay, G., Morrisette, J., Vignal, A., Dib, C., Fizames, C., Millaseau, P., Marc, S., Bernardi, G., Lathrop, M. and Weissenbach, J. (1994) The 1993-94 genethon human genetic linkage map. Nature Genet. 7, 246-339.
61. Barillot,E., Lacroix,B. and Cohen,D. (1991) Theoretical analysis of library screening using a N-dimensional pooling strategy. Nucleic Acids Res. 19, 6241-6247.
62. Riazi, M.A., Mears, A.J.. Bell. C.J., Budarf, M.L., Emanuel, B.S., Murray, J.C., Patil, S.R., and McDermid, H.E.(1994) Long range mapping and construction of a YAC contig within the cat eye syndrome critical region. Am. J. Hum. Genet. 55, A268.
63. Driscoll, D.A., Salvin, J., Sellinger, B., McGinn-McDonald, D., Zackai, E.H., Emanuel, B.S. (1993) Prevalence of 22 qll microdeletions in DGS and VCFS: implications for genetic counseling and prenatal diagnosis. J. Med. Genet. 30, 813-817.
64. Lindblom, A.. Sandelin,K., Iselius,L., Dumanski,J., White,I., Nordenskjold,M. and Larsson. C. (1994) Predisposition for breast cancer in carriers of constitutional translocation 11q;22q. Am.J. Hum. Genet. 54, 871-876.
65. Peyard,M., Fransson,I., Xie, Y.-G., Han, F.-Y., Ruttledge,M.H., Swahn,S., Collins,J.E., Dunham,I., Collins,V.P., and Dumanski,J.P. (1994) Characterization of a new member of the human β-adaptin gene family from chromosome 22q12, a candidate meningioma gene. Hum. Mol. Genet.3, 1393-1399.
66. Amemiya,C.T., Alegria-Hartman.M.J., Aslanidis,C., Chen,C., Nikolic.J ., Gingrich.J.C. and de Jong.P.J. (1992) A two-dimensional YAC pooling strategy for library screening via STS and Alu-PCR methods. Nucleic Acids Res. 20, 2559-2563.
67. Green,E.D and Olson,M.V. (1990) Systematic screening of yeast artificialchromosome libraries by use of the polymerase chain reaction. Proc. Natl Acad. Sci. USA 87, 1213-1217.
68. Lee,J.T., Murgia,A., Sosnoski,D.M., Olivos,I.M. and Nussbaum,R.L. (1992) Construction and characterization of a yeast artificial chromosome library for Xpter-Xq27.3: a systematic determination of cocloning rate and X-chromosome representation. Genomics 12, 526-533.
69. Ousterhout, J.K. (1994) Tcl and the Tk Toolkit. Addison-Wesley, Reading, MA.
70. Mott,R., Grigoriev,A., Maier,E., Hoheisel,J. and Lehrach,H. (1993) Algorithms and software tools for ordering clone libraries: application to the mapping of the genome of Schizosaccharomyces pombe. Nucleic Acids Res. 21, 1965-1974.

A YAC contig map of the human genome

Ilya M. Chumakov*, Phillppe Rigault; Isabelle Le Gall", Christine Bellanné-Chantelot*, Alain Blllault, Sophie Guillou", Pascal Soularue*, Ghislaine Guasconi', Eric Poullier', Isabelle Gros*, Marla Belova*, Jean-Luc Sambucy", Laurent Susini", Patricia Gervy", Fabrice Glibert", Sandrine Beauflls", Hung Bul', Catherine Massart', Marle-France De Tand', Frédérlque Dukasz', Sandrlne Lecoulant', Plerre Ougen', ${ }^{\text {V }}$ VirgInle Perrot", Martial Saumier", Catherine Soravito ${ }^{\circ}$, Rita Bahouaylia', Annick Cohen-Akenine ${ }^{\circ}$, Emmanuel Barlllot ${ }^{\dagger}$, Stéphane Bertrand ${ }^{\dagger}$, Jean-Jacques Codani ${ }^{\dagger}$, Dominique Caterina ${ }^{*}$, Isabelle Georges ${ }^{\dagger}$, Bruno Lacrolx', Georges Lucotte", Mourad Sahbatou', Christlan Schmit*, Murlel Sangouard", Emmanuel Tubacher', Colette Dib ${ }^{\dagger}$, Sabine Fauré̄ ${ }^{\dagger}$, Céclie Flzames ${ }^{\dagger}$, Gabor Gyapay ${ }^{\dagger}$, Phllippe Millasseauu ${ }^{\dagger}$, SImon NGuyen ${ }^{\dagger}$, Delphine Muselet ${ }^{\dagger}$, Alain VIgnal ${ }^{\dagger}$, Jean Morissette ${ }^{\dagger \dagger}$, Joan Menninger ${ }^{\dagger}$, Jonathan Lleman ${ }^{\dagger}$, Trushna Desal ${ }^{\ddagger}$, Amy Banks ${ }^{\ddagger}$, Patricla Bray-Ward ${ }^{\ddagger}$, David Ward ${ }^{\ddagger}$, Thomas Hudson ${ }^{\mathbf{s}}$, Sebastlan Gerety ${ }^{s}$, \& Daniel Cohen
* Fondation Jean Dausset Centre d'Etude du Polymorphisme Humain, 27 rue Juliette Dodu, 75010 Paris, France
\dagger Généthon, 1 rue de l'Internationale, 91000 Evry, France
\ddagger Department of Genetics, Yale University School of Medicine, New Haven, Connecticut CT06510, USA
§Whitehead Institute/MIT Center for Genome Research, Whitehead Instititue for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
II Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
I Centre de Recherche du Centre Hospitalier, Université Laval, Quebec, G1V 4G2, Canada

A yeast artiflcial chromosome library containing 33,000 clones with an average Insert slze of cne megabase of human genomic DNA was extenslvely analysed by several different procedures for detecting overlaps and positional Information. We developed an analysls strategy that resulted, after confirmatory tests, in a YAC contlg map rellably covering about 75\% of the human genome In $\mathbf{2 2 5}$ contlgs having an average size of about ten megabases.

Physical maps of the human genome are essential tools for unravelling the genetic basis of disease ${ }^{1}$, localizing the complete inventory of human genes, understanding the principles of genome organization and achieving other objectives of the Human Genome Project. Physical maps consist of ordered, overlapping cloned fragments of genomic DNA covering each chromosome.

Given the large size of the mammalian genomes, physical mapping of the entire human genome requires using clones with extremely large inserts, of the order of 1 megabase (Mb). Yeast artificial chromosomes (YACs) ${ }^{2}$ are currently the only cloning system capable of propagating such large DNA fragments. Indeed, YACs have provided the basis for the first two physical maps of entire human chromosomes: 21q (ref. 3) and Y (ref. 4). More generally, YACs have been crucial tools in cloning disease genes based on their chromosomal location ${ }^{5,6}$. Such positional cloning ${ }^{7}$ projects begin by genetically mapping a disease gene to a region of a few centiMorgans by tracing its inheritance relative to polymorphic DNA markers, a task made feasible by the recent availability of a complete genetic map ${ }^{8}$ containing thousands of highly polymorphic, polymerase chain reaction (PCR)-typeable markers ${ }^{\text {, } 10}$ known as microsatellites, simple tandem repeat polymorphisms or simple sequence length polymorphisms. One must then analyse the entire chromosomal region between the closest flanking genetic markers to identify the disease gene. YACs are invaluable for the purpose of covering such large regions, although their utility for detailed genomic analysis is somewhat limited by, problems of infidelity-notably, a high frequency of chimaeric clones ${ }^{11}$ (containing fragments from more than one genomic region)-and instability of some regions. In addition, YAC-based physical maps are important intermediates in producing a 'sequence-ready' physical map consisting of smaller and more stable clones.

Here we report our progress towards making a physical map of the human genome consisting of overlapping YACs anchored to a comprehensive set of genetic markers.

General strategy

To construct a physical map, we analysed a large-insert YAC library providing tenfold coverage of the human genome by three different experimental procedures: (1) sequence-tagged sites (STSs) ${ }^{12}$ content mapping, involving PCR-based screening with genetically-mapped microsatellite markers: YACs identified as containing such markers were referred to as 'geneticallyanchored YACs'; (2) cross-hybridization, involving hybridizing the library with probes derived from individual YACs; and (3) fingerprinting, involving characterizing each YAC in terms of the pattern of restriction fragments detected by two human repetitive sequence probes.

These three procedures provide different ways of establishing 'links', representing potential overlaps between clones. In the case of STS content mapping and cross-hybridization, the experiment yields a binary result from which links can be immediately deduced. In the case of fingerprinting, links between YACs are inferred statistically ${ }^{13}$ when the fingerprint patterns are sufficiently similar, as described below.

It is not possible to construct a physical map based solely on the complete collection of links: most YACs aggregate into a few huge, branched, artefactual contigs. This can be expected because of the high rate of YAC chimaerism ($40-50 \%$), intraor interchromosomal sequence similarities in the human genome, and the possibility of laboratory errors.

To circumvent this problem, we sought to build only short 'paths' between genetically anchored YACs. Paths connecting nearby points are less likely to be affected by false connections within or between the intervening YACs (such a false connection would require two chimaeric clones: one leaving away from the region and another returning to it). We also obtained partial information about the chromosomal origin(s) of many YACs through our cross-hybridization procedure and used this information to choose between paths.

We have previously given a brief description of this general strategy ${ }^{14}$ and reported that an automatic computer implementa-

GENOME DIRECTORY

tion appeared to cover most of the human genome, but we did not provide a detailed map. We have since inspected each interval and performed confirmatory tests when necessary and more YAC links have been established. Here we describe the specific methodology of the map construction and discuss the reliability of the procedures. We also present the improved map and evaluate its coverage of the genome.

The CEPH YAC Ilbrary

The entire CEPH YAC library comprises 98,208 clones representing about 17 genome equivalents. It was derived from a
human male lymphoblastoid cell line, Boleth ${ }^{15}$, and is arrayed in 1,023 96-well microtitre plates. Inserts consist of EcoRI partial digested human genome fragments cloned into the pYAC4 vector ${ }^{2}$ and transfected into the host strain AB1380, as previously described ${ }^{16}$. (The sole exception is a set of 237 clones, in plates 2001-3, for which a recombination deficient host Rad52. 3a was used ${ }^{17}$.)

The first portion of the library, termed Mark I (containing 52,992 clones in plates 1-551) has an average insert size of 431 kilobases (kb). By using different size fractionation conditions. a Mark II library (containing 17,760 clones in plates $552-736$

CLONE SIZE DISTRIBUTION (plate 625-736)

CLONE SIZE DISTRIBUTION (plate 737-989)

FIG. 1 Clone size distribution. The distribution of different categorles of YAC are shown as follows all clones (blue), STS positive YACs (green), Alu-PCR target YACs (grey), Aln-PCR probe YACs (pink), YACs with in-
formative fingerprint (purple). The distribution of chimaeras among A PCR probe YACs is shown in yellow.
was produced with an average insert size of 600 kb . A still larger Mega-YAC library (containing 24,288 clones in plates 737-989) was produced with an average insert size of $1,054 \mathrm{~kb}$.

The YACs used in this project consisted of 10,752 clones from the Mark II library (plates 625-736) and all of the Mega-YAC library, for a total of 34,560 YAC clones providing tenfold coverage of the genome. The size of each clone was determined by field inverted gel electrophoresis (FIGE) ${ }^{18}$ followed by Southem blotting and hybridization with a labelled probe containing pBR322 and total human DNA. Under the conditions used, sizes above $1,700 \mathrm{~kb}$ could not be accurately resolved. We found that 6% of the clones failed to give a hybridization signal. The size distribution is shown in Fig. 1. Multiple bands were detected in a certain proportion of the YACs (12% from Mark II and 6.8% from the Mega-YACs), which may result from clone rearrangements. In addition to these 34,560 clones used to construct the map, some YACs from Mark I and the first part of Mark II were also used. Specifically, some YACs that had previously been anchored by STS were used as hybridization probes.

STS screening

Methodology. The YAC library was screened with a large collection of PCR-typeable genetic markers, to identify clones containing each locus. To facilitate PCR-based screening of 33,024 clones (plates 625-968), we prepared pools of clones in such a manner as to reduce the number of reactions required by 100 fold, as compared to screening each clone individually ${ }^{11}$.
The library was divided into 43 'blocks', each corresponding to eight microtitre plates (containing $8 \times 96=768$ clones). For each block we prepared one 'superpool' containing DNA from all the clones and 28 'subpools' prepared by using a three-dimensional pooling system based on the plate, row and column address of each clone (specifically, 8 subpools consisted of all clones residing in a given microtitre plate; 8 subpools consisted of all clones in a given row; and 12 subpools consisted of all clones in a given column). The PCR screening for each STS involved three steps: (1) identifying the positive superpools (43 reactions); (2) for each positive superpool, identifying the positive plate, row and column subpools to obtain the address of the positive clone (28 reactions); and (3) directly confirming the PCR assay on the identified clone (1 reaction). Unique addresses
were not obtained when a superpool contained more than one positive clone or when one of the three dimensions failed to amplify; such cases were resolved by testing the candidate addresses consistent with the partial data when less than 16 reactions were required.

The 'complete screening' scheme described above was used in the first part of the project. After this stage we switched to a 'directed screening' strategy, using the links between YACs to further reduce the number of reactions by twofold. The strategy was first to identify positive superpools for a given STS, and screen some subpools until two YACs were identified; three positive superpools were usually necessary for this. Then we used two directed screening methods based on our database of results. The first method involved using the 'LOCUS' function, developed as part of the QUICKMAP software, to display the local contig attached to the STS and the YACs linked to it to identify other clones likely to contain the STS; such YACs were directly tested for the STS. The second method was used for confirmation of the paths. It used the 'CLONESPATH' function of QUICKMAP to construct and display potential paths through adjacent STSs (see sections on construction of the map and representation of the map below). We then tested some clones of the path against both STSs. These directed strategies were very efficient in terms of screening, although did not provide two independent tests for each clone, as in the first strategy. As false positives were highly detrimental to our mapping strategy, we distinguished between: (1) the YACs that were identified by subpool screening and individually confirmed; (2) the YACs that were identified by subpool screening but proved to be negative upon checking; and (3) the YACs that were identified by direct testing. The second case, representing about 3% of the addresses, may correspond to clones which might be genuine positive clones that we failed to detect for technical reasons. During map construction, we used the last two cases more cautiously, checking (F hen possible) fingerprint or hybridization information before inciuding such YACs in the map. The PCR products were detected by agarose gel electrophoresis, ethidium bromide staining, and ultraviolet illumination. Images were captured by a CCD camera and analysed with semiautomatic software interfaced to a laboratory notebook (using Sybase).
Results. At Centre d'Etude du Polymorphisme Humain (CEPH)/Généthon, we examined a total of 2,890 polymorphic

ALU_PCR and FNGERPRINT LINKS

FIG. 2 Alu-PCR and fingerprint links. Blue bars represent Alu-PCR links, red bars represent fingerprint links.

GENOME DIRECTORY

markers, all generated and mapped by genetic linkage analysis as part of the Généthon genetic mapping program ${ }^{8}$. All markers were screened on the 43 superpools to identify the positive blocks. About 5% of the markers failed to work because of poor amplification or high background in the YAC pools. Another 5% gave no signal in the superpools, despite yielding the expected PCR product in a human genomic DNA control. In about 60% of these cases, we were able to detect and confirm a positive signal when the PCR products were electrophoresed, blotted and probed with a (CA $)_{1 s}$ oligonucleotide (which hybridizes to the CA repeat contained within the polymorphic locus).

Complete screening was performed for the first 814 markers, those of the first Généthon linkage map (1992). Of these, 28 failed to detect any YAC, and 786 identified 5.6 YACs on average. The 2,076 remaining genetic markers were subjected to directed screening. Of these, 261 failed to detect any YAC, and the remaining 1,815 identified an average of 4.9 YACs.

In total, 2,601 genetic markers identified at least one YAC. A total of 289 STSs have no anchored YACs, whether because of PCR-related problems or library-related problems. PCR-related problems are mainly due to sequence-dependent heavy background noise or poor amplification. In some of these cases, the design of another pair of primers from the original sequence data allowed us to obtain positive clones. YAC library-related problems can be due to the absence of clones in certain regions of the genome, either for statistical reasons or for non-clonability of certain human DNA sequences in yeast. The inability to find anchored YACs was more frequent for STSs located in certain regions of the genome, such as $1 \mathrm{p}, 19$, the distal part of 17 q , and most of the telomeric regions.
In addition to data generated at CEPH/Généthon, we also used results for 1,500 STSs screened elsewhere. The largest data set came from the Whitehead Institute/MIT Center for Genome Research (WI/MIT). We used the July 1994 release of this data, which contained 3,419 STSs screened with a different technology ${ }^{19}$, using the 25,344 clones in plates 709-977 (the current publicly available release contains over 10,000 STSs and can be accessed via the World Wide Web, address 'www.genome.mit.edu'). Among these STSs were 1,128 AFM markers also screened at CEPH/Généthon. Each group found an average of 1 definite YAC address per 2 genome equivalents screened: 5.1 YACs in 10 genome equivalents screened at CEPH/Généthon, and 4.1 YACs in 8 genome equivalents screened at WI/MIT. (Additional incomplete YAC addresses were also obtained, for example, about 1.5 at WI/MIT. These were still being resolved and are not used here.) The combined data provided more complete coverage than either group alone, as roughly two YACs were found in common, three only by CEPH/Généthon, and two only by WI/MIT.
Finally, we also incorporated results from about 370 STSs screened elsewhere and deposited in public databases.

Screening by hybridization

Methodology. We screened the YAC library by hybridization, using individual probes derived from individual YACs to screen the entire Mega-YAC library. To circumvent the tedious process of purifying YAC DNA from the total yeast genomic DNA, and also to increase efficiency of the hybridization, we derived from each YAC a representative set of human-specific DNA fragments by means of inter-Alu PCR, between the ubiquitous Alu repeats spread along the human genome ${ }^{20,21}$. This was achieved by PCR amplification from total yeast clone DNA with a single primer ${ }^{22}$ specific for the 3^{\prime} part of the Alu repeat sequence. Under our conditions there was no amplification from yeast genomic DNA with this primer; on average 10 different fragments of 300 base pairs (bp) average size were produced from random Mega-YACs.

Alu-PCR products were prepared individually from each YAC to be used as probe or target. To simplify the screening procedure, we used a pooling scheme for the target Alu-PCR
products. The pooling procedure was similar to the scheme used for STS screening, but in this case all subpools were simultaneously screened by hybridization. In the pooling scheme. 'blocks' consisted of 4 microtitre plates which were conceptually divided into 8 half-plates. From these 8 half-plates, a total of 22 subpools were prepared, consisting of 8 subpools containing clones in the same half-plate, 8 subpools containing clones in the same row of the half-plate, and 6 subpools containing clones in the same column of the half-plate. As this part of the library (plates 734-989) represents 64 blocks, the total number of subpools to screen is $64 \times 22=1,408$.

The pools were spotted at high density onto nylon membranes before hybridization. The addresses of positive candidates were deduced according to which half-plate, row and column pools were found positive for each block. The YACs identified by a single signal in each dimension were called 'unique positives'. If two candidate clones are present in a block, more than three signals will be observed. In general, the addresses of the positive clones cannot be deduced unambiguously under these conditions ('undetermined positives'). However, when such candidates are located on the same row or the same column of a single halfplate, it is possible to determine these positive clones ('determined positives'). Our experience indicates, that these determined positives can be used for the map construction, but rather cautiously, as some (or many) of them are false positives. One possible explanation of this phenomenon is that some of these 'determined' positives appear to be linked to artefactual spots due to hybridization background. Moreover, in some cases some of the three-dimensional signals could not be detected for technical reasons. This could interfere with the deduction of YAC addresses when using undetermined positives.

In addition to the Alu-PCR products from the YAC clones, we also spotted in duplicate Alu-PCR products from a somatic cell hybrid panel consisting of cell lines, each containing only one or two human chromosomes. These hybridization targets provided information about the likely chromosomal localization of the YAC probes. Most of the cell hybrids were obtained from the NIGMS (Coriell Institute of Medical Research, Camden. New Jersey) mapping panel 2 (ref. 23). A chromosome 20 -only G418-resistant monosomic cell hybrid DNA was provided by C. Smith. GM10791, a chromosome 7-only somatic cell hybrid DNA was provided by E. Green; and GM06318B, a chromosome X-only somatic cell hybrid DNA was provided by D. Schlessinger. In the second set of membranes used for this project, we also included somatic cell hybrids for chromosomes $1+\mathrm{X}, 5,6,12$ and 19 , provided by D. Patterson.

The Alu-PCR products of subpools and somatic cell hybrids were spotted onto membranes together with ϕ X DNA for automatic filter identification. This spotting was performed by ar automatic replicating device. The membranes were hybridized in the presence of human DNA competitor with ${ }^{33} \mathrm{P}$-labelled mixture of phage ϕ X DNA and Alu PCR products of individual YACs. A high-throughput protocol that included labelling in microplates and washing membranes in batches allowed a team of two people to hybridize 200 YAC probes per day. After washing and exposure, the films were scanned and images were stored on a workstation. After automatic treatment, all images were manually inspected so artefacts could be removed from analysis and the interpreted results checked (positive YACs deducec from the subgroups and chromosomal assignment) during the analysis. The software for this semiautomatic procedure was developed in collaboration with Cose (Paris).

The pilot hybridizations with freshly made membranes indicated that 80% of random YAC probes produced an effective hybridization result. The remaining 20% gave either no signal (4% of the cases) or high background noise. This latter phenomenon is probably associated with middle-frequency repeat sequences included occasionally in inter-Alu PCR amplification products. In most of these cases, we were also unable to determine the chromosomal origin of the probe.

Generally, hybridization to somatic cell hybrid inter-Alu PCR products was less effective than to YAC targets. In pilot experiments, only 80% of successful probes gave a signal to at least one duplicate of the chromosomal inter-Alu PCR products spots. In general, we observed a very good result reproducibility when the same YAC probe was used on different batches of membranes. Results. We derived inter-Alu PCR products for each of the 24.576 YACs of the Mega-YAC library (about eight human genome equivalents) to be used as targets for hybridization. Probes were selected by various criteria.

The first 2,000 probes were YACs belonging to chromosomespecific sublibraries generated according the procedure described to obtain the chromosome 21 -specific. YAC subset ${ }^{22}$. Briefly, Alu-PCR products of clones from a four-genome equivalent portion of the Mega-YAC library were individually spotted on membranes and hybridized successively with chromosome-specific probes obtained with inter-Alu PCR DNA products from the panel of somatic cell hybrids.
We also used as probes 200 YACs cloned in Rad52- yeast strain ${ }^{17}$. According to the chromosomal assignment results from hybridization, this set appeared to contain only 8% of chimaeric YACs.
The rest of the probes were chosen using the QUICKMAP software. The first objective was to obtain for each genetic locus two YACs successfully used as probes. For this about 2,500 YACs were chosen with the 'locus' function. We also used the 2,000 largest YACs that were not genetically anchored. Finally, about 2,000 YACs were chosen with the 'CLONESPATH' function during the map confirmation.

In total, 8,785 probes gave interpretable signals in this screening procedure. As expected from the selection process, the size distribution of the probes is shifted towards larger size (Fig. 1). The distribution of the number of targets detected per probe is almost gaussian, with an average of 7 ('unique positives') (Fig. 2) or 10 (when adding 'determined positives'). This is approximately half of that expected with probes spanning 1 Mb of genome. The first reason is that we wanted to avoid false positives, so we kept only the clearest signals during the image analysis. The discrepancy can also be explained by non-random distribution of inter-Alu PCR products and unequal efficiency of their individual hybridization. The distribution of YAC target sizes is also shifted towards the larger size, probably because larger clones are likely to produce more inter-Alu PCR products and so will provide stronger signals. This may also account for the larger size of successful YAC probes. In total, $20,890(85 \%)$ of YACs were linked by hybridization to at least one other YAC. In most cases, a given YAC is detected as a target when it is used as a probe. The signal obtained is generally very intense. However, pools containing adjacent clones in the corresponding plate often produce a signal as well, probably because of minor cross-contamination. These artefacts interfere with the evaluation of positives in the corresponding pools, so targets could appear as 'undetected' in the database.

A total of 7,209 probes were assigned to chromosomes based on hybridization. Although the chromosomal assignment by inter-Alu PCR is simple, care should be taken in interpreting the results. For example, supposedly monochromosomal hybrids often contain insertions of small chromosomal fragments and deletions of other chromosomal regions. This was experimentally confirmed for the NIGMS mapping panel II used in our work. We also found by conducting reciprocal hybridization between these somatic cell hybrids that inter-Alu PCR products from some of them. cross-hybridize. The most striking overlap was detected between chromosome 5-'only' and chromosome 6'only' hybrids, as well as between chromosome 12-'only' and chromosome 6 -'only' hybrids. The same pattern of cross-hybridization was observed with YAC probes. This cross-hybridization could, in some cases, be due to repeated or duplicated genomic regions.

In addition to problems with the hybrid cell lines themselves, false chromosomal assignment could result from laboratory error or sequence similarity causing cross-hybridization. Alternatively, false negatives could be due to inefficient hybridization with inter-Alu PCR products from certain YACs, or deletion of the corresponding region in the somatic cell hybrid.

Chromosomal assignment by hybridization assists in the detection of chimaeric YACs, but will obviously miss some chimaeras, including those containing only a small portion from a different chromosome region, those containing a region that is poor in Alu repeats, and those consisting of two fragments of the same chromosome. However, some apparent chimaeras could result from sequence similarity between several chromosomes. Despite these difficulties, we have used this result to analyse the chimaerism rate according to the library origin and the size distribution of the YACs (Fig. 1). The Mark II library contains a greater proportion of chimaeric YACs than the MegaYAC library. In the Mark II library, the very large YACs seem to be more chimaeric than the smaller ones, but this is not the case for the Mega-YAC library.

Because of these interpretation problems, we treated the chromosomal assignment data with extreme caution in the QUICKMAP software, where the criteria of assignment depended on several parameters which varied according to the genomic region.

Fingerprinting

Methodology. To detect overlaps among YACs, we performed fingerprint analysis as previously described ${ }^{13}$. Each YAC DNA was digested with three enzymes: EcoRI, PvuII and PstI. after agarose gel electrophoresis; the fragments were transferred onto nylon membranes using a robot. Membranes were then hybridized successively with two probes: human repeated sequences LINE-1 (LI) ${ }^{24}$, and THE-LTR (transposon-like human-element long terminal repeat: THE) ${ }^{25}$. The corresponding patterns were \rightarrow captured automatically after scanning each film. The size of each fragment was extrapolated from the migration length of refer- in ence markers with known sizes which were run in parallel.

The L1 and THE probes were selected as they gave 6 and 11 bands per megabase, respectively. We attempted to use other repetitive probes, such as Alu, medium reiteration frequency repeats (MER) ${ }^{9}$ and poly(GA), but with little success. The Alu probe patterns were too complex, and the MER and poly(GA) probes gave rather poor patterns with 27.6, 12.8 and 15.6% negative clones for MER 1, MER 10 (ref. 26) and poly(GA), respectively. Promising results were obtained with two probes for two Alu subfamilies, GA. 007 (ref. 27) and 5OS (ref. 28), but these were poorly reproducible.
Results. A total of 31,392 YACs were successfully fingerprinted. Of these, 12.5% gave no bands for L1, 7.3% gave no bands for THE, and 4% were negative for both. When hybridized with an Alu consensus probe, one-third of these L1/THE-negative clones gave no Alu bands. The remaining clones (L1/THE-negative clones with Alu bands) contained inserts half the size of Ll / THE-positive clones.

Pairwise comparisons were performed among all the fingerprints as described previously ${ }^{13}$, and a likelihood of overlap score (LOS) was determined for each pair of clones and for each probe. Only YAC pairs having a LOS value greater than or equal to 70 for both Ll and THE were declared linked. These threshold values were chosen according to criteria based on the analysis of YACs previously mapped on chromosome 21 for which an extensive study had been performed ${ }^{3}$. We considered all possible pairs of YAC probes for which a chromosomal assignment was obtained by hybridization on somatic cell hybrid DNA. In this set, 70% of YAC pairs linked by fingerprint data were assigned to the same chromosome by hybridization (concordant pairs). Similarly, 68\% of YAC pairs linked by hybridization showed concordant chromosomal assignment. (Interestingly, YAC pairs with reciprocal links by hybridizaton

GENOME DIRECTORY

showed 82% concordant assignment. As a control, random YAC pairs show only 8% concordance.)
In total, 17,006 YACs with these threshold values were linked to at least one other YAC from the library. On average, each of these YACs was associated with 5.8 YACs. The size distribution of these 17,006 YACs is shifted significantly towards larger sizes ($1,119 \mathrm{~kb}$ on average). Larger YACs containing more bands would be expected to be more informative. A comparison with STS and hybridization data enabled us to detect 22 plates giving an abnormally high number of links due to a conserved fingerprint pattern in all of them. We suspect that well-to-well contamination occurred during the fingerprint process, and we removed these 22 plates from analysis. The corresponding clones made available in 1992 are free of this contamination.

Construction of the map

The starting point of the map was the framework of STSs given by the Généthon 1993-1994 linkage map ${ }^{8}$. This map contains 2,066 polymorphic markers, ordered in 1,267 genetic loci, each of which corresponds to a bin of 1-7 polymorphic STSs that were not recombinationally resolved. We used the three types of links between YACs (based on STS content, fingerprint and hybridization) to assemble contigs that span the intervals between genetically adjacent STSs. During this process, we integrated new STSs to this map to refine the framework order and strengthen the contigs. The limitations and precautions taken in building consistent contigs are discussed here, as each data type has its own limitations and error rate.
First, we define a minimal path between two STSs, S_{1} and S_{2} as an ordered list of YACs $\left(\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{n}\right)$ that satisfy the following conditions: (1) Y_{1} and Y_{n} contain S_{1} and S_{2}, respectively; (2) for each $i=1, \ldots, n-1$, the YACs Y_{1} and Y_{i+1} are linked by one of the three mapping methods; and (3) there is no link between YACs that are not consecutive in the list. The number n of YACs in the minimal path is called the level of the path.
For several reasons, minimal paths do not necessarily represent valid 'contigs' of sequences that actually overlap in the human genome. Most importantly, chimaeric YACs artefactually join distant segments of genomic DNA, establishing connections between pairs of distant STSs. Such YACs represent between 30 and 50% of the library, depending on the genomic regions. Similarly, false positive links between clones can also result from hybridization or fingerprinting. Such false positives may make up $5-10 \%$ of the links.

Because of these problems, the backbone information from the genetic map is crucial for building accurate contigs. First, we only look for YAC paths connecting nearby STSs. Second, we can exclude some YACs that appear to be chimaeras based on their containing STSs from distinct locations, based both on Alu-PCR and the STS data (see below for more information about elimination of false links).
Contlg assembly algorithm. The algorithm for constructing paths between two nearby loci proceeds by the construction of progressively larger 'neighbourhoods' of YACs. For each locus

FIG. 3 Constructlon of a level 1 path between two loci A and B. Stage I is the construction of the first-degree neighbour set for each locus. In stage II, YACS 1 and 4 are found in common. These YACs establish the level 1 path.

FIG. 4 Construction of a level 2 path. After stage I, no common ciones are found. Stage II is the construction of the second-degree neighbour set for each locus. The asterisk documents the link between clones 1 and 5 , which establish a leve! 2 path (stage III).
x , the computer can construct the set $N_{\mathrm{x}, 1}$ of first-degree neighbours consisting of anchored YACs (that is, YACs containing at least one STS in the locus); the set $N_{\mathrm{x}, 2}$ of second-degree neighbours consisting of YACs linked to those in $N_{\mathrm{x}, 1}$; the set $N_{\mathrm{x}, 3}$ of third-degree neighbours consisting of YACs linked to those in $N_{\mathrm{x}, 2}$; and so on. Any overlap between the neighbourhoods of loci x and y clearly yields a path connecting them. (More precisely, a YAC present in both $N_{\mathrm{x}, I}$ and $N_{\mathrm{y}, /}$ yields a path of length $i+j-1$.) In practice, the computer program constructs increasing neighbourhoods around both loci, halting as soon as an overlap is found. Examples are illustrated in Figs 3-5.

In attempting to link nearby loci on a given chromosome, we used positional information in an attempt to avoid paths that branch to distant parts of the genome. In forming second-degree and higher neighbourhoods, we excluded YACs exclusively assigned to other chromosomes by Alu-PCR hybridization, and also excluded STS-content links involving STSs from other regions.

Although the genetic linkage map represents the most likely genetic order, some local marker orders may be inverted. Accordingly, we searched not only for paths between immediately consecutive STSs (such as i and $i+1$), but also between nearby but non-consecutive STSs (such as i and $i+2$). For such non-consecutive STSs, the genetic distance and the number of intervening STSs was constrained depending on the level of the path.
Manual Inspection of the paths. The map construction algorithm was applied to the whole genome. Each candidate path was then subjected to several types of checking. The first step involved graphical inspection using the 'CLONESPATH' part

FIG. 5 Construction of a level 3 path. After stage II, clone 8 is found in common between the two second-degree neighbour sets. The level 3 path is represented at stage III.
of the program to evaluate paths based on the following criteria: (1) the number of YACs in the path; (2) The density of links between YACs; and (3) the extent to which YACs in the path were chromosomally assigned (by Alu-PCR hybridization, other STS-content information, or fluorescence in situ hybridization (FISH)). Graphical inspection also allowed us to detect and reiect cases in which two independent paths linked the two STSs. Aiter such visual inspection, we could reject candidate paths, try to generate a new candidate path (by trying new parameters in the algorithm or changing the order of STSs), or perform additional STS screening to test the paths further.

We tried to improve candidate paths that were judged satisfactory after graphical analysis. We derived new STSs from the ends of internal clones in a path. We also subjected the most critical clones to Alu-PCR hybridization to test their chromosomal assignment and to establish more links between clones in the path. This strategy often shortened paths by indicating overlaps that had not previously been detected because our STS screening was incomplete. To illustrate this point, Fig. 6 shows the result of an incomplete STS screening, and Fig. 7 shows the result of incomplete hybridization data. In particular, paths of level 6 or 7 in our 1993 version were converted to shorter paths. The present map contains now only paths of level 5 or less.

The bins may contain several markers that, although not recombinationally separated, span a certain distance in the physical map. To cover the physical region within the bin, we searched for paths linking different STSs within a bin. Many bins were covered by paths of level 1. For the remaining bins, we tested YACs positive for one of the STSs in a bin with the other STSs in the bin. In some cases, we used the locus program to close gaps between STSs with paths of higher levels. Fewer than 10% of the bins are not completely covered in the present map.

Because we constructed paths between genetic markers that were not necessarily adjacent in the linkage map (see above), we sometimes encountered cases in which the shortest paths connected markers i with $i+2$ and markers $i+1$ with $i+3$. This situation could arise for two reasons: we could have missed actual overlaps in the paths owing to false negative screening results (Figs 6 and 7), or the putative order on the genetic linkage map could be incorrect. To preserve the linearity of the map in these rare cases, we have either inverted the marker order or joined recombinationally separable genetic markers in the same bin. As a result, the physical order of the markers on the summary figures of the atlas (see below) does not perfectly correspond to the Généthon 1994 linkage map.
Integration of other STSs. In addition to the backbone STSs taken from the 1994 Généthon genetic linkage map, we also integrated some additional STSs that improved paths in the map. These markers came from two sources. First, WI/MIT had screened 3,419 STSs against the YACs by June 1994. From this

FIG. 6 Part I represents the real disposal of the YACs. If STS B is not tested against YAC 1, the path would appear at level 2 (provided the overlap between the two YACs is detected), as shown in part II. in such a case, we would have tested A against 2 and B against 1 and reduced the level to the actual value.

FIG. 7 Part I represents the real disposal of the YACs. If neither YAC 1 nor YAC 3 is used as Alu-PCR probe, the hybridization between them cannot be detected. In this case, YAC 2 was used as probe and detected the YACs 1 and 3. The path appears to be level 3, as shown in part II. This situation can be resolved by testing either 1 or 3 as Alu-PCR probe.

STS-content data, we selected 173 STSs (including 76 non-AFM genetic markers) that significantly improved paths. Second, the CEPH/Généthon group screened STSs from 445 unpublished genetic markers from Généthon (C. Dib et al., manuscript submitted). Where known, chromosomal assignment or approximate map position was used for both sets of markers. In most cases the integration produced denser contigs and decreased the level of paths (see Fig. 6).

FISH mapping

A total of 650 genetically anchored YACs, approximately one every $5-10 \mathrm{cM}$, were selected and used as probes for fluorescent in situ hybridization (FISH) on metaphase chromosomes. The chimaerism rate detected by this method was 46%. Based on the comparison of cytogenetic and genetic localizations, there appear to be higher frequencies of recombination near telometes and lower frequencies near centromeres. For example, the genetic distance between the centromeric markers D1S440 (at 163 cM) and DIS484 (at 182 cM) represents 6.5% of the genetic length of this chromosome, but 17% of the fractional cytogenetic length of the chromosome. Similarly, the interval between the centromeric markers D6S272 (at 75 cM) and D6S421 (at 86 cM) represents 5.3% of the genetic map but 17% of the fractional length of chromosome 6. In contrast, the telomeric loci D6S411 (at 173 cM) and D6S281 (at 207 cM) are separated by 16.4% of the genetic length of the chromosome, but the interval between D6S411 to the telomere is only 4% of the fractional cytogenetic distance. The FISH analysis indicates that there are no genetic markers on $13 \mathrm{p}, 14$ p and 15 p, and that the terminal region of chromosome 20 q is not contained in the genetic map. Thus there is no coverage by YAC of these regions in our physical map.

Presentation of the map

For each chromosome, the atlas following this paper shows: (1) a summary map of each chromosome, showing the cytogenetic representation, and the scales of the physical and genetic maps, together with the indication of the regions covered in contigs; and (2) a map of detailed contigs for each chromosome.
Summary flgure. Each chromosome is presented at the same genetic scale as an ideogram ${ }^{29}$ at the left side of each drawing. At the right of this ideogram is the physical map scale, showing the location of the bins. In parentheses are two numbers, separated by a semicolon: the first number is the number of STSs in the bin, the second is the number of YACs that are anchored to the bin. The links between the physical map scale and the cytogenetic scale are established through YACs that are anchored to the bins and have been used in FISH hybridization. Each of those YACs establishes a connection between the bin and an interval in the ideogram. Note that the FISH measurements have been made in terms of fractional length of the whole chromosome, and that the size of heterochromatic and centromeric regions may vary between individuals. As a consequence, a slight distortion can occur in our figures after these regions, especially for chromosomes containing entirely heterochromatic p arms

GENOME DIRECTORY

(acrocentrics). At the right of the physical map, the intervals covered in contigs are represented with coloured rectangles. The different colours represent the different levels of the paths. Finally, the correspondence between the physical map scale and the Généthon linkage map, used as a backbone for the bin locations, is shown at the right of these rectangles. The positions in the genetic map are expressed in Morgans from the most distal marker of the p arm of the chromosome.
Detalled contlgs. Contigs are presented for each chromosome from pter to qter. They correspond to a succession of paths, represented by rectangles on the summary figure. Each path is a collection of clones, ordered in stacks. The number of stacks in a path corresponds to the level of the path. The graphical presentation of paths provides the following characteristics of the clones: STS-content information for the YACs; sizes of the YACs; overlap relationships between YACs based on Alu-PCR hybridization and fingerprint data; chromosomal assignment for YACs used as probes for Alu-PCR hybridization; and indication of YACs used as FISH probes.

Each locus is indicated by a white rectangle that indicates its chromosome and position. STSs located in the bin are displayed above the rectangle. These STSs are numbered within the bin and are displayed in a beige rectangle. For example, the bin located at position 1.00 on chromosome 1 contains two STSs: AFM120xd4 (D1S209), and AFM286xd9 (D1S473). This bin is thus presented as:

1: AFM120xd4 (DIS209)
2: AFM286xd9 (D1S473)
CHR 1 position 1.00

The clone stacks displayed under each bin represent the anchored YACs (that is, the YACs that contain at least one STS of the bin), and the stacks that are between two bins represent the ordered groups of clones internal to paths of level 3 and above. Within a stack, the YACs are displayed according their order in the library, from top to bottom. Each YAC is represented by a yellow box with a horizontal bar in the middle. The YAC name and its size in kilobases are represented from left to right above the bar. A ' + ' sign after the size means that multiple bands were detected; only the biggest size is displayed. The names of YACs used for FISH hybridization appear in a box (for example, YAC 763B12, anchored to position 1.00 on chromosome 1). Chromosomal assignment (for clones used as AluPCR hybridization probe) and the STS content of the YAC are represented from left to right under the bar.

Chromosomal assignment is made based on the results of hybridization with somatic cell hybrids. Because of the problems described above, chromosomal assignments were sometimes ambiguous. The assignments are represented by the following code: (1) one white dot: a probe that was not assigned; (2) two blue dots: a probe assigned only to the chromosome under consideration; (3) one blue dot, one orange dot: a probe assigned to the chromosome under consideration, as well as to one or more additional chromosomes; and (4) two orange dots: a probe that is not assigned to the chromosome under consideration, but that is assigned to one or more other chromosomes.

The display of the STS information differs between stacks composed of anchored YACs and stacks located between two bins. For anchored YACs, the stack shows the clone numbers of the STSs in the bins. For example, the bin at position 1.00 on chromosome 1 shows YACs 631C9, 732A10 and 752E3; they contain, respectively, the second, the first, and both STSs, and are given the lists ' 2 ', ' 1 ' and ' 12 '. For stacks between bins, we represent the position of the STS for which the YAC is positive. For example, ' $1-0.87$ ' means position 0.87 on chromosome $1, ~ ' 1-$?' means chromosome 1 but position unknown on this chromosome, and '?' means that no positional information is known. If
the YAC is positive for several STSs, located at different places, then asterisks are displayed.

The relationship between clones in adjacent stacks is shown as follows. For paths of level 1, the path is established through the presence of one or more clone in the adjacent anchored stacks, with a thick bar (yellow and black) displayed between the two stacks. For example, paths of level 1 are established between the loci 1.00 and 1.02 on chromosome 1 by the YACs_{s} $752 \mathrm{E} 3,763 \mathrm{~B} 12,830 \mathrm{E} 7$ and 940 Cl . No Alu-PCR hybridization or fingerprint linkage is involved in establishing paths of level 1.

For level 2 and higher, an array of one or more columns is displayed between the stacks, representing the fingerprint and Alu-PCR relationships that link the stacks. Each column of the array is composed of a black box and 3 subcolumns. The horizontal position of the black box relative to the column gives the orientation for reading the columns. All columns within an array have the same orientation. If the box lies on the left (respectively. right) of the column, this column refers to the clone of the left (respectively, right) stack that is vertically in the same place as the box. We call this clone the attached clone. The three subcolumns contain symbols (dots and triangles) that refer in this case to the clones of the right (respectively, left) stack that are vertically in front of them. The subcolumn that is just to the side of the black box can be either yellow or pale blue. It is yellow if the attached clone was not used as Alu-PCR target (does not belong to plates 734-989). If this clone was used as an Alu-PCR target, this subcolumn is pale blue and the triangles in it refer to the Alu-PCR probes that hit this clone by hybridization. The middle subcolumn is yellow if the attached clone was not used as Alu-PCR probe. This subcolumn is blue otherwise. and the triangles in it refer to the targets hit by this clone. The third subcolumn is yellow if the attached YAC was not fingerprinted. If this clone was fingerprinted, it is green and contains black dots that refer to overlapping YACs by fingerprint. This two-colour presentation allows the reader to distinguish for example between a clone that was not used as an Alu-PCR probe from one that was used as an Alu-PCR probe but did not hit any YAC in the adjacent stack. It also provides a very quick way of highlighting the clones with the most overlap information, which are the ones linked to the region with the highest probability.

As an example, in the path between 1.08 and 1.10 on chromosome 1 , the first column refers to the YAC 912G11 and the second to the YAC 957A9, because the black box lies on the left of the column. The YAC 912 Gl 1 was used as a target for Alu-PCR hybridization, was not used as an Alu-PCR probe. and was fingerprinted. As a target for Alu-PCR hybridization. it is hit by YACs $774 \mathrm{C} 4,800 \mathrm{E} 10$ and 943A2 as hybridization probes. It overlaps by fingerprint data with YAC 895B12. Ths YAC 957A9 was used as a target for Alu-PCR hybridization. was used as an Alu-PCR probe, and was fingerprinted. As an Alu-PCR target, it is hit by the probe 927C3. As an Alu-PCR probe, it hit YAC 927C3. It also overlaps by fingerprint data with YAC 927C3.

Map rellabllity and coverage

All YAC paths covering genetic intervals have been inspected and checked, as described above. Contigs cover 75% of the genetic intervals, which together comprise 66% of the tota: genetic length of the genome (based on the sex-averaged meiotic map). The proportion of the genetic length covered in paths of level 1 is 26%, of level 2 is 17%, of level 3 is 15%, of level 4 is 5%, and of level S is 2%. These numbers are calculated on the basis of all chromosomes except $3,12,21,22$ and Y, which were either previously mapped or subjected to more intensive mapping by groups presenting their maps elsewhere in this volume. The chromosomes that are covered for more than 66% of their genetic length are: $4,5,7,8,9,11,14,15,16,18$ and 20. Low coverage of chromosome X (23% of its total genetic length) is expected, both because the YAC library underrepresents the

X chromosome (being derived from a male) and because the genetic map of X is sparse. In addition, the screening efficiency with backbone STSs from lp, 19 and 17 was particularly low, resulting in poor coverage of these regions. However, chromosome 18 is almost entirely covered because we made a special effort to fill gaps by more intensive hybridization screening effort with YAC probes derived from path extremities. In many cases, ne:v STSs were derived from those YAC probes creating new paths.

Inferring the actual proportion of the physical length of the genome covered is not entirely straightforward. The proportion of the genetic length covered (66%) may overestimate the actual proportion covered because it neglects the physical distances within the bins of recombinationally inseparable markers. But it may underestimate the coverage because the density of YACs appears to be sparsest in the telomeric regions, which are precisely those regions in which the ratio of genetic to physical distance appears to be greatest.
If the AFM markers were randomly distributed they would occur with a random spacing of about 1.2 Mb , just slightly larger than the average size of our YAC clones. We would thus expect to cover much of the genome in paths of level 1,2 or 3 . The observed proportion of intervals covered by such paths agree very well with expectation based on computer simulations. Moreover, mathematical analysis predicts that the YACs identified by the genetic markers would contain about half of the genome ${ }^{30}$. Although the AFM markers are known to be not completely randomly distributed, the overall effect of nonrandomness appears not to be severe.
To evaluate the reliability of the YAC contig map, we examined 161 non-AFM genetic markers from a recently published collaborative genetic map ${ }^{31}$ of the human genome (omitting markers for chromosomes 3, 12, 21 and 22) that were screened against the YAC library at WI/MIT. Of the STSs, the number detecting 1, 2 or at least 3 YACs was 20, 14 and 127, respectively 1, 2 and 3. In 60,78 and 88% of the cases, respectively, the YACs containing the markers had been assigned to the expected location (based on the known genetic location of the marker). In the remaining cases, the corresponding YACs were not found on the expected chromosome but were sometimes found on other chromosomes (possibly resulting from chimaerism).
These results also indicate that the map covers most of the human genome. However, they do not provide a direct estimate of coverage because only loci that detected at least one YAC were considered, and the genetic markers tested may tend to lie in the same regions as the genetic markers used to construct the map. Mitigating against this concern is that the genetic markers wised to assess coverage were predominantly tetra-nucleotide repeats, whose regional biases may differ from the CA repeats in the Généthon genetic map.

Received 29 September 1994; revised 6 July 1995; accepted 17 July 1995.

1. McKusick, V. A. Mendelian Inhertance In Man 5th edn. (John Hopkins Univ. Press, Batimore, 1978).
2. Burke, D. T., Carle, G. F. \& Olson, M. V. Science 238, 806-812 (1987).
3. Chumakov, I. et al. Nature 369, 380-386 (1992).
4. Foote, S., Vollrath, D., Hitton, A. \& Page, D. Sclence 258, 60-66 (1992).
5. Mikl, Y. et al. Science 268, 66-71 (1994).
B. The Huntington Disease Collaboration Research Group Cell 72, 971-983 (1993).
6. Collins, F. S. Nature Genet. 1, 3-6 (1992).
7. Gyapay, G. et at. Nature Genet 7, 246-339 (1994).
8. Lit, M. \& Luty, J. A. Am. J. hum. Genet. 44, 397-401 (1989).
9. Weber, J. L \& May, P. E. Am. J. hum. Genet. 44, 388-396 (1989).
10. Green, E. D., Rlethman, H. C., Dutchik, J. E \& Olson, M. V. Genomics 11, 658-659 (1991). 12. Olson, M. V., Hood. L. Cantor, C. R. \& Botstein, D. Science 245, 1434-1435 (1989). 13. Bellanne-Chantelot C. et al. Cell 70, 1059-1068 (1992).
11. Cohen, D., Chumakov, I. \& Weissenbach, J. Nature 368, 698-701 (1993).
12. Yang S. Y. In Immunoorology of HLA, Vol. 1 (Springer, New York, 1989).
13. Albertsen, H. et al. Proc. natn. Acad. Sci. U.SA. 87, 4256-4260 (1990).
14. Haldi, M. et al. Genomics 24, 478-484 (1994).
15. Carle, G. F., Franck, M. \& Olson, M. V. Sclence 232, 65-68 (1986).

Given the results above, it seems reasonable to estimate that the physical map covers about 75% of the genome in 225 contigs having an average size of about 10 Mb .

Public avallability of the map

Clone avallabillty. Primary copies of CEPH YAC library were distributed to following centres:
Whitehead Institute/MIT Center for Genome Research, Cambridge, Massachusetts 02142, USA; E. S. Lander and T. Hudson; e-mail: lander@genome.wi.mit.edu.

The Reference Library DataBase (RLDB), MPI for Molecular Genetics, Ihnestrasse 73, 14195 Berlin-Dahlen, Germany; H. Lehrach; tel: (49) 308413 1627; fax: (49) 3084131395.
3-1-1 Koyadai, Tsukuba, Ibaraki 305, Japan; K. Yokoyama; tel: (81) 29836 3612; fax: (81) 298369120.
Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato, Tokyo 108, Japan; Y. Nakamura; tel: (81) 35449 5372; fax: (81) 35449 5433.

Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Second Medical University, Shanghai 200025, China; Z. Chen; tel: (86) 213180 300; fax: (86) 214743206.
GBE, CNR, via Abbiategrasso 207, 27100 Pavia, Italy; D. Toniolo; tel: (39) 382546 340; fax: (39) 382422286.
YAC Screening Centro, Leiden University, Department of Human Genetics Wassenaarseweg 72, 2333 Al Leiden, The Netherlands; G. J. B. van Ommon; tel: (31) 71276 081; fax: (31) 71276075.

Human Genome Mapping Project Resource Centre, (HGMP) Hinxton Hall, Hinxton, Cambridge CB10 1RQ, U.K.; K. Gibson; tel: (44) 1223494 500; fax: (44) 1223494512.
Clones can be obtained also from Foundation Jean-DaussetCEPH, 27 rue Juliette Dodu, 75010 Paris, France; D. Le Pastiér; e-mail: denis@ceph.cephb.fr.

Data distribution

Anonymous ftp server: ftp://ceph-genethon-map.cephb.fr/ pub/ceph-genethon-map.
World Wide Web server: URL address: http://www.cephb.fr/ bio/ceph-genethon-map.html.
Mail server: ceph-genethon-map@cephb.fr.
How to use it: \$ mail ceph-genethon-map@cephb.fr. Subject: infoclone. 755_f_4 672_a_3 D12S76.
other YAC or STS names.
QUICKMAP (developed by P. Rigault and E. Poullier at CEPH) is a mapping tool containing all the CEPH/Généthon screening data. It was designed to manage the production of STS screening and hybridization data, using the results analysed on a daily basis to suggest new tests. It was then modified to make CEPH/Généthon data accessible to the scientific community. QUICKMAP allows both navigation within CEPH/ Généthon map and dynamic construction of contigs to integrate further datasets. QUICKMAP has been publicly available since February 1993 on our ftp site.
19. Bell, C. J. et al. Hum. molec. Genet. 4, 59-69 (1995)
20. Nelson, D. L et al. Proc. natn. Acad. Scl. U.SA. 88, 6686-6690 (1989).
21. de Jong, P. J. et al. Cytogenet Cell Genet. 51, 985 (1989).
22. Chumakov, I. M. et al. Nature Genet. 1, 222-225 (1992).
23. Mullivor, R. A., Greene, A. E., Drwinga, H. L, Tojl, L. H. \& KIm, C. Am J. hum. Genet. (Suppl.) 49, 370 (1991).
24. Shafit-Zagardo, B., Maio, J. J. \& Brown, F. L Nucleic Acids Res. 10, 3175-3193 (1982).
25. Fields, C. A., Grady, D. L. \& Moyzis, R. K. Genomics 13, 431-436 (1992).
26. Kaplan, D. J., Jurka, J., Solus, J. F. \& Duncan, C. H. Nuclelc Aclds Res. 19, 4731-4738 (1991).
27. Matera, G. A., Hellmann, U., Hintz, M. F. \& Schmid, C. W. Nuclelc Acids Res. 18, 60196023 (1990).
28. Jurka, J. \& Milosavljevic, J. Molec. Evol, 32, 105-121 (1991),
29. Francke, U. Cytogenet. Cell Genet. 85, 206-219 (1994).
30. Aratia, R., Lander, E. S., Tavare, S. \& Waterman, M. S. Genomics 11, 806-827 (1991). 31. Murray, J. C. et al. Science 285, 2049-2054 (1994).

ACKNOWLEDGEMENTS. This work was supported by Association Francaise contre les Myopathles (AFM), Ministere de la Recherche et l'Enseignement Superieure, Groupement de Recherche et d'Etude des Genomes, la Ligue contre le Cancer, the European Economic Community program DGXII and the National Center for Human Genome Research of the US NIH.

A YAC contig map of the human genome

Ilya M. Chumakov*, Philippe Rlgault', Isabelle Le Gall; Christine Bellanné-Chantelot ${ }^{*}$, Alain Blllault', Sophie Guillou', Pascal Soularue ${ }^{\circ}$, Ghislaine Guasconi', Eric Pouller', isabelle Grosं, Maria Belova', Jean-Luc Sambucy", Laurent Susini", Patricia Gervy", Fabrice Gllbert', Sandrine Beauflis", Hung Bui', Catherine Massart', Marie-France De Tand', Frédérique Dukasz', Sandrine Lecoulant', Plerre Ougen', Virginie Perrot', Martial Saumier", Catherine Soravito ${ }^{\circ}$, Rita Bahouayila', Annick Cohen-Akenine ${ }^{\circ}$, Emmanuel Barillot ${ }^{\dagger}$, Stéphane Bertrand ${ }^{\dagger}$, Jean-Jacques CodanI ${ }^{\dagger}$, Dominique Caterina ${ }^{\dagger}$, isabelle Georges ${ }^{\dagger}$, Bruno Lacroix', Georges Lucotte., Mourad Sahbatou', Christian Schmit , Muriel Sangouard', Emmanuel Tubacher ${ }^{\dagger}$, Colette Dib †, Sabine Fauré ${ }^{\dagger}$, Cécile Fizames ${ }^{\dagger}$, Gabor Gyapay ${ }^{\dagger}$, Philippe Millasseau ${ }^{\dagger}$, SImon NGuyen ${ }^{\dagger}$, Delphine Muselet ${ }^{\dagger}$, Alain Vignal ${ }^{\dagger}$, Jean Morlssette ${ }^{\dagger 9}$, Joan Menninger ${ }^{\dagger}$, Jonathan LIeman ${ }^{\text {; }}$, Trushna Desai ${ }^{\ddagger}$, Amy Banks ${ }^{\ddagger}$, Patricia Bray-Ward ${ }^{\ddagger}$, David Ward ${ }^{\ddagger}$, Thomas Hudson ${ }^{3}$, Sebastian Gerety ${ }^{3}$, Simon Footes, Lincoin Stein ${ }^{\mathbf{s}}$, David C. Page ${ }^{\text {3II }}$, Eric S. Lander ${ }^{311}$, Jean Weissenbach ${ }^{\dagger}$, Denis Le Paslier \& Daniel Cohen

* Fondation Jean Dausset Centre d'Etude du Polymorphisme Humain, 27 rue Juliette Dodu, 75010 Paris, France
\dagger Généthon, 1 rue de l'Internationale, 91000 Evry, France
\ddagger Department of Genetics, Yale University School of Medicine, New Haven, Connecticut CTO6510, USA
$\$$ Whitehead Institute/MIT Center for Genome Research. Whitehead Instititue for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
|| Department of Blology, Massachusetts Instltute of Technology, Cambridge, Massachusetts 02139, USA
I Centre de Recherche du Centre Hospitalier, Université Laval, Quebec, G1V 4G2, Canada
A yeast artificial chromosome library containing 33,000 clones with an average insert size of cne megabase of human genomic DNA was extensively analysed by several different procedures for detecting overlaps and positional information. We developed an analysis strategy that resulted, after confirmatory tests, In a YAC contig map rellably covering about 75\% of the human genome in $\mathbf{2 2 5}$ contigs having an average size of about ten megabases.

Prysical maps of the human genome are essential tools for unravelling the genetic basis of disease ${ }^{1}$, localizing the complete inventory of human genes, understanding the principles of genome organization and achieving other objectives of the Human Genome Project. Physical maps consist of ordered, overlapping cloned fragments of genomic DNA covering each chromosome.
Given the large size of the mammalian genomes, physical mapping of the entire human genome requires using clones with extremely large inserts, of the order of 1 megabase (Mb). Yeast artificial chromosomes (YACs) ${ }^{2}$ are currently the only cloning system capable of propagating such large DNA fragments. Indeed, YACs have provided the basis for the first two physical maps of entire human chromosomes: 21q (ref. 3) and Y (ref. -). More generally, YACs have been crucial tools in cloning disease genes based on their chromosomal location ${ }^{\text {s.6 }}$. Such positional cloning ${ }^{7}$ projects begin by genetically mapping a disease gene to a region of a few centiMorgans by tracing its inheritance relative to polymorphic DNA markers, a task made feasible by the recent availability of a complete genetic map ${ }^{8}$ containing thousands of highly polymorphic, polymerase chain reaction (PCR)-typeable markers ${ }^{\text {¹0 }}$ known as microsatellites, simple tandem repeat polymorphisms or simple sequence length polymorphisms. One must then analyse the entire chromosomal region between the closest flanking genetic markers to identify the disease gene. YACs are invaluable for the purpose of covering such large regions, although their utility for detailed genomic analysis is somewhat limited by, problems of infidelity-notably, a high frequency of chimaeric clones ${ }^{11}$ (containing fragments from more than one genomic region)-and instability of some regions. In addition, YAC-based physical maps are important intermediates in producing a 'sequence-ready' physical map consisting of smaller and more stable clones.

Here we report our progress towards making a physical map of the human genome consisting of overlapping YACs anchored to a comprehensive set of genetic markers.

General strategy

To construct a physical map, we analysed a large-insert YAC library providing tenfold coverage of the human genome by three different experimental procedures: (1) sequence-tagged sites (STSs) ${ }^{12}$ content mapping, involving PCR-based screening with genetically-mapped microsatellite markers: YACs identified as containing such markers were referred to as 'geneticallyanchored YACs'; (2) cross-hybridization, involving hybridizing the library with probes derived from individual YACs; and (3) fingerprinting, involving characterizing each YAC in terms of the pattern of restriction fragments detected by two human repetitive sequence probes.
These three procedures provide different ways of establishing 'links', representing potential overlaps between clones. In the case of STS content mapping and cross-hybridization, the experiment yields a binary result from which links can be immediately deduced. In the case of fingerprinting, links between YACs are inferred statistically ${ }^{13}$ when the fingerprint patterns are sufficiently similar, as described below.

It is not possible to construct a physical map based solely on the complete collection of links: most YACs aggregate into a few huge, branched, artefactual contigs. This can be expected because of the high rate of YAC chimaerism ($40-50 \%$), intraor interchromosomal sequence similarities in the human genome, and the possibility of laboratory errors.
To circumvent this problem, we sought to build only short 'paths' between genetically anchored YACs. Paths connecting nearby points are less likely to be affected by false connections within or between the intervening YACs (such a false connection would require two chimaeric clones: one leaving away from the region and another returning to it). We also obtained partial information about the chromosomal origin(s) of many YACs through our cross-hybridization procedure and used this information to choose between paths.

We have previously given a brief description of this general strategy ${ }^{14}$ and reported that an automatic computer implementa-

GENOME DIRECTORY

tion appeared to cover most of the human genome, but we did not provide a detailed map. We have since inspected each interval and performed confirmatory tests when necessary and more YAC links have been established. Here we describe the specific methodology of the map construction and discuss the reliability of the procedures. We also present the improved map and evaluate its coverage of the genome.

The CEPH YAC llbrary

The entire CEPH YAC library comprises 98,208 clones representing about 17 genome equivalents. It was derived from a
human male lymphoblastoid cell line, Boleth ${ }^{15}$, and is arraye in 1,023 96-well microtitre plates. Inserts consist of EcoRI partia digested human genome fragments cloned into the PYAC. vector ${ }^{2}$ and transfected into the host strain AB1380, as pre:: ously described ${ }^{16}$. (The sole exception is a set of 237 clones. plates 2001-3, for which a recombination deficient host Rads:3a was used ${ }^{17}$.)

The first portion of the library, termed Mark I (containin 52,992 clones in plates $1-551$) has an average insert size of +5 kilobases (kb). By using different size fractionation condition: a Mark II library (containing 17,760 clones in plates $552-$-it

CLONE SIZE DISTRIBUTION (plate 625-736)

CLONE SIZE DISTRIBUTION (plate 737-989)

FIG. 1 Clone size distribution. The distribution of different categorles of YAC are shown as follows all clones (blue), STS positive YACs (green), Alu-PCR target YACs (grey), Aln-PCR probe YACs (pink), YACs with in-
formative fingerprint (purple). The distribution of chimaeras among PCR probe YACS is shown in yellow.
was produced with an average insert size of 600 kb . A still larger Mega-YAC library (containing $\mathbf{2 4 . 2 8 8}$ clones in plates 737-989) was produced with an average insert size of $1,054 \mathrm{~kb}$.

The YACs used in this project consisted of 10,752 clones from the Mark II library (plates 625-736) and all of the Mega-YAC library, for a total of 34,560 YAC clones providing tenfold coverage of the genome. The size of each clone was determined by ield inverted gel electrophoresis (FIGE) ${ }^{18}$ followed by Southan blotting and hybridization with a labelled probe containing F $=2322$ and total human DNA. Under the conditions used, sizes above $1,700 \mathrm{~kb}$ could not be accurately resolved. We found that 6% of the clones failed to give a hybridization signal. The size distribution is shown in Fig. 1. Multiple bands were detected in a certain proportion of the YACs (12% from Mark II and 6.8% from the Mega-YACs), which may result from clone rearrangements. In addition to these 34,560 clones used to construct the map, some YACs from Mark I and the first part of Mark II were also used. Specifically, some YACs that had previously been anchored by STS were used as hybridization piobes.

STS screening

Methodology. The YAC library was screened with a large collection of PCR-typeable genetic markers, to identify clones containing each locus. To facilitate PCR-based screening of 33,024 clones (plates 625-968), we prepared pools of clones in such a manner as to reduce the number of reactions required by $100-$ fold, as compared to screening each clone individually ${ }^{11}$.

The library was divided into 43 'blocks', each corresponding to eight microtitre plates (containing $8 \times 96=768$ clones). For eish block we prepared one 'superpool' containing DNA from all the clones and 28 'subpools' prepared by using a three-dimensional pooling system based on the plate, row and column address of each clone (specifically, 8 subpools consisted of all clones residing in a given microtitre plate; 8 subpools consisted of all clones in a given row; and 12 subpools consisted of all clones in a given column). The PCR screening for each STS involved three steps: (1) identifying the positive superpools (43 reactions) ; (2) for each positive superpool, identifying the positive plate, row and column subpools to obtain the address of the: positive clone (28 reactions); and (3) directly confirming the PCR assay on the identified clone (1 reaction). Unique addresses
were not obtained when a superpool contained more than one positive clone or when one of the three dimensions failed to amplify; such cases were resolved by testing the candidate addresses consistent with the partial data when less than 16 reactions were required.

The 'complete screening' scheme described above was used in the first part of the project. After this stage we switched to a 'directed screening' strategy, using the links between YACs to further reduce the number of reactions by twofold. The strategy was first to identify positive superpools for a given STS, and screen some subpools until two YACs were identified; three positive superpools were usually necessary for this. Then we used two directed screening methods based on our database of results. The first method involved using the 'LOCUS' function, developed as part of the QUICKMAP software, to display the local contig attached to the STS and the YACs linked to it to identify other clones likely to contain the STS; such YACs were directly tested for the STS. The second method was used for confirmation of the paths. It used the 'CLONESPATH' function of QUICKMAP to construct and display potential paths through adjacent STSs (see sections on construction of the map and representation of the map below). We then tested some clones of the path against both STSs. These directed strategies were very efficient in terms of screening, although did not provide two independent tests for each clone, as in the first strategy. As false positives were highly detrimental to our mapping strategy, we distinguished between: (1) the YACs that were identified by subpool screening and individually confirmed; (2) the YACs that were identified by subpool screening but proved to be negative upon checking; and (3) the YACs that were identified by direct testing. The second case, representing about 3% of the addresses, may correspond to clones which might be genuine positive clones that we failed to detect for technical reasons. During map construction, we used the last two cases more cautiously, checking (Then possible) fingerprint or hybridization information before inciuding such YACs in the map. The PCR products were detected by agarose gel electrophoresis, ethidium bromide staining, and ultraviolet illumination. Images were captured by a CCD camera and analysed with semiautomatic software interfaced to a laboratory notebook (using Sybase).
Results. At Centre d'Etude du Polymorphisme Humain (CEPH)/Généthon, we examined a total of 2,890 polymorphic

ALU_PCR and FINGERPRINT LINKS

FIG. 2 Alu-PCR and fingerprint links. Blue bars represent Alu-PCR links, red bars represent fingerprint links.

GENOME DIRECTORY

markers. all generated and mapped by genetic linkage analysis as part of the Généthon genetic mapping program ${ }^{3}$. All markers were screened on the 43 superpools to identify the positive blocks. About 5% of the markers failed to work because of poor amplification or high background in the YAC pools. Another 5% gave no signal in the superpools. despite yielding the expected PCR product in a human genomic DNA control. In about 60% of these cases. we were able to detect and confirm a positive signal when the PCR products were electrophoresed, blotted and probed with a (CA) $)_{1 s}$ oligonucleotide (which hybridizes to the CA repeat contained within the polymorphic locus).

Complete screening was performed for the first 814 markers, those of the first Génethon linkage map (1992). Of these, 28 failed to detect any YAC. and 786 identified 5.6 YACs on average. The 2,076 remaining genetic markers were subjected to directed screening. Of these, 261 failed to detect any YAC, and the remaining 1,815 identified an average of 4.9 YACs.

In total, 2,601 genetic markers identified at least one YAC. A total of 289 STSs have no anchored YACs, whether because of PCR-related problems or library-related problems. PCR-related problems are mainly due to sequence-dependent heavy background noise or poor amplification. In some of these cases, the design of another pair of primers from the original sequence data allowed us to obtain positive clones. YAC library-related problems can be due to the absence of clones in certain regions of the genome, either for statistical reasons or for non-clonability of certain human DNA sequences in yeast. The inability to find anchored YACs was more frequent for STSs located in certain regions of the genome, such as $1 \mathrm{p}, 19$, the distal part of 17 q , and most of the telomeric regions.

In addition to data generated at CEPH/Généthon, we also used results for 1,500 STSs screened elsewhere. The largest data set came from the Whitehead Institute/MIT Center for Genome Research (WI/MIT). We used the July 1994 release of this data. which contained 3,419 STSs screened with a different technology ${ }^{19}$, using the 25,344 clones in plates 709-977 (the current publicly available release contains over 10,000 STSs and can be accessed via the World Wide Web, address 'www.genome.mit.edu'). Among these STSs were 1,128 AFM markers also screened at CEPH/Généthon. Each group found an average of 1 definite YAC address per 2 genome equivalents screened: 5.1 YACs in 10 genome equivalents screened at CEPH/Généthon, and 4.1 YACs in 8 genome equivalents screened at WI/MIT. (Additional incomplete YAC addresses were also obtained, for example, about 1.5 at WI/MIT. These were still being resolved and are not used here.) The combined data provided more complete coverage than either group alone, as roughly two YACs were found in common, three only by CEPH/Généthon, and two only by WI/MIT.

Finaily, we also incorporated results from about 370 STSs screened elsewhere and deposited in public databases.

Screening by hybridizatlon

Methodology. We screened the YAC library by hybridization, using individual probes derived from individual YACs to screen the entire Mega-YAC library. To circumvent the tedious process of purifying YAC DNA from the total yeast genomic DNA, and also to increase efficiency of the hybridization, we derived from each YAC a representative set of human-specific DNA fragments by means of inter-Alu PCR, between the ubiquitous Alu repeats spread along the human genome ${ }^{20,21}$. This was achieved by PCR amplification from total yeast clone DNA with a single primer ${ }^{22}$ specific for the 3^{\prime} part of the Alu repeat sequence. Under our conditions there was no amplification from yeast genomic DNA with this primer; on average 10 different fragments of 300 base pairs (bp) average size were produced from random Mega-YACs.

Alu-PCR products were prepared individually from each YAC to be used as probe or target. To simplify the screening procedure, we used a pooling scheme for the target Alu-PCR
products. The pooling procedure was similar to the scheme used for STS screening, but in this case all subpools were simujtaneously screened by hybridization. In the pooling scheme. 'blocks' consisted of 4 microtitre plates which were conceptuall! divided into 8 half-plates. From these 8 half-plates. a total of 22 subpools were prepared. consisting of 8 subpools containine clones in the same half-plate. 8 subpools containing clones in the same row of the half-plate, and 6 subpools containing clones in the same column of the half-plate. As this part of the librar: (plates 734-989) represents 64 blocks, the total number of sub. pools to screen is $64 \times 22=1,408$.
The pools were spotted at high density onto nylon membranes before hybridization. The addresses of positive candidates were deduced according to which half-plate, row and column pools were found positive for each block. The YACs identified by a single signal in each dimension were called 'unique positives'. I two candidate clones are present in a block, more than threi signals will be observed. In general, the addresses of the positive clones cannot be deduced unambiguously under these conditions ('undetermined positives'). However, when such candidates ar: located on the same row or the same column of a single halfplate, it is possible to determine these positive clones ('determined positives'). Our experience indicates, that these determined positives can be used for the map construction, but rathe: cautiously, as some (or many) of them are false positives. Onc possible explanation of this phenomenon is that some of thes, 'determined' positives appear to be linked to artefactual spot: due to hybridization background. Moreover, in some cases soms of the three-dimensional signals could not be detected for technical reasons. This could interfere with the deduction of YAC addresses when using undetermined positives.

In addition to the Alu-PCR products from the YAC clones we also spotted in duplicate Alu-PCR products from a somati, cell hybrid panel consisting of cell lines, each containing onl: one or two human chromosomes. These hybridization target. provided information about the likely chromosomal localizatior of the YAC probes. Most of the cell hybrids were obtained fron the NIGMS (Coriell Institute of Medical Research, Camden New Jersey) mapping panel 2 (ref. 23). A chromosome 20 -onl: G418-resistant monosomic cell hybrid DNA was provided b! C. Smith. GM10791, a chromosome 7 -only somatic cell hybris DNA was provided by E. Green; and GM06318B, a chromo some X-only somatic cell hybrid DNA was provided by D Schlessinger. In the second set of membranes used for this pre ject, we also included somatic cell hybrids for chromosome $1+\mathrm{X}, 5,6,12$ and 19, provided by D. Patterson.

The Alu-PCR products of subpools and somatic cell hybrid were spotted onto membranes together with $\phi \mathrm{X}$ DNA for auto matic filter identification. This spotting was performed by a: automatic replicating device. The membranes were hybridize: in the presence of human DNA competitor with ${ }^{33} \mathrm{P}$-labelle mixture of phage $\phi \mathrm{X}$ DNA and Alu PCR products of individua YACs. A high-throughput protocol that included labelling it microplates and washing membranes in batches allowed a tean of two people to hybridize 200 YAC probes per day. After wash ing and exposure, the films were scanned and images were storet on a workstation. After automatic treatment, all images wer manually inspected so artefacts could be removed from analysi and the interpreted results checked (positive YACs deduce. from the subgroups and chromosomal assignment) during th analysis. The software for this semiautomatic procedure wa developed in collaboration with Cose (Paris).

The pilot hybridizations with freshly made membranes indica ted that 80% of random YAC probes produced an effectiv, hybridization result. The remaining 20% gave either no signa (4% of the cases) or high background noise. This latter phenomenon is probably associated with middle-frequency repea sequences included occasionally in inter-Alu PCR amplification products. In most of these cases, we were also unable to deter mine the chromosomal origin of the probe.

Generally, hybridization to somatic cell hybrid inter-Alu PCR products was less effective than to YAC targets. In pilot experiments. only 80% of successful probes gave a signal to at least one duplicate of the chromosomal inter-Alu PCR products spots. In general. we observed a very good result reproducibility when the same YAC probe was used on different batches of membranes. Resuits. We derived inter-Alu PCR products for each of the 2- 376 YACs of the Mega-YAC library (about eight human genome equivalents) to be used as targets for hybridization. Probes were selected by various criteria.
The first 2.000 probes were YACs belonging to chromosomespecific sublibraries generated according the procedure described to obtain the chromosome 21 -specific.YAC subset ${ }^{22}$. Briefly, Alu-PCR products of clones from a four-genome equivalent portion of the Mega-YAC library were individually spotted on membranes and hybridized successively with chromosome-specific probes obtained with inter-Alu PCR DNA products from the p:nel of somatic cell hybrids.

We also used as probes 200 YACs cloned in Rad52- yeast strain ${ }^{17}$. According to the chromosomal assignment results from hybridization, this set appeared to contain only 8% of chimaeric YACs.

The rest of the probes were chosen using the QUICKMAP software. The first objective was to obtain for each genetic locus two YACs successfully used as probes. For this about 2,500 YACs were chosen with the 'locus' function. We also used the 2,000 largest YACs that were not genetically anchored. Finally, about 2,000 YACs were chosen with the 'CLONESPATH' function during the map confirmation.

In total, 8,785 probes gave interpretable signals in this screening procedure. As expected from the selection process, the size distribution of the probes is shifted towards larger size (Fig. 1). The distribution of the number of targets detected per probe is almost gaussian, with an average of 7 ('unique positives') (Fig. 2) or 10 (when adding 'determined positives'). This is approximately half of that expected with probes spanning 1 Mb of genome. The first reason is that we wanted to avoid false positives, so we kept only the clearest signals during the image analysis. Tine discrepancy can also be explained by non-random distribution of inter-Alu PCR products and unequal efficiency of their individual hybridization. The distribution of YAC target sizes is also shifted towards the larger size, probably because larger clones are likely to produce more inter-Alu PCR products and so will provide stronger signals. This may also account for the larger size of successful YAC probes. In total, 20,890 (85%) of YACs were linked by hybridization to at least one other YAC. In most cases, a given YAC is detected as a target when it is used as a probe. The signal obtained is generally very intense. itowever, pools containing adjacent clones in the corresponding plate often produce a signal as well, probably because of minor cross-contamination. These artefacts interfere with the evaluation of positives in the corresponding pools, so targets could appear as 'undetected' in the database.

A total of 7,209 probes were assigned to chromosomes based on hybridization. Although the chromosomal assignment by inter-Alu PCR is simple, care should be taken in interpreting the results. For example, supposedly monochromosomal hybrids often contain insertions of small chromosomal fragments and deletions of other chromosomal regions. This was experimentally confirmed for the NIGMS mapping panel II used in our work. We also found by conducting reciprocal hybridization between these somatic cell hybrids that inter-Alu PCR products from some of them cross-hybridize. The most striking overlap was detected between chromosome 5-'only' and chromosome 6 'only' hybrids, as well as between chromosome 12-‘only' and chromosome 6-'only' hybrids. The same pattem of cross-hybridization was observed with YAC probes. This cross-hybridization could, in some cases, be due to repeated or duplicated genomic regions.

In addition to problems with the hybrid cell lines themselves. false chromosomal assignment could result from laboratory error or sequence similarity causing cross-hybridization. Alternatively, false negatives could be due to inefficient hybridization with inter-Alu PCR products from certain YACs, or deletion of the corresponding region in the somatic cell hybrid.

Chromosomal assignment by hybridization assists in the detection of chimaeric YACs. but will obviously miss some chimaeras, including those containing only a small portion from a different chromosome region, those containing a region that is poor in Alu repeats, and those consisting of two fragments of the same chromosome. However, some apparent chimaeras could result from sequence similarity between several chromosomes. Despite these difficulties, we have used this result to analyse the chimaerism rate according to the library origin and the size distribution of the YACs (Fig. 1). The Mark II library contains a greater proportion of chimaeric YACs than the MegaYAC library. In the Mark II library, the very large YACs seem to be more chimaeric than the smaller ones, but this is not the case for the Mega-YAC library.

Because of these interpretation problems, we treated the chromosomal assignment data with extreme caution in the QUICK. MAP software, where the criteria of assignment depended on several parameters which varied according to the genomic region.

Fingerprinting

Methodology. To detect overlaps among YACs, we performed fingerprint analysis as previously described ${ }^{13}$. Each YAC DNA was digested with three enzymes: EcoRI, PvuII and PstI. after agarose gel electrophoresis, the fragments were transferred onto nylon membranes using a robot. Membranes were then hybridized successively with two probes: human repeated sequerices LINE-1 (LI) ${ }^{24}$, and THE-LTR (transposon-like human-element long terminal repeat: THE) ${ }^{\text {ss }}$. The corresponding patterns werecaptured automatically after scanning each film. The size of each fragment was extrapolated from the migration length of refer- - i ence markers with known sizes which were run in parallel.

The LI and THE probes were selected as they gave 6 and 11 bands per megabase, respectively. We attempted to use other repetitive probes, such as Alu, medium reiteration frequency repeats (MER) ${ }^{9}$ and poly(GA), but with little success. The Alu probe patterns were too complex, and the MER and poly(GA) probes gave rather poor patterns with 27.6, 12.8 and 15.6% negative clones for MER 1, MER 10 (ref. 26) and poly(GA), respectively. Promising results were obtained with two probes for two Alu subfamilies, GA. 007 (ref. 27) and 5OS (ref. 28), but these were poorly reproducible.
Results. A total of 31,392 YACs were successfully fingerprinted. Of these, 12.5% gave no bands for $\mathrm{LI}, 7.3 \%$ gave no bands for THE, and 4% were negative for both. When hybridized with an Alu consensus probe, one-third of these L1/THE-negative clones gave no Alu bands. The remaining clones (L1/THE-negative clones with Alu bands) contained inserts half the size of Ll / THE-positive clones.

Pairwise comparisons were performed among all the fingerprints as described previously ${ }^{13}$, and a likelihood of overlap score (LOS) was determined for each pair of clones and for each probe. Only YAC pairs having a LOS value greater than or equal to 70 for both L1 and THE were declared linked. These threshold values were chosen according to criteria based on the analysis of YACs previously mapped on chromosome 21 for which an extensive study had been performed ${ }^{3}$. We considered all possible pairs of YAC probes for which a chromosomal assignment was obtained by hybridization on somatic cell hybrid DNA. In this set, 70\% of YAC pairs linked by fingerprint data were assigned to the same chromosome by hybridization (concordant pairs). Similarly, 68\% of YAC pairs linked by hybridization showed concordant chromosomal assignment. (Interestingly, YAC pairs with reciprocal links by hybridizaton

GENOME DIRECTORY

showed 82% concordant assignment. As a control, random YAC pairs show only 8% concordance.)

In total. 17,006 YACs with these threshold values were linked to at least one other YAC from the library. On average, each of these YACs was associated with 5.8 YACs. The size distribution of these 17,006 YACs is shifted significantly towards larger sizes ($1,119 \mathrm{~kb}$ on average). Larger YACs containing more bands would be expected to be more informative. A comparison with STS and hybridization data enabled us to detect 22 plates giving an abnormally high number of links due to a conserved fingerprint pattern in all of them. We suspect that well-to-well contamination occurred during the fingerprint process, and we removed these 22 plates from analysis. The corresponding clones made available in 1992 are free of this contamination.

Construction of the map

The starting point of the map was the framework of STSs given by the Généthon 1993-1994 linkage map ${ }^{3}$. This map contains 2,066 polymorphic markers, ordered in 1,267 genetic loci, each of which corresponds to a bin of 1-7 polymorphic STSs that were not recombinationally resolved. We used the three types of links between YACs (based on STS content, fingerprint and hybridization) to assemble contigs that span the intervals between genetically adjacent STSs. During this process, we integrated new STSs to this map to refine the framework order and strengthen the contigs. The limitations and precautions taken in building consistent contigs are discussed here, as each data type has its own limitations and error rate.

First, we define a minimal path between two STSs, S_{1} and S_{2} as an ordered list of YACs $\left(Y_{1}, \ldots, Y_{n}\right)$ that satisfy the following conditions: (1) Y_{1} and Y_{n} contain S_{1} and S_{2}, respectively; (2) for each $i=1, \ldots, n-1$, the YACs Y_{1} and Y_{i+1} are linked by one of the three mapping methods; and (3) there is no link between YACs that are not consecutive in the list. The number n of YACs in the minimal path is called the level of the path.

For several reasons, minimal paths do not necessarily represent valid 'contigs' of sequences that actually overlap in the human genome. Most importantly, chimaeric YACs artefactually join distant segments of genomic DNA, establishing connections between pairs of distant STSs. Such YACs represent between 30 and 50% of the library, depending on the genomic regions. Similarly, false positive links between clones can also result from hybridization or fingerprinting. Such false positives may make up 5-10\% of the links.

Because of these problems, the backbone information from the genetic map is crucial for building accurate contigs. First, we only look for YAC paths connecting nearby STSs. Second, we can exclude some YACs that appear to be chimaeras based on their containing STSs from distinct locations, based both on Alu-PCR and the STS data (see below for more information about elimination of false links).
Contlg assembly algorithm. The algorithm for constructing paths between two nearby loci proceeds by the construction of progressively larger 'neighbourhoods' of YACs. For each locus

FIG. 3 Construction of a level 1 path between two loci A and B. Stage t is the construction of the first-degree neighbour set for each locus. In stage II, YACS 1 and 4 are found in common. These YACs establlsh the level 1 path.

FIG. 4 Construction of a level 2 path. After stage I, no common ciones are found. Stage 11 is the construction of the second-degree neighbour set for each locus. The asterisk documents the link between clones 1 and 5 , which establish a level 2 path (stage III).
x , the computer can construct the set $N_{\mathrm{x}, 1}$ of first-degree neighbours consisting of anchored YACs (that is, YACs containing at least one STS in the locus); the set $N_{\mathrm{x}, 2}$ of second-degree neighbours consisting of YACs linked to those in $N_{\mathrm{x}, 1}$; the set $N_{\mathrm{x}, 3}$ of third-degree neighbours consisting of YACs linked to those in $N_{\mathrm{x} .2}$; and so on. Any overlap between the neighbourhoods of loci x and y clearly yields a path connecting them. (More precisely, a YAC present in both $N_{\mathrm{x}, \mathrm{l}}$ and $N_{\mathrm{y}, \rho}$ yields a path of length $i+j-1$.) In practice, the computer program constructs increasing neighbourhoods around both loci, halting as soon as an overlap is found. Examples are illustrated in Figs 3-5.

In attempting to link nearby loci on a given chromosome, we used positional information in an attempt to avoid paths that branch to distant parts of the genome. In forming second-degree and higher neighbourhoods, we excluded YACs exclusivel! assigned to other chromosomes by Alu-PCR hybridization, an $\dot{\text { c }}$ also excluded STS-content links involving STSs from othe: regions.

Although the genetic linkage map represents the most likel: genetic order, some local marker orders may be inverted. Accordingly, we searched not only for paths between immediately consecutive STSs (such as i and $i+1$), but also betweer nearby but non-consecutive STSs (such as i and $i+2$). For suct non-consecutive STSs, the genetic distance and the number 0 : intervening STSs was constrained depending on the level of the path.
Manual Inspection of the paths. The map construction algorithm was applied to the whole genome. Each candidate pati was then subjected to several types of checking. The first stef involved graphical inspection using the 'CLONESPATH' par:

FIG. 5 Construction of a level 3 path. After stage II, clone 8 is found ir common between the two second-degree neighbour sets. The level $ミ$ path is represented at stage III.
of the program to evaluate paths based on the following criteria: (1) the number of YACs in the path; (2) The density of links between YACs: and (3) the extent to which YACs in the path were chromosomally assigned (by Alu-PCR hybridization. other STS-content information, or fluorescence in siiu hybridization (FISH)). Graphical inspection also allowed us to detect and reiect cases in which two independent paths linked the two STS. Aiter such visual inspection, we could reject candidate paths, try to generate a new candidate path (by trying new parameters in the algorithm or changing the order of STSs), or perform additional STS screening to test the paths further.

We tried to improve candidate paths that were judged satisfactory after graphical analysis. We derived new STSs from the ends of internal clones in a path. We also subjected the most critical clones to Alu-PCR hybridization to test their chromosomal assignment and to establish more links between clones in the path. This strategy often shortened paths by indicating overlaps that had not previously been detected because our STS screening was incomplete. To illustrate this point, Fig. 6 shows the result of an incomplete STS screening, and Fig. 7 shows the result of incomplete hybridization data. In particular, paths of level 6 or 7 in our 1993 version were converted to shorter paths. The present map contains now only paths of level 5 or less.

The bins may contain several markers that, although not recombinationally separated, span a certain distance in the physical map. To cover the physical region within the bin, we searched for paths linking different STSs within a bin. Many b:as were covered by paths of level 1 . For the remaining bins, we tested YACs positive for one of the STSs in a bin with the other STSs in the bin. In some cases, we used the locus program to close gaps between STSs with paths of higher levels. Fewer than 10% of the bins are not completely covered in the present map.

Because we constructed paths between genetic markers that were not necessarily adjacent in the linkage map (see above), we sometimes encountered cases in which the shortest paths connected markers i with $i+2$ and markers $i+1$ with $i+3$. This sicuation could arise for two reasons: we could have missed actual overlaps in the paths owing to false negative screening results (Figs 6 and 7), or the putative order on the genetic linkage map could be incorrect. To preserve the linearity of the map in these rare cases, we have either inverted the marker order or joined recombinationally separable genetic markers in the same bin. As a result, the physical order of the markers on the summary figures of the atlas (see below) does not perfectly correspond to the Généthon 1994 linkage map.
Integratlon of other STSs. In addition to the backbone STSs taken from the 1994 Genéthon genetic linkage map, we also integrated some additional STSs that improved paths in the map. These markers came from two sources. First, WI/MIT had screened 3,419 STSs against the YACs by June 1994. From this

FG. 6 Part 1 represents the real disposal of the YACs. If STS B is not tested against YAC 1, the path would appear at level 2 (provided the overlap between the two YACs is detected), as shown in part II. In such a case, we would have tested A against 2 and B against 1 and reduced the level to the actual value.

FIG. 7 Part I represents the real disposal of the YACs. If neither YAC 1 nor YAC 3 is used as Alu-PCR probe, the hybridization between them cannot be detected. In this case, YAC 2 was used as probe and detected the YACS 1 and 3. The path appears to be level 3, as shown in part II. This situation can be resolved by testing either 1 or 3 as Alu-PCR probe.

STS-content data, we selected 173 STSs (including 76 non-AFM genetic markers) that significantly improved paths. Second, the CEPH/Généthon group screened STSs from 445 unpublished genetic markers from Généthon (C . Dib et al., manuscript submitted). Where known, chromosomal assignment or approximate map position was used for both sets of markers. In most cases the integration produced denser contigs and decreased the level of paths (see Fig. 6).

FISH mapping

A total of 650 genetically anchored YACs, approximately one every $5-10 \mathrm{cM}$, were selected and used as probes for fluorescent in situ hybridization (FISH) on metaphase chromosomes. The chimaerism rate detected by this method was 46%. Based on the comparison of cytogenetic and genetic localizations, there appear to be higher frequencies of recombination near telomc?es and lower frequencies near centromeres. For example, the genetic distance between the centromeric markers DIS440 (at 163 cM) and DIS484 (at 182 cM) represents 6.5% of the genetic length of this chromosome, but 17% of the fractional cytogenetic length of the chromosome. Similarly, the interval between the centromeric markers D6S272 (at 75 cM) and D6S421 (at 86 cM) represents 5.3% of the genetic map but 17% of the fractional length of chromosome 6. In contrast, the telomeric loci D6S411 (at 173 cM) and D6S281 (at 207 cM) are separated by 16.4% of the genetic length of the chromosome, but the interval between D6S411 to the telomere is only 4% of the fractional cytogenetic distance. The FISH analysis indicates that there are no genetic markers on $13 \mathrm{p}, 14 \mathrm{p}$ and 15 p , and that the terminal region of chromosome 20 q is not contained in the genetic map. Thus there is no coverage by YAC of these regions in our physical map.

Presentation of the map

For each chromosome, the atlas following this paper shows: (1) a summary map of each chromosome, showing the cytogenetic representation, and the scales of the physical and genetic maps, together with the indication of the regions covered in contigs; and (2) a map of detailed contigs for each chromosome.
Summary figure. Each chromosome is presented at the same genetic scale as an ideogram ${ }^{29}$ at the left side of each drawing. At the right of this ideogram is the physical map scale, showing the location of the bins. In parentheses are two numbers, separated by a semicolon: the first number is the number of STSs in the bin, the second is the number of YACs that are anchored to the bin. The links between the physical map scale and the cytogenetic scale are established through YACs that are anchored to the bins and have been used in FISH hybridization. Each of those YACs establishes a connection between the bin and an interval in the ideogram. Note that the FISH measurements have been made in terms of fractional length of the whole chromosome, and that the size of heterochromatic and centromeric regions may vary between individuals. As a consequence, a slight distortion can occur in our figures after these regions, especially for chromosomes containing entirely heterochromatic p arms

GENOME DIRECTORY

(acrocentrics). At the right of the physical map, the intervals covered in contigs are represented with coloured rectangles. The different colours represent the different levels of the paths. Finally, the correspondence between the physical map scale and the Généthon linkage map, used as a backbone for the bin locations, is shown at the right of these rectangles. The positions in the genetic map are expressed in Morgans from the most distal marker of the p arm of the chromosome.
Detailed contlgs. Contigs are presented for each chromosome from pter to qter. They correspond to a succession of paths, represented by rectangles on the summary figure. Each path is a collection of clones, ordered in stacks. The number of stacks in a path corresponds to the level of the path. The graphical presentation of paths provides the following characteristics of the clones: STS-content information for the YACs; sizes of the YACs; overlap relationships between YACs based on Alu-PCR hybridization and fingerprint data; chromosomal assignment for YACs used as probes for Alu-PCR hybridization; and indication of YACs used as FISH probes.

Each locus is indicated by a white rectangle that indicates its chromosome and position. STSs located in the bin are displayed above the rectangle. These STSs are numbered within the bin and are displayed in a beige rectangle. For example, the bin located at position 1.00 on chromosome 1 contains two STSs: AFM120xd4 (D1S209), and AFM286xd9 (D1S473). This bin is thus presented as:

1: AFM120xd4 (D1S209)
2: AFM286xd9 (D1S473)
CHR 1 position 1.00

The clone stacks displayed under each bin represent the anchored YACs (that is, the YACs that contain at least one STS of the bin), and the stacks that are between two bins represent the ordered groups of clones internal to paths of level 3 and above. Within a stack, the YACs are displayed according their order in the library, from top to bottom. Each YAC is represented by a yellow box with a horizontal bar in the middle. The YAC name and its size in kilobases are represented from left to right above the bar. A ' + ' sign after the size means that multiple bands were detected; only the biggest size is displayed. The names of YACs used for FISH hybridization appear in a box (for example, YAC 763B12, anchored to position 1.00 on chromosome 1). Chromosomal assignment (for clones used as AluPCR hybridization probe) and the STS content of the YAC are represented from left to right under the bar.

Chromosomal assignment is made based on the results of hybridization with somatic cell hybrids. Because of the problems described above, chromosomal assignments were sometimes ambiguous. The assignments are represented by the following code: (1) one white dot: a probe that was not assigned; (2) two blue dots: a probe assigned only to the chromosome under consideration; (3) one blue dot, one orange dot: a probe assigned to the chromosome under consideration, as well as to one or more additional chromosomes; and (4) two orange dots: a probe that is not assigned to the chromosome under consideration, but that is assigned to one or more other chromosomes.
The display of the STS information differs between stacks composed of anchored YACs and stacks located between two bins. For anchored YACs, the stack shows the clone numbers of the STSs in the bins. For example, the bin at position 1.00 on chromosome 1 shows YACs 631C9, 732A10 and 752E3; they contain, respectively, the second, the first, and both STSs, and are given the lists ' 2 ', ' 1 ' and ' 12 '. For stacks between bins, we represent the position of the STS for which the YAC is positive. For example, ' $1-0.87$ ' means position 0.87 on chromosome 1, ' 1 ?' means chromosome 1 but position unknown on this chromosome, and '?' means that no positional information is known. If
the YAC is positive for several STSs, located at different places then asterisks are displayed.

The relationship between clones in adjacent stacks is showr as follows. For paths of level 1 , the path is established througr: the presence of one or more clone in the adjacent anchore: stacks. with a thick bar (yellow and black) displayed betwee: the two stacks. For example, paths of level 1 are establishe: between the loci 1.00 and 1.02 on chromosome 1 by the YAC 752E3, 763B12, 830E7 and 940 Cl . No Alu-PCR hybridizatio: or fingerprint linkage is involved in establishing paths of level

For level 2 and higher, an array of one or more columns : displayed between the stacks, representing the fingerprint anc Alu-PCR relationships that link the stacks. Each column of th. array is composed of a black box and 3 subcolumns. The hori zontal position of the black box relative to the column gives th orientation for reading the columns. All columns within an arra have the same orientation. If the box lies on the left (respectivel. right) of the column, this column refers to the clone of the le: (respectively, right) stack that is vertically in the same place a the box. We call this clone the attached clone. The three sue columns contain symbols (dots and triangles) that refer in thi case to the clones of the right (respectively, left) stack that ar vertically in front of them. The subcolumn that is just to th side of the black box can be either yellow or pale blue. It i yellow if the attached clone was not used as Alu-PCR targe (does not belong to plates 734-989). If this clone was used a an Alu-PCR target, this subcolumn is pale blue and the triangle in it refer to the Alu-PCR probes that hit this clone by hybridiza tion. The middle subcolumn is yellow if the attached clone wa not used as Alu-PCR probe. This subcolumn is blue otherwise and the triangles in it refer to the targets hit by this clone. Th third subcolumn is yellow if the attached YAC was not finger printed. If this clone was fingerprinted, it is green and contain black dots that refer to overlapping YACs by fingerprint. Thi two-colour presentation allows the reader to distinguish fo example between a clone that was not used as an Alu-PCR prob from one that was used as an Alu-PCR probe but did not hi any YAC in the adjacent stack. It also provides a very quic: way of highlighting the clones with the most overlap informa tion, which are the ones linked to the region with the highes probability.

As an example, in the path between 1.08 and 1.10 on chromo some 1, the first column refers to the YAC 912G11 and th second to the YAC 957A9, because the black box lies on th left of the column. The YAC 912 Gll was used as a target fo Alu-PCR hybridization, was not used as an Alu-PCR probe and was fingerprinted. As a target for Alu-PCR hybridization it is hit by YACs 774C4, 800E10 and 943A2 as hybridizatio: probes. It overlaps by fingerprint data with YAC 895B12. Th YAC 957A9 was used as a target for Alu-PCR hybridization was used as an Alu-PCR probe, and was fingerprinted. As a: Alu-PCR target, it is hit by the probe 927 C 3 . As an Alu-PCF probe, it hit YAC 927C3. It also overlaps by fingerprint dat: with YAC 927C3.

Map rellability and coverage

All YAC paths covering genetic intervals have been inspectec and checked, as described above. Contigs cover 75% of th genetic intervals, which together comprise 66% of the tota genetic length of the genome (based on the sex-averaged meioti map). The proportion of the genetic length covered in paths o level 1 is 26%, of level 2 is 17%, of level 3 is 15%, of level 4 i 5%, and of level 5 is 2%. These numbers are calculated on thi basis of all chromosomes except $3,12,21,22$ and Y, which were either previously mapped or subjected to more intensive mapping by groups presenting their maps elsewhere in this volume. The chromosomes that are covered for more than 66% o their genetic length are: $4,5,7,8,9,11,14,15,16,18$ and 20 Low coverage of chromosome X (23% of its total genetic length is expected, both because the YAC library underrepresents the

X chromosome (being derived from a male) and because the genetic map of X is sparse. In addition. the screening efficiency with backbone STSs from Ip, 19 and 17 was particularly low. resulting in poor coverage of these regions. However, chromosome 18 is almost entirely covered because we made a special effort to fill gaps by more intensive hybridization screening effort with YAC probes derived from path extremities. In many cases. ne:v STSs were derived from those YAC probes creating new paths.

Inferring the actual proportion of the physical length of the genome covered is not entirely straightforward. The proportion of the genetic length covered (66%) may overestimate the actual proportion covered because it neglects the physical distances within the bins of recombinationally inseparable markers. But it may underestimate the coverage because the density of YACs appears to be sparsest in the telomeric regions, which are precisely those regions in which the ratio of genetic to physical distance appears to be greatest.

If the AFM markers were randomly distributed they would occur with a random spacing of about 1.2 Mb , just slightly larger than the average size of our YAC clones. We would thus expect to cover much of the genome in paths of level 1,2 or 3 . The observed proportion of intervals covered by such paths agree very well with expectation based on computer simulations. Moreover, mathematical analysis predicts that the YACs identified by the genetic markers would contain about half of the genome ${ }^{30}$. Although the AFM markers are known to be not cempletely randomly distributed, the overall effect of nonrundomness appears not to be severe.

To evaluate the reliability of the YAC contig map, we examined 161 non-AFM genetic markers from a recently published collaborative genetic map ${ }^{31}$ of the human genome (omitting markers for chromosomes 3, 12, 21 and 22) that were screened against the YAC library at WI/MIT. Of the STSs, the number detecting 1, 2 or at least 3 YACs was 20, 14 and 127, respectively 1, 2 and 3. In 60,78 and 88% of the cases, respectively, the YACs containing the markers had been assigned to the expected location (based on the known genetic location of the marker). In the remaining cases, the corresponding YACs were not found on the expected chromosome but were sometimes found on other chromosomes (possibly resulting from chimaerism).

These results also indicate that the map covers most of the human genome. However, they do not provide a direct estimate of coverage because only loci that detected at least one YAC were considered, and the genetic markers tested may tend to lie in the same regions as the genetic markers used to construct the map. Mitigating against this concern is that the genetic markers u.sed to assess coverage were predominantly tetra-nucleotide repeats, whose regional biases may differ from the CA repeats in the Généthon genetic map.

[^4]Given the results above. it seems reasonable to estimate that the physical map covers about 75% of the genome in 225 contigs having an average size of about 10 Mb .

Public availability of the map

Clone availability. Primary copies of CEPH YAC library were distributed to following centres:
Whitehead Institute; MIT Center for Genome Research. Cambridge, Massachusetts 02142. USA: E. S. Lander and T. Hudson; e-mail: lander@genome.wi.mit.edu.

The Reference Library DataBase (RLDB), MPI for Molecular Genetics, Ihnestrasse 73, 14195 Berlin-Dahlen, Germany; H. Lehrach; tel: (49) 30 8413 1627: fax: (49) 3084131395.
3-1-1 Koyadai, Tsukuba. Ibaraki 305, Japan; K. Yokoyama: tel: (81) 29836 3612; fax: (81) 298369120.
Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai. Minato, Tokyo 108. Japan; Y. Nakamura; tel: (81) 35449 5372; fax: (81) 35449 5433.

Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Second Medical University, Shanghai 200025, China; Z. Chen; tel: (86) 213180 300; fax: (86) 214743206.
GBE, CNR, via Abbiategrasso 207, 27100 Pavia, Italy; D. Toniolo; tel: (39) 382546 340; fax: (39) 382422286.
YAC Screening Centro, Leiden University, Department of Human Genetics Wassenaarseweg 72, 2333 Al Leiden, The Netherlands; G. J. B. van Ommon; tel: (31) 71276081 ; fax: (31) 71276075.

Human Genome Mapping Project Resource Centre, (HGMP) Hinxton Hall, Hinxton, Cambridge CB10 1RQ, U.K.; K. Gibson; tel: (44) 1223494 500; fax: (44) 1223494512.
Clones can be obtained also from Foundation Jean-Dausset-
CEPH, 27 rue Juliette Dodu, 75010 Paris. France; D. Le Pashèr; e-maii: denis@ceph.cephb.fr.

Data distribution

Anonymous ftp server: ftp://ceph-genethon-map.cephb.fr/ pub/ceph-genethon-map.
World Wide Web server: URL address: http://www.cephb.fr/ bio/ceph-genethon-map.html.
Mail server: ceph-genethon-map@cephb.fr.
How to use it: S mail ceph-genethon-map@cephb.fr. Subject: infoclone. 755_f_4 672_a_3 DI2S76.
other YAC or STS names.
QUICKMAP (developed by P. Rigault and E. Poullier at CEPH) is a mapping tool containing all the CEPH/Génethon screening data. It was designed to manage the production of STS screening and hybridization data, using the results analysed on a daily basis to suggest new tests. It was then modified to make CEPH/Génethon data accessible to the scientific community. QUICKMAP allows both navigation within CEPH/ Généthon map and dynamic construction of contigs to integrate further datasets. QUICKMAP has been publicly available since February 1993 on our ftp site.
19. Bell, C. J. et al. Hum. molec. Genet. 4, 59-69 (1995).
20. Nelson, D. L et al. Proc. natn. Acad. Sci. U.SA. 88, 6686-6690 (1989).
21. do Jong, P. J. et al. Cytogenet. Cell Genet. 51, 985 (1989).
22. Chumakov, I. M. et al. Nature Genet. 1, 222-225 (1992).
23. Mullivor, R. A., Greene, A. E., Drwinga, H. L., Tojl, L. H. \& Kim, C. Am J. hum. Genet. (Suppl.) 49, 370 (1991).
24. Shafit-Zagarto, B., Maio, J. J. \& Brown, F. L. Nucieic Acids Res. 10, 3175-3193 (1982). 25. Fieids, C. A., Grady, D, L. \& Moyzis, R. K. Genomics 13, 431-436 (1992).
26. Kaplan, D. J., Jurka. J., Solus, J. F. \& Duncan. C. H. Nuclelc acids Res. 19, 4731-4738 (1991).
27. Matera, G. A., Hellmann. U., Hintz M, F. \& Schmid, C. W. Nucleic Acids Res. 18, 6019 6023 (1990).
28. Jurka, J. \& Milosavijevic, J. Molec. Evol. 32, 105-121 (1991).
29. Francke, U. Cytogenet. Cell Genet. 65, 206-219 (1994).
30. Aratla, R., Lander, E. S., Tavare, S. \& Waterman, M. S. Genomics 11, 806-827 (1991). 31. Murray, J. C. et al. Science 265, 2049-2054 (1994),

ACKNOWLEDGEMENTS. This work was supported by Association Francaise contre les Myopathles (AFM), Ministere de la Recherche et l'Enseignement Superieure, Groupement de Recherche et d'Etude des Genomes, la Ligue contre le Cancer, the European Economic Community program DGXII and the Natlonal Center for Human Genome Research of the US NIH.

An STS-Based Map of the Human Genome

Thomas J. Hudson,* Lincoln D. Stein, Sebastian S. Gerety, Junli Ma, Andrew B. Castle, James Silva, Donna K. Slonim, Rafael Baptista, Leonid Kruglyak, Shu-Hua Xu, Xintong Hu, Angela M. E. Colbert, Carl Rosenberg, Mary Pat Reeve-Daly, Steve Rozen, Lester Hui Xiaoyun Wu, Christina Vestergaard, Kimberly M. Wilson, Jane S. Bae, Shanak Maitra, Soula Ganiatsas, Cheryl A. Evans, Margaret M. DeAngelis, Kimberly A. Ingalls, Robert W. Nahf, Lloyd T. Horton Jr., Michele Oskin Anderson, Alville J. Collymore, Wenjuan Ye,
Vardouhie Kouyoumjian, Irena S. Zemsteva, James Tam, Richard Devine, Dorothy F. Courtney, Michelle Turner Renaud, Huy Nguyen, Tara J. O'Connor, Cécile Fizames, Sabine Fauré, Gabor Gyapay, Colette Dib, Jean Morissette, James B. Orlin, Bruce W. Birren, Nathan Goodman, Jean Weissenbach, Trevor L. Hawkins, Simon Foote, David C. Page, Eric S. Lander*

Abstract

Aphysical map has been constructed of the human genome containing 15,086 sequencetagged sites (STSs), with an average spacing of 199 kilobases. The project involved assembly of a radiation hybrid map of the human genome containing 6193 loci and information was combined with the results of STS-content screening of 10,850 loci against a yeast artificial chromosome library to produce an integrated map, anchored by the radiation hybrid and genetic maps. The map provides radiation hybrid coverage of 99 represents an early step in an international project to generate a transcript map of the human genome, with more than 3235 expressed sequences localized. The STSs in the map provide a scaffold for initiating large-scale sequencing of the human genome.

A physical map affording ready access to requisite for the international effort to sequence the entire human genome. In the shorter term, it is also a key tool for positional cloning of disease genes and for studies of genome organization. Physical maps have evolved over the past decade from their initial conception as a set of overlapping clones (I) to the more recent idea of well-spaced collection of unique landmark called sequence-tagged sites (STSs), each defined by a polymerase chain reaction (PCR) assay (2-4). The U.S. Human Genome Project, for exanple, has set a target of a physical map consisting of 30 000 STS spaced at intervals of about 100 kb (5). By focusing on STS landmarks, genome researchers sought to insure against the inevitable problems inherent in any given clone library (2). The wisdom of this approach was borne out as it emerged that yeast artificial chromosomes (YACs), the best clones for covering large distances, suffer from high rates of chimerism and rearrangement and thus are unsuitable for genomic sequencing $(6,7)$. STS-based maps sidestep this problem by having a one can rapidly regenerate physical coverage of any region by PCR-based screening of clones appropriate for sequencing-such as cosmids, bacterial artificial chromosomes, and P1-artificial chromosomes (8). STS-based physical maps with extensive long-range continuity have been construct-long-range continuity have been construct- ed for only a handful of human chromo somes: $3,12,16,21,22$, and $Y(3,4,9,10)$. These combined maps cover just less than 20% of the genome with about 1600 STSs, Cambridge, MA 02142 , USA; Howard Hearchnes Medical Institute MT, MT, 9 Cambridgg Center. Cambridge, MA 02139 , To whom correspondence should be addressed.

and the average spacing on most of these chromosomes is about 250 kb . Projects are also underway for a few additional chromo
somes (11). An international collaboration among the Centre d'Etude du Polymor phisme Humain (CEPH), Généthon, an Whitehead genome centers has also pro-
duced a clone-based physical map estimated to cover up to 75% of the genome in overlapping YAC clones (7). The map is clone based, rather than STS-based, because it was primarily assembled by detecting phys ical overlaps among the clones themselve (by means of cross-hybridization and fingerprinting methods), with only a sparse set of
STS landmarks used as anchors (786 loci Sully landmarks used as anchors (786 loci
foreened and 1815 loci partially fully screened and 1815 oci partially
screened on YACs). The map is quite valuable for positional cloning projects, but it does not provide a scaffold for sequencing the human genome: The YAC clones themselves are not suitable for sequencing, and
the STS coverage is too sparse to regenerate substantial physical coverage.
Here, we report the construction of an STS-based physical map of the human genome containing more than 15,000 loci, with an average spacing of 199 kb . The map covers the vast majority of the human genome and provides a sfor for initiatin

Basic Strategy

We used three mapping methods to gain information about the proximity of STS loci within the human genome.
es are screened by PCR to YAC librar clones containing a given locus (12) Nearby loci tend to be present in many of the same clones, allowing proximity to be inferred. STS-content linkage can be de tected over distances of about 1 Mb , given the average
used here.
2) Radiation hybrid (RH) mapping. Hy brid cell lines, each cont brid cell lines, each containing many large
chromosomal fragments produced by radia-
e relevant region on a high-resolution RH anel in parallel with screening them on the panel in parallel with screening them on the BAC library. As a simple test, we scored the
STSs from a 3-Mb region on chromosome 6 on the G 3 RH panel and were able to readily infer the fine-structure order of nearly all the bci with high confidence (45).
The use of STS-based maps as a scaffold for large-scale sequencing has several advan-
tages: It can be initiated now with the existing tages: It can be initiated now with the existing
STS-based map; it automatically anchors sequences in the genome; it does not require quenosome-specific libraries, which involve specialized preparation procedures and often have cryptic biases; it allows improved libraries to be substituted as they become available; and it promotes decentralization by allowing given size, in contrast to entire chromosomes. In summary, the physical map must still be refined but is already adequate to allow nitiation of the international project to sequence the entire human genome- - a he firl the for

REFERENCES AND NOTES

1. M. Olson et al. Proc. Natl. Acad. Sci. U.S.A. 8 . 8826 (1986); A. Coulson et al., ibid. p. 7821 ; Y.
 ${ }_{245}^{\text {M. Olson. L. . Hood. C. Cantor, D. Botstein, Science }}$ 3. S. Foote, D. Volrath, A. Hilton, D.C. Page, ibid. 258 , 4. I. Chumakov et al., Nature 359,380 (1992).
2. F. Collins and D. Galas, Science 262, 43), (1993).

 o. $\begin{aligned} & \text { P. } 5367 \text {. } \\ & \text { Kraute }\end{aligned}$

 Alitalo et al., ibid. 25. 691 (1995).
I. D. . Cox, M. Burmister, E. Roydon Price, S. Kim,
R. M. Myers. bidi,., D. 245 ; M. A. Watter et al., Nature Genet. 7,22 (1994).
3. D. Botsteine tal.,.Am. J. Hum. Genet. 32,314 (1980);
J. L. Weber and P. E. May, bid. 44, 388 (1989).
4. J. Luraya et at.,. SCience 265, 2049 (1994).
i. J. Ott, Analysis of Human Genetic Linkage (Johns

Loci were used only it they produced a single clear
band visible by eltidium bromide staining, exceet tor genetic markers. which were used even when they
produced more than one band on an agarose gel (in produced more than one band on an agarose gel (in
view of their value in providing top-down orientation). Assays meeting this criterion are more likely, ll.
though not certan, to represent single unique loci in thhoug not
the genome
Sen
5. Sequence data were analyzed with the Whitehead MT STS Pipeline sotwware, which removest veccor
sequencos, identifies duplicate sequences, and uses
 to eliminate thown repeat sequences. Pimers were
chosen with PMIMER M. J. Daly S. Lincoln, E. S.
L. tander, Whitenead Institute) having the desiried T_{M}
temperature at which 50% of double-stranded $D N A$ (temperature at which $5 \% \%$ of double
is denatured) for rimers set at $58^{\circ} \mathrm{C}$.

Boguski and G. Schuler, Nature Genet. 10, 369 (1909).
Norredur
piopared
tional Cer eedundant ESTs were part of the UniEST set ional Center tor Biotechnology Information, derived

22. A. A. 23. | Ad |
| :--- |
| To |

 (rom the polyadenylate lep 3^{\prime}-UTRs fibut 20 bp away hion sequynace quality.
. . Weissentact

a. C., N. Nature, In in press.
6. STSs were ki.ndy shared Genet. 4.59 (1995).
Stantord University. Stantord. Cox. . Myers, Harvard University, Santord, CA,
Cambidge MA.
 oy using CEPH fingerpint data, as described (25). D. Dot-blotted PCA rododucts were initially d detected
by using ECL kits (Amersham), as described (25). We later switched to ovemight hybridization with a
biotinylated oligonucleotide erobe to an intemal sequence, tollowed by chemiuminescent detection
with p peroxidase catalyed limminol reaction, as

 repeat sequence such hascAor AAAT were errobed
with an oligonucleotide for the repeat. Other STSs were probed with a specific internal oligonucleo-
tide. having a T_{m} of 58 C. Computer mages of
each hybridization were obtained with a $C C D$ camCach hybridiation were obitined with a CCD cam-
era. vew sotware (C. Rosenberg; Whitenead Intitute was use to locate and deternine the in-
(ensity of positive dots. A smal proporion of STSs wert screened by standard agarose gel stained
with ethidium bromide.
29. It is not possibile to dram
coverage from tre the overall numberius of atssut library
definite addresses because many of these no definite addresses, because many of these repre-
sented weak PCR assays that sometimes worked on human control DAAs but tialed on YAC pools.
 coverage is abouti 10 . Some of thesests sts may
thus be unique loci but they were excluded to guard thus be unique loci,
agains repats
3. G Gyapay et a I.,
G. Gyapay et al., Hum. Mol. Genet, in press.
 peats were screrened with oligoonscocotatides contain-
ing unique intemal sequence rather than (CA) beIng unique intermal sequence rather than ((CA), be-
cause the laterer producecd igh background.
 by using the NIGMS Hussmannentins were resolved
Hybrid Panel $\# 2$, described in Be. L. Dubois and S . Hybrid Panel $\# 2$, described in B. L L.
Nayor erat.l. bidi. 16,315 (1993).
34. In 151 cases, , TTSs were chromosomally assigned
by virtue of having at least three single links to other by yitue of having at least three single links so other
markers on a chromosone and no links to any loci n any other chromosome.
35. About ed such conticicts were resolved. Half were
resoled by repeating the typing of the somatic cell
hybrid panel For the the hyyrid danel. For the other hatif an STS was sumemon-
strated to amplify products tom mor than one strated to amplify products trom more than one
chromosome. Such STSs were discarded.

Ilowing for efficient exploration of a vast space of possible orders.
. In most carsess, trameworks tor the two chromosomal

 > 5 .0) b between framework markers on onposite
sides of the e entromere on nine or the fina frame-
work maps, but not on the other 14. work maps, but nom on on the other 14
M. R. James etal. Nature Geane
\qquad . M. R. James et tal. Nature Genert. B, 70 (1994).
 negative score a_{+-}tor each YAC containing one but
not the other, opositiv scorer b_{+}fo eoch hyborid
containing both, and a negative score b_{+}- for each
 x_{10} and x_{0} denote the probabilities that two STSS
separated by babut 500 kb would be obsenved to be soth present, both absent, or one present and one
absent in a randomly chosen YAC. we set $a_{+}=$
$=$
 individual RH cell ines. The various probabilitites were
calculated on the basis ot the distritution of ragment
ciactad kes and the inferred false positive and false negative
rates. These efor paramelers, $a_{+1} a_{+-}, b_{+}$, and
 vere chosen by opinimization in test cases.
41. Three markers

Three markers mapped into large centromeric inter-
vals on the correct chromosome; they had high lod
 marker. All were confirmed by double-link k age with
YACC. For thee other markers. chromosomal as-
signment could not be obtained from polychromosoma hybrid panell be because of rodent background.
For one of these ofor loci there was a poresumably
chimeicic single YAC link to a marker on the same bcation.
43. Three of

Three of the loci belonged to doubly linked contigs
that were anchored by virtue of a CHLC genelic
4. If genere promoters on chromosome X have the same average exrossion level as on antutosomes, the thane the
act that only one X chromosome is active tdue to
 would cuuse transcrity from x-iliked genest to 0 es
hall as abundant. Because hal of the cDNAs came half as abundant. Beccuse half of the cDNAs came
fom nonnormalized libraries and half trom nommalzed libraries, the occurrence of ESTs in the releatively small set examined will partly reflect abundance. This
issue will recede when enough ESTs have been isolitad to overcome issueve relatad to message elevels.
Underepresentation of chromosome X could also conceivably represent som

45. T .

(H. Wet). .

 with media preparation and glass washings S. Gorr-
don, A. पnrstopher, P. Mansield, and others at $1 \mathrm{l}-$ lon. A. Ahrstopher, P. Mansield, and others at In-
leligent Automation Systems or assistance in de-
sion, construction, and maintenance of automation sign, construction, and maintenance of automation

 library in 1992 and for public distribution of their STS.
content. Alu-PRR, and figerorint data.
Nupportedy

 Special Emphas
HGGOOD17) trom the
nome Research.

17 October 1995; accepted 8 November 1995
genetic maps. By measuring the frequency such occurrences as a function of th distance between the loci in the STS map estimated that about 0.5% of the loc In summary, the local order in the map must be regarded as uncertain. There will arely be many errors requiring attention and correction. The effective resolution of the map is certanly lower than the average spacgetween loci and may be about 1 Mb . To mprove the local accuracy of the maps, inwould be well advised to retest the STSs against an RH panel with higher resolution such as the G3 panel developed by D. Cox nd R. Myers, in which the fragments are about $1 / 10$ those in the GeneBridge 4 panel] nd against regional YAC panels, as described above. In this fashion, the map provides the
tools for its own refinement. Fols for its own refinement.
our STS-based map with the recently reported YAC-based map (7) is difficult, because of the very different natures of the maps. For example, it is not meaningtul to compare the STS orders in the two maps: The YACbased map almost exclusively involved ge-
netic markers and provided no independent information about locus order, but instead
simply adopted the genetic order. It is also problematic to compare the specific YACs identified, because the YAC-based map involved only partial screening of most STSs belonging to paths through a region from those representing false positive hybridization. At the grossest level, it is possible to compare the coverage of the maps: The current map appears to cover about 95% of the genome (the precise amount depends on the type of mapping information used), whereas
the other map was reported to cover about the other map was reported to cover about
75%. More detailed comparison would be worthwhile, as it would likely lead to improvements in both maps.

Distribution of Genes

The map also sheds light on the organization of the human genome. By comparing the chromosomal distribution of the expressed sequences to the chromosomal dis-
tribution of the random single-copy quences (both determined in the same manner), one can draw inferences about the density of genes on different chromosomes.
We compared the observed number on each Chromosome to the expected number, assuming that expressed sequences have the

Table 4. STS-content mapping of YACs.

Chr.		$\begin{gathered} \text { STS } \\ \text { spacing } \\ \text { (kb) } \\ \text { STS) } \end{gathered}$	$\begin{aligned} & \text { No. of } \\ & \text { YACS } \end{aligned}$	Contigs			$\begin{aligned} & \text { YAC } \\ & \text { hits } \\ & \text { per } \\ & \text { STSU } \end{aligned}$	$\begin{aligned} & \text { STSs } \\ & \text { per } \\ & \text { con- } \\ & \text { figIt } \end{aligned}$
				$\begin{gathered} \text { Before } \\ \text { gap } \\ \text { closure } \end{gathered}$	$\begin{gathered} \text { After } \\ \text { gap } \\ \text { closure } \end{gathered}$	$\begin{aligned} & \text { Avg. } \\ & \text { size } \\ & \text { (Mb)§ } \end{aligned}$		
1	1,048	237	1,393	49	34	7.3	6.7	30.8
2	933	258	1,469	56	20	12.0	7.3	46.7
3	791	255	1,192	46	30	6.7	7.5	26.4
4	718	267	1,272	42	11	17.4	8.2	65.3
5	651	281	1,163	35	19	9.6	7.9	34.3
6	641	269	1,091	40	24	7.2	7.8	26.7
7	559	288	942	39	13	12.4	7.8	43.0
8	552	265	945	23	11	13.3	8.0	50.2
9	394	347	675	28	12	11.4	8.0	32.8
10	519	262	750	36	26	5.2	6.8	20.0
11	490	277	696	23	14	9.7	7.2	35.0
12	509	265	842	29	16	8.4	7.4	31.8
13	300	308	556	12	5	18.5	8.0	60.0
14	352	249	593	9	6	14.6	8.0	58.7
15	301	279	439	16	10	8.4	7.0	30.1
16	255	362	308	26	16	5.8	6.0	15.9
17	267	325	330	27	17	5.1	5.8	15.7
18	315	254	478	16	8	10.0	7.6	39.4
19	79	800	76	17	15	4.2	4.7	5.3
20	266	255	328	15	10	6.8	6.6	26.6
21	113	325	182	4	2	18.4	8.0	56.5
22	182	223	134	11	11	3.7	5.4	16.5
\times	408	379	406	53	46	3.4	4.7	8.9
Y\#	207	128	234	1	1	26.4	4.1	207.0
Total	10,850	276	16,494	653	377	8.0	7.3	28.8

ame distribution as random STSs (Table 2) Chromosomes 1, 11, 17, 19, and 22 showed a statistically significant excess of expressed sequences ($P=0.001$ after correction for multiple testing). Chromosomes 17,19 , and been previously suggested to have a high density of genes on the basis of indirect evidence (40). Chromosome X was the only chromosome to show a statistically significant deficit of expressed sequences-only bout half as many as expected. This would suggest that there is a low gene density on
this sex chromosome, although alternative explanations are possible (44). We also analyzed the raw data from two recent papers reporting chromosomal assignment of expressed sequence tags (ESTs) (21, 22) and

A Scaffold for Sequencing

the Genome

As genetic and physical maps approach their intended goals, attention is turning to the challenge of sequencing the entire human genome. A key issue is how to obtain the required sequence-ready clones. STS-
based maps provide a general solution by making it possible to generate extensive physical coverage of a region by screening a single high-quality human genomic library. One could, for example, proceed as follows: Screen the STSs in a region against a bacterial artificial chromosome (BAC) li-
brary having $150-\mathrm{kb}$ inserts and 10 -fold coverage, use a simple fingerprinting scheme to erage, use a simple fingerprinting scheme to
detect overlaps among adjacent clones, and select a minimally overlapping set for sequencing. Given a physical map containing 30,000 ordered STSs, one would screen about 100 STSs and fingerprint about 520 BACs to cover a $10-\mathrm{Mb}$ region; this task
could be readily accomplished in a few days with modest automation and would not contribute significantly to the cost of sequencing. The resulting BACs would be expected to cover about 95% of the region in ordered sequence contigs (17). The region could then be closed by straightforward walkingthat is, serially screening the BAC library
with STSs derived from sequences at the ends of each contig.
The current map falls short in terms of marker density and local order, but neither shortcoming poses a serious obstacle for initiating large-scale sequencing now. With the 15,000 STSs currently available, one should cover about 75% by direct screening, 90% by
one round of walking, and more than 95% with two rounds (17). The desired map with 30,000 STSs will likely be available within the next 2 years, through current projects underway at several centers including our own. Uncertainties about locus order can be vercome simply by scoring the STSs from
tion breakage, ate screened by PCR to iden tify those hybrids that have retained a given locus (13). Nearby loci tend to show simila retention patterns, allowing proximity to be inferred. RH linkage can be detected for fragment size of the RH panel used here. 3) Genetic mapping. A locus that is polymorphic in the human population can be screened by PCR to determine its inher itance patterns in families $(14,15)$. Nearby loci tend to show similar inheritance patnetic linkage can be reliably detected ove distances of about 30 Mb , given the recombination rate of human chromosomes (16).

These three methods were used to produce independent maps and then com bined to produce an integrated map. Be cause RH mapping and genetic mapping to 1% of the genome), comprehensive RH and genetic maps spanning all chromosomes can be assembled with a few thousand loci. The order of loci can be inferred from the extent of correlation in the re rention or inheritance patterns, although precise. These methods can thus provid "top-down" information about global position in the genome.
In contrast, STS-content mapping provides "bottom-up" information. It reveals tight physical linkage among loci but is useful only over short distances and does
not provide extensive long-range connecnot provide extensive long-range connec-
tivity across chromosomes (17). Two STS are said to be singly linked if they share at least one YAC in common and doubly linked if they share at least two YACs (17) Single linkage is an inadequate criterion for declaring adjacency of STSs, because of th high rate of YAC chimerism (about 50%) and the possibility of laboratory error. Dou reliable indication, because two genomic regions are unlikely to be juxtaposed in
multiple independent YACs. Accordingly, multiple independent YACs. Accordingly, a three-step procedure was used. (i) STS were assembled into doubly linked contig groups of STSs connected by double link
age). (ii) The doubly linked contips wer age). (ii) The doubly linked contigs were
localized within the genome on the basis of RH and genetic map information about loc in the contig. (iii) Single linkage was the used to join contigs localized to the same small genomic region. The overall strategy is illustrated in Fig. 1. We now describe the data generation, map construction, and

Data Generation

Marker development. Over the course of the project, we tested 20,795 distinct PCR a says. These candidate STSs were initially
characterized to see whether they were likely to detect a unique genomic locus (18) and whether they consistently yielded cor rect results on control samples under uni form production conditions. A total of
16,239 STS met these stringent criterial and were used for mapping. The STSs fel into one of the following four categories. 1) Random loci. We generated 302 working STSs by sequencing random human genomic clones and discarding thos that appeared to contain repetitive se quences (19).
921 STSs from sequences. We developed DNA (cDNA) sequences in GenBank, taken from the Unigene collection (20). An other 3349 STSs were developed from ex pressed sequence tags (ESTs). Of these, 13% came from the dbEST database (21), from the Institute for Genomic Research and 7\% from various other sources (22). We found that the success rate for STSs derived from the last 200 base pairs (bp) of 3 untranslated regions (UTRs) of cDNAs wa similar to that for STSs derived from ran dom genomic DNA, consistent with the
idea that introns rarely occur near the end of 3^{\prime}-UTRs (23). The results indicate that PCR assays can be readily derived for the vast majority of cDNAs.

Genetic markers. A total of 6986 loci were used, consisting of 5264 polymorphic loci developed at Généthon (primarily CA repeats) (24) and 1722 loci developed by (CHLC) (primarily tri- and tetranucleotide repeats) (15).
4) Other loci. A total of 1956 STSs were developed from various sources. These included 1091 CA -repeat loci developed a Genethon that were not sufficiently polywell as 865 loci from chromosome 22-specific and chromosome Y-specific librarie and gifts from other laboratories $(3,25,26)$

A total of 15,086 STSs appear in the final maps. The number of markers of each type appearing in the final STS-content, RH, and genetic maps is shown in Table 1 STS-content mapping: Methodology. STS
were screened against 25,344 clones from were screened against 25,344 clones from
plates 709 to 972 of the CEPH mega-YAC library (7), estimated to have an averag insert size of 1001 kb and to provide roughl 8.4-fold coverage of the genome. To facilitate screening, we used a hierarchical pool
ing system. The library was divided into 33 ing system. The library was divided into 33 "blocks," each corresponding to eight mi-
crotiter plates or roughly 0.25 genome equivalent. For each block, we prepared on "superpool" containing DNA from all th clones and 28 "subpools" by using a three dimensional pooling system based on the row, plate, and column address of each clone. Specifically, there were 8, 8, and 12 plate, row, and column, respectively. There was thus a total of 957 super- and subpools. For blocks with a single positive YAC the row, column, and plate subpools should specify the precise address of the YAC ("definite addresses"). If a block contained two or more positive YACs or if one of the
three subpool dimensions did not yield a positive, partial information was obtaine ("incomplete addresses") (27). Such in complete addresses could consist of up to 12 possible addresses (for example, in the case that a column address was missing). Incomplete addresses were not used in initial map assembly but were used at the final stages to
detect connections berween nearby loci. Definite addresses composed 88% of the total hits.

Half of the markers were screened by a two-level procedure, in which we first iden tified the positive superpools and then test ed only the corresponding subpools. The
other half were screened by a one-level procedure, bypassing the superpools and directly screening all subpools. Although the latter procedure involves more reactions,

Fig. 1. Schematic diagram of the STS-based map. STSs are shown as circles on the first and fourth ine Loci that are genetically mapped or RH mapped are connected to the appropriate position on these maps, with connections between these maps in the cases of loci present in both maps. YACs containing
STSs are shown below. The STSs fall into two singly linked contigs (stippled rectangles) and four doubly linked contigs (striped rectangles). Single linkage is not reliable for connecting arbitrary doubly linke contigs, but it is reliable in the case of anchored doubly linked contigs known to be adjacent on the genetic or RH map, as in the figure

SCIENCE • VOL. 270 • 22 DECEMBER 1995
each locus is treated in an identical manner, which offers advantages for automation. In both procedures, we identified the positive pools by spotting the PCR reactions on inembranes, hybridizing them to a chemilu-
minescent probe specific for each STS turing the resulting signal directly by a charge-coupled device (CCD) camera, and up-loading the results into our database (28); this approach proved to be much more efficient than the traditional detection procedure of gel electrophoresis.
Because the project involved processing more than 15 million reactions, laboratory
automation was essential. We collaborated with an engineering firm, Intelligent Auto

Table 1. Overview of mapped STSs.

STSs on final map	No. of loci
STS-content map	10,850
RH-map	6,193
Genetic map	5,264
Intersection of	4,036
STS-content and RH maps	4,
STS-content and genetic maps	3,106
RH and genetic maps	887
All three maps	807
Total loci	15,086

mation Systems, Incorporated, (IAS) of Cambridge, Massachusetts, to design and build various special-purpose machines to accelerate STS-based mapping The two-level screening procedure wa carried out with a large robotic liquid-pipet
ting workstation and two custom-designed ting workstation and two custom-designe
thermocyclers (Fig. 2). A laboratory information management system used the super pool results to automatically program the robotic workstation to set up the appropriate subpool screens. The system has a maxima throughput of 6144 PCR reactions per run.
The one-level screening procedure was ade feasible by the development of a mas sively parallel factory-style automation system nicknamed the Genomatron (Fig. 2) The Genomatron was also developed in collaboration with IAS and consists of three stations. The first station assembles PCR
reactions in custom-fabricated 1536 -well mi reactions in custom-fabricated 1536 -well miing a thin plastic film across the card. The second station thermocycles the reactions by transporting the cards over three chamber that force temperature-controlled water to flow uniformly between the cards. The thir crotiter card onto a hybridization membrane
affixed to the bottom of a second microtite card by piercing the first card with a bed o 1536 hypodernic needles and sucking the reactions downward with a vacuum plenum. These "filter cards" were then manually hy
bridized with a chemiluminescent probe and read by we CCD camera. The stations wer computer controlled, and the microtite cards were assigned a bar code to facilitat sample tracking. Each station was designed to process 96 microtiter cards, providing throughput of nearly 150,000 reactions per run.
STS-c

STS-content mapping: Results. A total of YAC 1,750 STSs yielded from 1 to 15 definite cessfully scsses and were considered sucapproximately address. STSs having more than 15 definite hits were excluded as likely to detect mul tiple genomic loci (30).
The successfully screened loci produced an average of 6.4 YACs per STS, consider ing only definite addresses. A total of 18,879 YACs were hit by at least one STS For these YACs, the average hit rate wa 3.8 STSs per YAC. The average size of the
YACs hit by the STS was about 1.1 Mb ($\sim 10 \%$ reater

Fig. 2. The first automated system developed obotic station to set up PCR reactions and (B) custom-buif "was (A) a, a capacity of 6144 PCR reactions per run The second aut the system has was the Genomatron, which consists of three robotic stations. PCR reactions are set up in 1536 -well microtiter cards (consisting of 15 cm by 24 cm injection molded plastic cards with 1536 holes, to the bottom of which a plastic film is heat-sealed to create wells). The first station (C) assembles the PCR reactions. Each run can process up to 96 cards per run, providing a
capacity of nearly 150,000 wells. Cards are dispensed by a coining mechanism and travel along a conveyor belt to substations containing a bar code reader; a 1536 -head pipettor (D) that dispenses template DNAs to be
screened; a 48 -head pipettor that dispenses PCR primer mixes, including
polymerase; a plate sealer that heat-seals a plastic fim on the top of the card to create separate reaction chambers; and a reffigerated storage station. The second station is a thermocycler (E) that uses three large
waterbaths. Up to 96 sealed cards containing PCR reactions are placed in a chamber that travels over the water baths, which pump water at the a chamber that travels over the water baths, which pump water at the station is a parallel "spotting" device that transfers PCR reactions from card to a nylon fitter affixed to the bottom of a second card. After the two cards are aligned, a bed of 1536 hypodermic needles (F) pierces a sealed
card containing the reactions while a vacuum manifold draws the reaction mixtures down onto the membrane on the second. The filter cards are manually hybridized and subjected to a chemiluminescent detection proto-
col. Light signals are recorded with a cooled CCD camera.
could thus not be localized on the STSontent inap (42). These four STSs appear
to be in regions of low YAC coverage, inasmuch as they hit one, one, one, and two YACs, respectively. The remaining 94 Tuntent mar Iwith 91 being doubly linked and three being singly linked to existing contigs anchored in the correct chromosomal region in the top-down map (43)]. The 100 loci detected an average of 6.5 ACs.
The map covers the vast majority of the human genome. We estimate that 99% of random STSs can be readily positioned on
the RH map, and 94% can be positioned on the STS-content map relative to YAC lones.
The physical map thus fills a major need in human generics, providing a general ocus in the human genome by screening locus in the human genome by screening paring the resulting pattern with the map. To make this information easily accessible to he scientific community, we have written a "map server." The server reports the likely

Fig. 3 (previous pages). Integrated map of human

 chromosome 14 a . Long vertical lines represent the STS-content map (first and fourth lines, inblack), genetic map (second line, in blue), and RH map (third line, in orange), in the same fashion as the diagram in Fig. 1. All three maps are drawn to equal length. The four columns of STS names map, intermarker distance is not known and loci re displayed as equally spaced. For genetic and RH maps, loci are indicated at positions spaced soporionaly along the map according to the remaps are connected by black lines. Loci belonging to the RH framework map (in which the relative odering is supported by lod >2.5) are shown in bold type and with thicker connecting lines. Loci purple. YACs are displayed as black rectangles, to he right of the STSs that were found to be contined in the clone. YAC names are shown to the says that were negative. Thin red lines in some YACs represent incomplete addresses that were sesolved by virtue of overlap with addresses from as horizontal lines separating groups of YACs.
Gaps that were likely to te undetected overlaps based on Alu-PCR hybridization or fingerprint information (see text) are shown in yellow; gaps for gray. Verical dotted gray bars indicate STSs with dentical data for given mapping method. YACs detected by only a single STS were omitted from this display. These YAC addresses can be ob-
fained from the Whitehead Insitute-MIT Center tained from the Whitehead Institute-MIT Center
or Genome Research World Wide Web server at URL http://mww-genome.wi.mit.edu/. Figure represents slighty eariier version of the map, from the

1952
its YACs, RH pattern, and chromosomal our World Wide Web site.

Accuracy

Although the long-range order of the map is reliable because of top-down anchoring, precise local orders must be regarded as only oosition of Local ordering depends on the breakpoints, that is, the ends of YAC or RH fragments. The accuracy of such inference is mited by the presence of false positives and alse negatives in our data, as well as by the presence of internal deletions in YACs. hereas the long-range order tends to be ver-determined in genomic maps, several compatible with the data. The "bess") order nay change with the alteration of a few data points.
We used three approaches to evaluate 1) Rearacy of the data and the map. 4. Chromosome 14 was divided into 16 regions and regional YAC panels were defined, consisting of all clones hit by one or more loci in the region. For each regional YAC pane, individual WNAs were pre-
pared from each clone. We tested 112 STSs gainst their corresponding panels to directly compare the results from high-through-
put screening of pools with the screening of individual clones. We found a false positive rate of 5.5% and a false negative rate of 19.5\% in our high-throughput screening data, both of which were consistent with our earlier indirect estimates. We constructusing these more complete data; the new map showed about six instances of local reorderings involving two to five loci 2) Comparison with an independently constructed map of chromosome 12. We map of this mapomosome (10) containing enough loci in common to provide a meaningful test. Of 171 loci in common, there were about a dozen instances of small local inversions involving two to three adjacent markers. A substantial difference in position was seen for only a single marker,
AFM263WH1. Our map shows tight STSAFM263 WH1. Our map shows tight STSmarkers at 91 cM on the Généthon map, whereas the other map places it near genetic markers at 105 cM . In fact, the position on our map agrees well with the reported genetmap location for this locus (at 93 cM), so we believe it to be correct. In any case, the 3) Internal consistency checking. We looked for instances in which pairs of loci occurred in an order on the final STS map that was strongly disfavored by the RH or

Chr.	Physical length $(\mathrm{Mb})^{*}$	Genetic map			RH map			
		$\begin{aligned} & \text { No. of } \\ & \text { loci } \end{aligned}$	Length (CM)	Genetic vs. physical (cM/Mb)	Framework map No. of loci	$\begin{aligned} & \text { Total } \\ & \text { RH } \\ & \text { map } \end{aligned}$	$\begin{gathered} \mathrm{RH} \\ \text { (ength } \\ (\text { (CR) } \end{gathered}$	RH vs. Physical (cR/Mb)
1	248	461	293	1.2	107	559	743	3.0
2	240	452	277	1.2	119	532	977	4.1
3	202	353	233	1.2	95	475	801	4.0
4	191	280	212	1.1	80	370	552	2.9
5	183	312	198	1.1	60	339	508	2.8
6	173	311	201	1.2	97	374	739	4.3
7	161	272	184	1.1	63	360	591	3.7
8	146	249	166	1.1	77	264	711	4.9
9	137	189	166	1.2	75	260	440	3.2
10	136	281	182	1.3	71	297	599	4.4
11	136	273	156	1.1	66	302	515	3.8
12	135	249	169	1.3	58	294	565	4.2
13	92	164	117	1.3	46	169	309	3.3
14	88	162	129	1.5	38	210	319	3.6
15	84	145	110	1.3	41	185	342	4.1
16	92	180	131	1.4	33	186	235	2.5
17	87	186	129	1.5	34	156	347	4.0
18	80	136	124	1.5	52	175	450	5.6
19	63	121	110	1.7	21	107	221	3.5
20	68	144	96	1.4	30	157	265	3.9
21	37	61	60	1.6	15	61	151	4.1
22	41	67	58	1.4	15	89	141	3.5
X	155	216	198	1.3	46	272	521	3.4
Y	26	-	-	,	-	-		-
Total	3,000	5,264	3.699	1.2	1,339	6,193	11,042	3.7

Physical lengths were calculated on the basis of a genome of 3000 Mb , with proporitional lengths of chromosomes as SCIENCE • VOL. 270 - 22 DECEMBER 1995

गणा!
whole), corresponding to 6.9 -fold coverag of the genome. Some 78% of the STS show.
The false positive rate was investigated by regrowing and testing individual YACs. Sev eral thousand addresses were tested, and 95% mainder constituting actual false positives, deletions during regrowth, or technical fail ures during retesting. The false positive rate is thus at most 5% of definite addresses, and the chance of any particular YAC occurring as a false positive in a given screen is about
1.5×10^{-5}. False positive addresses thus will tarely create false links among STSs known to lie in the same genomic region. The false negative rate cannot be computed directly, but the fact that an average of 6.4 hits was seen in 8.4 genome equivalents suggests a ate of about 20%. False negatives pose a les serious problem than false positives (which can lead to incorrect local ordering of STS. The false positive and negative rates were reinvestigated once the maps were con tructed, as discussed below.
Radiation hybrid mapping. STSs were screened against the GeneBridge 4 wholeof 91 human-on-hamster somatic hybrid cell lines. Each line retains about one-third of the human genome in fragments of about 10 Mb in size. The GeneBridge 4 pane Research Genetics, Huntsville, Alabama) was developed in the laboratory of P. Good ellow and distributed to the scientific comexpressed sequences. As part of a separate project, the panel has been characterized for more than 500 well-spaced genetic markers to confirm that substantial linkage can be obtained across the genome (31).
RH mapping was performed with essenfially the same protocol as for the YAC screening: PCR reactions were set up either
by the Genomatron (with each 1536-well microtiter card containing reactions for eight oci) or by the robotic workstation (by using 192-well microtiter plates), spotted on membranes, hybridized to a chemiluminescent probe, and detected by a CCD camera (32). Scoring results from RH panels requires fragments are present at various molarities mong the hybrid cell lines; thus, the ability to detect their presence may vary with the ensitivity of each PCR assay. As a result, STSs that are immediately adjacent in the genome could conceivably give somewhat imit the ability to determine fine-structure order. To minimize discrepancies due to assays near the limit of detection, we per-
formed all assays in duplicate. Hybrids were cored if the two duplicates gave concor-
dant positive or negative results but wer recorded as "discrepant" if the duplicates were discordant. The mean discrepancy rate was 1.2%; loci with a discrepancy rate ex A total of 6469 STSs were successfully screened on the GeneBridge 4 RH panel. The overall retention rate of the panel wa about 10% per
Genetic mapping. Genetic linkage infor mation was used from the recent Généthon linkage map of the human genome, contain ing 5264 polymorphic markers (24). Genetic linkage information was not incorporated
for the 1722 CHLC genetic markers studied. Chromosomal assignment. Before under aking map construction, we attempted to assign all loci to specific chromosomes by multiple, independent methods. Most STS were screened against the NIGMS 1 polyin unambiguous chromosomal assignment in about 75% of the cases (with the remainder having high background from the hos enome or poor signal). STSs defining genetic markers typically had chromosomal assignments on the basis of linkage analysis, STSs were also assigned to chromosomes if hey were tightly linked by RH screening or mosomally assigned loci (34).
Some 96% of the loci could be chromosomally assigned, with the majority of these being assigned by at least two independent methods. Conflicting assignments were noted in a small proportion of cases (2%)
these were subjected to intense scrutin and resolved in the majority of cases (35). Loc that could not be reliably assigned to hromosome were omitted from map con struction, to avoid problems associated with chimeric linkages.
Personnel. The project was carried ou during a period of 2.5 years by a team a
Whitehead having an average of 16 people nvolved in mapping, three people in volved in sequencing, and five people involved in data management and computaional analysis.

Map Construction

Top-down maps. The genetic and RH maps are top-down maps, which provide a global framework and offer many tests of internal consistency. The first step in constructing an RH linkage map was to make high-quality For this puse, mapross each chromosome independent chromosomal assign loci with with retention rates in the range of 10 to 60% (unusually high or low retention rate can produce spurious linkage). We wrote computer package, RHMAPPER, that im plements RH mapping for hybrids construct
ed from diploid sources and incorporate probabilistic error detection and error cor rection (36). Using this program, we gener set of markers such that each consecutiv pair was linked with a lod score >10 (lod score is the logarithm of the likelihood rati for linkage), and the order was better than all local alternatives by a lod score >2.5. provided complete connectivity across each chromosome arm with no gaps over 30 cen tiRays (cR) (cR is a measure of distance that is analogous to centimorgans but depends on
the radiation dose). There were, however large intervals across most centromeres (37), a phenomenon that has been previously seen for chromosome 11 (38). The total length of the map is $11,042 \mathrm{cR}$ (omitting the centro meric intervals), corresponding to a fairly uniform average of most chromosomes.
We then localized the remaining mark loci could not be uniquely ordered, Thes because of close proximity to a framework marker (loci with identical retention pat erns cannot be ordered with respect to on another) or because of potentially erroneous typing results (that cause apparen
"double-breaks" regardless of the interval in which the marker is placed). RHMAPPER allowed for the possibility of false positive and false negative typings and flagged probable errors (about two-thirds of which wer found to be real errors in cases that wer subsequently retested). The nonframework
markers were estimated by the computer ankers were estimated by the compute rate of just less than 1%. To reflect the uncertainty in order, each locus was as signed to the collection of intervals for which the lod score was within three of the optimal position. Loci were not included if they mapped more than 15 cR from a framemap or in a large centromeric gap), becaus such positions could result from a high pro portion of errors. In all, 6193 of 6469 loc ested were placed in the RH map.
Together, the two top-down maps conained a total of 1,572 loci. The reliability loci in common. For loci present in both the genetic map and the framework RH map, there were only four conflicts in order the loci involved were separated by 1 centimorgan (cM) in three cases and 3 cM in one case. The close agreement between the maps suggests that they correctly reflect th
global order of loci in the genome. lobal order of loci in the genome.
data, we assembled doubly linked contig and checked that they did not connect loci known to map in different chromosoma regions. We then noted information about
single linkages among loci, which could provide connections between nearby dou-
bly linked contigs in the course of integrat ing the top-down and bottom-up maps. O the 11,55 STSs successfully screene against the YAC library, $10,850(92 \%$
showed single linkage to other STSs on th same chromosome. The remaining 8% wer not included in the STS-content map Integrated map. We next sought to con struct an integrated map by combining the STS-content, RH, and genetic linkage in formation. Each chromosome was treated separately: Only loci that had been as
signed to the chromosome were used. Pos sible orders for the loci were compared b means of a linear scoring function, with the following three components: (i) con tinuity of STS content, reflecting whethe the loci were present in the same YACs (ii) continuity of RH linkage, reflecting RH hybrids; and (iii) consistency with top-down maps, incorporating a modest penalty for each violation of the genetic order or RH framework order. The specific parameters were chosen on the basis of the expected chance of concordance and dis cordance for nearby loci, so that the ove rithm-likelihood for the order (39). Th "optimal" order for the loci was found by combinatorial search through simulated annealing. Once the basic orders were es tablished, incomplete addresses were used to identify additional links between near local optimization, manual inspection and refinements where appropriate. Gap closure. Loci fell into contigs of consecutive STSs connected by YACs and separated by gaps with no apparent YAC connec tion. Many of these apparent gaps are likely to be underected overlaps; theoretical consider actually be closed (17). We attempted to clos these gaps by using non-STS-based informa tion from the recent CEPH physical mapping project (7), inferring YAC overlaps on the basis of fingerprint analysis and Alu-PCR hy bridization. Because the Alu-PCR hybridiza tion data have a high false positive rate, gaps seven hybridization links between adjacen contigs. Such closures should usually be cor rect, because only 3% of pairs of distant con tigs meet this criterion. The data indicate overlap for about 50% of adjacent contigs These gaps were declared tentatively closed

Description of the Map

Chr.	TotalSTSs	Random STS*	Genes		Genetic markers		Other	$\begin{gathered} \text { ESTs } \\ (\mathrm{obs} / \text { exp }) ~ \end{gathered}$
			ESTs	GenBank	Généthon	CHLC		
1	1,374	252	275	106	460	153	128	1.4
2	1,275	307	181	67	452	146	122	0.8
3	1,097	269	181	64	353	134	96	0.9
4	919	210	112	45	281	121	150	0.7
5	858	196	125	30	312	97	98	0.8
	858	181	114	39	312	108	104	0.8
7	781	168	141	39	272	83	78	1.1
8	739	183	104	35	248	104	65	0.7
	577	132	106	30	188	68	53	1.1
10	719	154	131	26	281	60	67	1.1
11	706	122	140	42	272	64	66	1.5
12	707	132	104	64	250	91	66	1.0
13	418	102	48	13	164	54	37	0.6
14	489	106	95	27	163	53	45	1.2
15	428	97	97	22	145	30	37	1.3
16	435	87	79	18	180	32	39	1.2
17	447	66	97	39	186	34	25	1.9
18	403	91	46	18	136	64	48	0.7
19	246	23	45	20	121	15	22	2.6
20	386	84	68	26	144	32	32	1.1
21	156	28	18	12	61	13	24	0.8
22	274	19	38	17	67	12	122	2.6
\times	587	145	63	28	216	28	107	0.6
Y \ddagger	207	0	0	0	0	0	207	
Total	15,086	3,154	2,408	827	5,264	1,595	1,838	1.0

ESTs divided by expected (ex.
Our previously

10,850 loci mapped on YACs fall into 653 contigs connecting an average of 17 STS with an average cos 29 STS 377 contig with an average of 29 STSs after gap clo sure. We examined the local density of each chromosome. The results were rela tively similar across the genome, with the notable exception of the chromosomes $1 \mathrm{p} 36,19,22$, and X . The map has less continuity in these regions, apparently because of systematic underrepresentation in
the CEPH Mega-YAC library (see YAC density in Table 4), a problem that has been previously noted (7). Chromosome X is underrepresented because the library was made from a male cell line. The autosoma deficits could reflect cloning biases of the yeast host, inasmuch as these are all high GC content (40)
mation, which is ill-suite a wealth of tation in traditional printed form. The com plete physical map-including the STS se quences, RH retention patterns, YAC addresses, and order of loci-would require more than 900 journal pages to display. A compressed view of chromosome 14 is
shown in Fig. 3, to illustrate the general nature of the map. The complete data for the map can be freely accessed through World Wide Web server at the Whitehead Institute (http://www-genome.wi.mit.edu/)

SCIENCE - VOL. 270 - 22 DECEMBER 1995
We sought to determine how much of the human genome is covered by the physical
map. For this purpose, we derived map. For this purpose, we derived a ne
collection of random STSs-by sequencing random clones from an M13 library, select ing PCR primers, and retaining those loci that gave consistent amplification of a single fragment in control experiments. The firs 100 STSs produced in this fashion were then screened against the NIGMS 1 hybrid panel, the goal was to obtain an unbiased assess ment of coverage, special efforts were made to obtain complete data for each locus.
RH data was obtained for all 100 STSs. (ln six cases, it was necessary to resort to acrylamide gel electrophoresis of radioactively la beled products to circumvent problems posed positioned on the RH map with a lod ≥ 8, on the correct chromosome as determined by the polychromosomal hybrid panel (4I). The RH map thus appears to cover the vast majority of the human genome.

YAC screening data was also obtained for all 100 STSs. Two STSs detected no YAC servations that about 2% of DNA sequences appear to be absent from the CEPH MegaYAC library (7). Four STSs detected YAC hits, but none with links to another STS in
the correct chromosomal region; these loci

COVER

An STS-Based Map of the Human Genome

Thomas J. Hudson,* Lincoln D. Stein, Sebastian S. Gerety, Junli Ma, Andrew B. Castle, James Silva, Donna K. Slonim, Rafael Baptista, Leonid Kruglyak, Shu-Hua Xu, Xintong Hu Angela M. E. Colbert, Carl Rosenberg, Mary Pat Reeve-Daly, Steve Rozen, Lester Hui, Xiaoyun Wu, Christina Vestergaard, Kimberly M. Wilson, Jane S. Bae, Shanak Maitra
Soula Ganiatsas, Cheryl A. Evans, Margaret M. DeAngelis, Kimberly A. Ingalls, Robert W. Nahf Lloyd T. Horton Jr., Michele Oskin Anderson, Alville J. Collymore, Wenjuan Ye,
Vardouhie Kouyoumjian, Irena S. Zemsteva, James Tam, Richard Devine, Dorothy F. Courtney Michelle Turner Renaud, Huy Nguyen, Tara J. O'Connor, Cécile Fizames, Sabine Fauré, Gabor Gyapay, Colette Dib, Jean Morissette, James B. Orlin, Bruce W. Birren, Nathan Goodman, Jean Weissenbach, Trevor L. Hawkins, Simon Foote, David C. Page, Eric S. Lander^

A physical map has been constructed of the human genome containing 15,086 sequence tagged sites (STSs), with an average spacing of 199 kilobases. The project involved assembly of a radiation hybrid map of the human genome containing 6193 loci and incorporated a genetic linkage map of the human genome containing 5264 loci. This information was combined with the results of STS-content screening of 10,850 loci agains a yeast artificial chromosome library to produce an integrated map, anchored by the percent and physical coverage of 94 percent of the human genome. The map also represents an early step in an international project to generate a transcript map of the human genome, with more than 3235 expressed sequences localized. The STSs in the map provide a scaffold for initiating large-scale sequencing of the human genome.

A physical map affording ready access to all chromosomal regions is an essential pre quence the entire human genome. In the shorter term, it is also a key tool for positional cloning of disease genes and for stud ies of genome organization. Physical maps
have evolved over the past decade from their initial conception as a set of overlapping clones (1) to the more recent idea of a well-spaced collection of unique landmarks called sequence-tagged sites (STSs), each defined by a polymerase chain reaction (PCR) assay (2-4). The U.S. Human $\mathrm{Ge}-$ nome Project, for example, has set a target
of a physical map consisting of 30,000 STSs spaced at intervals of about 100 kb (5). By focusing on STS landmarks, genom researchers sought to insure against the inevitable problems inherent in any given
and the average spacing on most of thes chromosomes is ahout 250 kb . Projects are
also underway for a few additional chromo somes (11). An international collaboration among the Centre d'Etude du Polymor phisme Humain (CEPH), Généthon, and Whitehead genome centers has also pro-
duced a clone-based physical map estimated to cover up to 75% of the genome in over lapping YAC clones (7). The map is clone based, rather than STS-based, because it was primarily assembled by detecting phys ical overlaps among the clones themselve (by means of cross-hybridization and fingerSTS landmarks used as anchors (786 loci fully screened and 1815 loci partially screened on YACs). The map is quite valuable for positional cloning projects, but it does not provide a scaffold for sequencing the human genome: The YAC clones them selves are not suitabte for sequencing, and
the STS coverage is too sparse to regenerate substantial physical coverage.
Here, we report the construction of an STS-based physical map of the human genome containing more than $15,000 \mathrm{loc}$ with an average spacing of 199 kb . The map covers the vast majority of the human ge-large-scale sequencing.

Basic Strategy
We used three mapping methods to gain information about the proximity of STS oci with he human genom.

1) STS-content mapping. YAC librarclones containing a given locus (12) Nearby loci tend to be present in many of the same clones, allowing proximity to be inferred. STS-content linkage can be de tected over distances of about 1 Mb , given used here. used here.
2) Radi
hybrid (RH) mapping. Hybria cell ines, each containing many large
chromosomal fragments produced by radia-
he relevant region on a high-resolution RH panel in parallel with screening them on the STSs from a $3-\mathrm{Mb}$ region on chromosome 6 on the G3 RH panel and were able to readily infer the fine-structure order of nearly all the oci with high confidence (45).
The use of STS-based maps as a scaffold tages: It can be initiated now with the existing tages: It can be initiated now with the existing
STS-based map; it automatically anchors sequences in the genome; it does not require chromosome-specific libraries, which involve specialized preparation procedures and often have cryptic biases; it allows improved libraries to be substituted as they become available; and it promotes decentralization by allowing
sequencing efforts to focus on regions of any iven size, in contrast to entire chromosomes. In summary, the physical map must still be refined but is already adequate to allow initiation of the international project to sequence the entire himan genome-a the biology of the next century.

REFERENCES AND NOTES

1. M. Olson et al., Proc. Natt. Acad. Sci. U.S.A. 83 . 2. M. Olson, L.. Hood, C. Cantor, D. Botstein, Science
 . 60 (Chumaki. 4. . Chumakove tal., Nature 359, 380 (1992).
2. F. Colinin and D. Galas, Science 262,43 (1933).
3. L. Seleri etal.G Genomics 14,536 (1992): M. Haldi e 7. I. Chumakovet al., Nature 377 , S175 (1995).
4. 5. Chumakovet al., Nature 377. S175 (1995).
1. H. Shizua et al. Pro. Natu. Acad. Sci. .S.A. 89,
8994 (1992); P. A. loannous et al., Nature Genet. 6 , 9. 8 . 4 (1994).
9em
 O. K. Krauter et al. ibid., D. 5321.

Quackenbush et al., Genomics 29, 512 (1995); Alitalo et al., ibid. 25,691 , (1995).

1. E.
(19090).
(reen and M. V. Olson, Science 250,94F. D. R. Cox, M. Burmeister, E. Roydon Price, S. Kim,
R.M. Myers, bid.,. D. 245; M. A. Watter etal, Nature

. D. Botstein etal., Am. J. Hum. Genet. 32, 314 (1980)
J.L Weber and P.E. May, bibid. 44,388 (1989).
 Hopkins Press, Battimore, MD, 1991)
2. R. Arratia et al. Genomics 11,800 (19991).
3. Loci were used only if they produced a single
4. Loci were essed only in they yroduced d s single clear
band visible by enthidium bromide staining, except tor Land vistibe ey etinilium bromide staining. except tor
genetic markers, which were used even. when they
produced more than one band produced morat than one band on an agarose gel (in
view of theiv value in providing top-downorientation).
und

 sequences, identifies dupicate sequences, and vectors

 is denatured) tor primers set at $58^{\circ} \mathrm{C}$ onal Center for Biotechnology. Istormation, the Na- Naved om the Wastington University-Merck west troen and the GenExpress proviect; R. Houlgatte etal., Ge-
\qquad

 .N. Nature, in press. . Bell etal., Hum. Menet. 4,59 (1995). Stanlord Universty, Stannlord, CA and R. Maers,
Harard University, Cambridge, MA. Harvara University, Cambridge, MA.
Sme incompletadressec
simple band-mat be resolved by
 Ohers could be resolved by virue of compa We later switched to overnight hybrididzazion with a Luence, followewd by chememilumineseanent detecetion
with a peroxidase catadyzed luminol reaction as

 repeat sequence such as CA or AGAT were probed
with an oligonoclectotide for the erepeat. Other STSs

 stitute) was used to locate and determine the in-
tensity of postive dots. A small proportion of STSs were csreened dy statandard agarose gel stained
with ethiuim bromide. definage adoment the overall number of STSs with no The probabiilit that a uni fialue sequencece pools. coverage is about in ar Somem tibrary with 8.4 .4 -orld thus be unique loci, but they were excluded to guard
against t.
5. G. Gapapye tal., Hum. Mol. Genet, in press YAC screening, except that STSS contentading tor the Are peats were screened with oligonucleotides contain-
ing unique internal sequence rather than (CA), be-
\qquadHudson et al., ibid. 13,622 (1992). In 300 cases,
ambiguon ambiguous or contilicing assignments were resolved
by using the NIMS Humantiodent Somatic Cell
Hybrid Panel $\#$ I2, described in Be L. Dubois and S . Naylor et al., bidid. 16, 135 (1993).
6. In 151 cases, STSs were chromosomally assigned by virtue of having at least three single links to other
markers on a chromosome and no links to any loci

 Genomics 14,604 (1992). Framework maps were
intiated and extended by raredy algoritm end
then subjected to tocal permutation tests, thereby
allowing for efficient exploration of a vast space of
possible orders.
 In In St cases. frameworks for the two chromosomal
ams were constucted separately and then oriented
and joine arms were constructed separately and then oriented
and joined by uning informaion rom the genetic
map. There is s significant paimwise reH linkege (at lod map. There is significant pairwise RHH link kage elat lod
>5.o) between framework markers on oposite $>5.0)$ between framework markers on oopposite
sideos of the centromere on inie of the final trame-
work

7. M. R. Jamese et tal, ,nature Geneet B. 8.70 (1994).
8. For each pair of consecutive STSs, a positive a_{+}was added forsecutive STSS, a posch Y postive score
negative scored
 containing both, and a negartive scorer e each thy forid

 both present, both absent, or ore present and one
absent in a randomily coses YAC, we set $a_{+}=$

 weren tot optimized. The tho weighting garameters for
conficicts with the genetic and framework RH maps 40. s . 0. S. Saccone
9. 913 (1992)
10. hree mark vals on the correct chromosome; they had high lod scores but were about 30 ch away thy foy had high lod

 Chimeric) single YAC lick toa a makker ont the same
chromosone but located 70 CR from the correct location.
three o the loci belonged to doubly linked contigs
markere anchored by virtue of a CHLC genetic II I ene eromoters on chromosome X have the same
average expression level as on autosomes, then the average expression level as on autosomes. then the
lact that only one X chromosome is active (due to
hemizyocsity in males and X inactivation in femaes)
 taif as abundant. Eecause half of the cDNAs came
 smal set examined will partly reflect abundance. This
 Concereeprestry reperesent s. s.
which we are not aware
11. We thank A. Kaufman O . Merport, and J. Spencer for
technical assistance: L . Bennet for computer system
 with media preparation and glass washings S. Sor
don, A. Chistopher, P. Mansield, and others at I don, A. C. Ciristopher, P. Mansield, and others at in
lelligent
nutomation Systems or assistance in de

 Special Emphasis Remesearch Career Award
HGooo17) from the National Center for Human Genome Research.

17 October 1995; accepped 8 November 1995
genetic maps. By measuring the frequenc distance between the loci in the STS ma we estimated that about 0.5% of the lopi may be significantly misplaced in the maps In summary, the local order in the ma surely be many errors requiring attention and correction. The effective resolution of the map is certainly lower than the average spacing between loci and may be about 1 Mb . T improve the local accuracy of the maps, in would be well advised to retest the STS against an RH panel with higher resolutio Isuch as the G3 panel developed by D. Cox and R. Myers, in which the fragments are about $1 / 10$ those in the GeneBridge 4 panel and against regional YAC panels, as described above. In this fashion, the map provides th Finally, we note that direct
Ir STS-based map with the recently report ed YAC-based map (7) is difficult, becaus of the very different natures of the maps. For example, it is not meaningful to compare the STS orders in the two maps: The YAC based map almost exclusively involved geinformation about locus order, but instead

Table 4. STS-content mapping of YACs.

Chr.	STScontent mappe loci	STS		Contigs				ST
		spacing	No. of					per
		$\begin{aligned} & (\mathrm{kb} / \mathrm{kb} \\ & \text { STS) } \end{aligned}$		gap	gap	size	$\begin{aligned} & \text { per } \\ & \text { SSII } \end{aligned}$	con- tigT

simply adopted the genetic order. It is also problematic to compare the specific YACs identified, because the YAC-based map involved only partial screening of most STSs belonging to paths through a region from those representing false positive hybridization. At the grossest level, it is possible to compare the coverage of the maps: The current map appears to cover about 95% of the genome (the precise amount depends on the type of mapping information used), whereas the other map was reported to cover about
75%. More detailed comparison would be worthwhile, as it would likely lead to improvements in both maps.

Distribution of Genes

The map also sheds light on the organization of the human genome. By comparing the chromosomal distribution of the ex pressed sequences to the chromosomal dis-
ribution of the random single-copy s quencen of the random single-co ma ner), one can draw inferences about th density of genes on different chromosome e compared the observed number on each suming that expressed sequences have the
same distribution as random STSs (Table 2) Chromosomes 1, 11, 17, 19, and 22 showe a statistically significant excess of expressed sequences ($P=0.001$ after correction for multiple testing). Chromosomes 17, 19, and
22, which showed the greatest excess, have been previously suggested to have a high density of genes on the basis of indirect evidence (40). Chromosome X was the only chromosome to show a statistically signifi cant deficit of expressed sequences-only about half as many as expected. This would
suggest that there is a low gene density on suggest that there is a low gene density on
this sex chromosome, although alternative explanations are possible (44). We also analyzed the raw data from two recent papers reporting chromosomal assignment of expressed sequence tags (ESTs) (21, 22) and found a similar deficit of X-linked loc

A Scaffold for Sequencing

the Genome

As genetic and physical maps approach their intended goals, attention is turning to the challenge of sequencing the entire human genome. A key issue is how to obtain
the required sequence-ready clones. STSthe required sequence-ready clones. STS
based maps provide a general solution by making it possible to generate extensive physical coverage of a region by screening a single high-quality human genomic library. One could, for example, proceed as follows: Screen the STSs in a region against a bacterial artificial chromosome (BAC) $\mathrm{li}-$
brary having $150-\mathrm{kb}$ inserts and 10 -fold coverage, use a simple fingerprinting scheme to detect overlaps among adjacent clones, and select a minimally overlapping set for sequencing. Given a physical map containing 30,000 ordered STSs, one would screen about 100 STSs and fingerprint about 520 could be readily accomplished in a few days with modest automation and would not contribute significantly to the cost of sequencing. The resulting BACs would be expected to cover about 95% of the region in ordered sequence contigs (17). The region could then be closed by straightforward walkingthat is, serially screening the BAC library
with STSs derived from sequences at the ends of each contig
The current map falls short in terms of marker density and local order, but neither shortcoming poses a serious obstacle for initiating large-scale sequencing now. With the
15,000 STSs currently available, one should 15,000 STSs currently available, one should cover about 75% by direct screening, 90% by
one round of walking, and more than 95% with two rounds (17). The desired map with with two rounds the next 2 years, through current projects underway at several centers including our own. Uncertainties about locus order can be overcome simply by scoring the STSs from
tion breakage, are screened by PCR to identify those hybrids that have retained a given locus (13). Nearby loci tend to show simila retention patterns, allowing proximity to b inferred. RH linkage can be detected for fragment size of the RH panel used here. 3) Genetic mapping. A locus that polymorphic in the human population can be screened by PCR to determine its inheritance patterns in families $(14,15)$. Nearby loci tend to show similar inheritance pat netic linkage can be reliably detected ove distances of about 30 Mb , given the recombination rate of human chromosomes (16)
These three methods were used to pro duce independent maps and then combined to produce an integrated map. Because RH mapping and genetic mapping
can detect linkage over large regions (0.3 to 1% of the genome), comprehensive RH and genetic maps spanning all chromo somes can be assembled with a few thou sand loci. The order of loci can be inferred from the extent of correlation in the re tention or inheritance patterns, although precise. These methods can thus provid "top-down" information about global position in the genome
In contrast, STS-content mapping pro-
vides "bottom-up" information. It reveals tight physical linkage among loci but is useful only over short distances and doe not provide extensive long-range connec-
tivity across chromosomes (17). Two STS are said to be singly linked if they share a least one YAC in common and doubl linked if they share at least two YACs (17). Single linkage is an inadequate criterion fo declaring adjacency of STSs, because of the high rate of YAC chimerism (about 50%)
and the possibility of laboratory error. Dou ble linkage, however, turns out to be reliable indication, because two genomic regions are unlikely to be juxtaposed in multiple independent YACs. Accordingly, a three-step procedure was used. (i) STS were assembled into doubly linked contigs
(groups of STSs connected by double linkage). (ii) The doubly linked contigs wer localized within the genome on the basis of RH and genetic map information about loc in the contig. (iii) Single linkage was then used to join contigs localized to the same mall genomic region. The overall strateg is illustrated in Fig. 1. We now describe the map analysis in greater detail.

Data Generation

Market development. Over the course of the project, we tested 20,795 distinct PCR as

1946
characterized to see whether they were like ly to detect a unique genomic locus (18) and whether they consistently yielded cor rect results on control samples under uni form
16,239
production conditions. A total of and were used for mapping. The STSs fell into one of the following four categories. 1) Random loci. We generated 302 working STSs by sequencing random human genomic clones and discarding thos that appeared to contain repetitive se-
quences (19). quences (19). 921 STSs from sequences. We developed DNA (cDNA) sequences in GenBank, tak en from the Unigene collection (20). An other 3349 STSs were developed from ex pressed sequence tags (ESTs). Of these, 13% from the laboratory of Jim Sikela, 9% from the Institute for Genomic Research and 7% from various other sources (22). W found that the success rate for STSs derived from the last 200 base pairs (bp) of 3' untranslated regions (UTRs) of cDNAs was similar to that for STSs derived from ran idea that introns rarely occur near the end of $3^{\prime}-$ UTRs (23). The results indicate that PCR assays can be readily derived for th vast majority of cDNAs.
3) Genetic markers. A total of 6986 loci were used, consisting of 5264 polymorphic loci developed at Généthon (primarily CA repeats) (24) and 1722 loci developed by
the Cooperative Human Linkage Center (CHLC) (primarily tri- and tetranucleotid repears) (15)
4) Other loci. A total of 1956 STSs were developed from various sources. These in cluded 1091 CA-repear loci developed a Genéthon that were not sufficiently poly well as 865 loci from chromosome 22-spe cific and chromosome Y-specific librarie and gifts from other laboratories $(3,25,26)$.

A total of 15,086 STSs appear in the inal maps. The number of markers of each type appearing in the final STS-content, RH, and genetic maps is shown in Table 1 were screened against 25,344 clones from plates 709 to 972 of the CEPH mega-YAC library (7), estimated to have an averag insert size of 1001 kb and to provide roughly 8.4 -fold coverage of the genome. To facilitate screening, we used a hierarchical pool ing system. The library was divided into 33
"blocks," each corresponding to eight mi"blocks," each corresponding to eight mi-
crotiter plates or roughly 0.25 genome equivalent. For each block, we prepared one "superpool" containing DNA from all the clones and 28 "subpools" by using a threedimensional pooling system based on the row, plate, and column address of each clone. Specifically, there were 8, 8, and 12
subpools consisting of YACs in the same plate, row, and column, respectively. Ther was thus a total of 957 super- and subpools. For blocks with a single positive YAC the row, column, and plate subpools should specify the precise address of the YAC ("definite addresses"). If a block contained two or more positive YACs or if one of the
three subpool dimensions did not yield a positive, partial information was obtaine ("incomplete addresses") (27). Such in complete addresses could consist of up to 12 possible addresses (for example, in the case that a column address was missing). Incomplete addresses were not used in initial map
assembly but were used at the final stages to detect connections between nearby loci Definite addresses composed 88% of the total hits.
Half of the markers were screened by two-level procedure, in which we first iden tified the positive superpools and then tested only the corresponding subpools. The
other half were screened by a one-level procedure, bypassing the superpools and directly screening all subpools. Although the latter procedure involves more reactions,

Fig. 1. Schematic diagram of the STS-based map. STSs are shown as circles on the first and fourth line -oci that are geneetically mapped or RH mapped are connected to the appropriate position on these STSs are shown below. The STSs fall into two singly linked contigs (stippled rectangles) and four doubly linked contigs (striped rectangles). Single linkage is not reliable for connecting arbitrary doubly linked conigs, butit is relable in he case
each locus is treated in an identical manner, which offers advantages for automation. In both procedures, we identified the positive pools by spotting the PCR reactions on membranes, hybridizing them to a chemilu-
minescent probe specific for each STS, capturing the resulting signal directly by a charge-coupled device (CCD) camera, and up-loading the results into our database (28); this approach proved to be much more efficient than the traditional detection pro cedure of gel electrophoresis.
Because the project involved processing more than 15 million reactions, laboratory
automation was essential. We collaborated with an engineering firm, Intelligent Auto-

Table 1. Overview of mapped STSs.

STSs on final map	No. of loci
STS-content map	10,850
RH map	6,193
Genetic map	5,264
Intersection of	STS.content RH Raps
STS-content and genetic maps	4,036
RH and genetic maps	3,106
All three maps	807
Total loci	15,086

mation Systems, Incorporated, (IAS) of Cambrige, Massachusetts, to design an build various special-purpose machines to accelcrate STS-based mapping The two-level screening procedure wa carried out with a large robotic liquid-pipetting workstation and two custom-designed
thermocyclers (Fig. 2). A laboratory infor mation management system used the super pool results to automatically program the robotic workstation to set up the appropriate subpool screens. The system has a maxima throughput of 6144 PCR reactions per run.
The one-level screening procedure was nade feasible by the development of a mas sively parallel factory-style automation system nicknamed the Genomatron (Fig. 2). The Genomatron was also developed in collaboration with IAS and consists of three stations. The first station assembles PCR reactions in custom-fabricated 1536 -well mi crotiter cards and seals the wells by weld-
ing a thin plastic film across the card. The second station thermocycles the reactions by transporting the cards over three chambers that force temperature-controlled water to low uniformly between the cards. The thir cron transfers the reactions from one mi
affixed to the bottom of a second microtite card by piercing the first card with a bed of 1536 hypodermic needles and sucking the reactions downward with a vacuum plenum These "filter cards" were then manually hy read by the CCD camera. The stations were computer controlled, and the microtite cards were assigned a bar code to facilitate sample tracking. Each station was designe to process 96 microtiter cards, providing throughput of nearly 150,000 reactions pe run. ${ }^{\text {STS-c }}$ STS-content mapping: Results. A total of YAC addresses yielded from 1 to 15 definite YAC addresses and were considered suc
cessfully screened (29); typical loci yielded approximately one additional incomplete address. STSs having more than 15 definite hits were excluded as likely to detect mul iple genomic loci (30)
The successfully screened loci produced an average of 6.4 YACs per STS, consider ing only definite addresses. A total of
18,879 YAC For these YAC were hit by at least one STS 3.8 STSs per YAC YACs hit by the STS ($\sim 10 \%$ greater than for the library is

Fig. 2. The first automated system developed for the project was (A) a robotic station to set up PCR reactions and (B) custom-buit "waffle iron"
thermocyclers accomodating 16192 -well microtiter plates; the system has a capacity of 6144 PCR reactions per run. The second automated system tions are set up in 1536 -well microtiter cards (consisting of 15 cm by 24 cm injection molded plastic cards with 1536 holes, to the bottom of which a plastic film is heat-sealed to create wells). The first station (C) assembles the PCR reactions. Each run can process up to 96 cards per run, providing a
capacity of nearly 150,000 wells. Cards are dispensed by a coining mechanism and travel along a conveyor belt to substations containing a bar code eader; a 1536-head pipettor (D) that dispenses template DNAs to be polymerase; a plate sealer that heat-seals a plastic film on the top of the
card to create separate reaction chambers; and a refrigerated storag station. The second station is a thermocycler (E) that uses three large waterbaths. Up to 96 sealed cards containing PCR reactions are placed in appropriate denaturing, annealing, and extension temperature. The third station is a parallel "spotting" device that transfers PCR reactions from card to a nylon filter affixed to the bottom of a second card. After the two cards are aligned, a bed of 1536 hypodermic needles (F) pierces a seale
card containing the reactions while a vacuum manifold draws the reaction mixtures down onto the membrane on the second. The filter cards ar manually hybridized and subiected to a chemiluminescent detection proto-

22 DECEMBER 1995
could thus not be localized on the STScontent map (42). These four STSs appear to he in regions of low YAC coverage,
inasmuch as they hit one, one, one, and two inasmuch as they hit one, one, one, and two YACs, respectively. The remaining 94
STSs could all be localized on the STS content map Iwith 91 being doubly linked and three being singly linked to existing contigs anchored in the correct chromosomal region in the top-down map (43)]. The 100 loci detected an average of 6.5 YACs.

The map covers the vast majority of the human genome. We estimate that 99% of
andom STSs can be readily positioned on he RH map, and 94% can be positioned on the STS-content map relative to YAC clones.
The physical map thus fills a major need in human genetics, providing a general ocus in the human genome by screening readily available RH or YAC pools and comaring the resulting pattern with the map. To make this information easily accessible to he scientific community, we have written a map server." The server reports the likely

Fig. 3 (previous pages). Integrated map of human chromosome 14q. Long vertical lines represent
the STS-content map first and fouth lines in the STS-content map (first and fourth lines, in
black), genetic map (second line, in blue), and RH map (third line, in orange), in the same fashion as the diagram in Fig. 1. All three maps are drawn to equal length. The four columns of STS names
correspond to the four ines. For the STS-content map, intermarker distance is not known and loci are displayed as equally spaced. For genetic and RH maps, loci are indicated at positions spaced proportionaly along the map according to the remaps are connected by black lines. Loci belonging to the RH framework map (in which the relative ordering is supported by lod >2.5) are shown in
bold type and with thicker connecting lines. Loci derived from expressed sequences are shown in purple. YACs are displayed as black rectangles, to the right of the STSs that were found to be conop right. Unfilled portions of YACS represent astop rignt. Unilied portions of YACs represent as-
says that were negative. Thin red lines in some YACs represent incomplete addresses that were esolved by virtue of overlap with addresses from as horizontal lines separating groups of YACs. Gaps that were likely to be undetected overlaps based on Alu-PCR hybridization or fingerprint information (see text) are shown in yellow; gaps for gray. Vertical dotted gray bars indicate STSs with dentical data for given mapping method. YACs detected by only a single STS were omitted from his display. These YAC addresses can be obfor Genome Research World Wide Web sevver at URL http:///ww-genome.wi.mit.edu/. Figure repesents slightly earier version of the map, from the
its YACs, RH pattern, and chromosomal assignment. The server is freely available via our World Wide Web site.

Accuracy

Although the long-range order of the map is reliable because of top-down anchoring, precise local orders must be regarded as only approximate. Local ordering depends on the position of loci with respect to individual reakpoints, that is, the ends of YAC or RH fragments. The accuracy of such inference is
limited by the presence of false positives and alse negatives in our data, as well as by the presence of internal deletions in YACs. Whereas the long-range order tends to be over-determined in genomic maps, several arernative local orders may be reasonably omparible with the data. The best order oints. ints.
accused three approaches to evaluate accuracy of the data and the map. 1) Rescreening of loci on chromosome 14. Chromosome 14 was divided into 16 regions and regional YAC panels were demed, consisting of all clones hit by one or YAC panel, individual DNAs were prepared from each clone. We tested 112 STSs gainst their corresponding panels to directly compare the results from high-through-
ut screening of pools with the screening of Individual clones. We found a false positive rate of 5.5% and a false negative rate of 9.5% in our high-throughput screening data, both of which were consistent with ed a new STS map of the chromosome using these more complete data; the new map showed about six instances of local reorderings involving two to five loci. 2) Comparison with an independently constructed map of chromosome 12. We map of this chromosome (10) containing nough loci in common to provide a meanngful test. Of 171 loci in common, there were about a dozen instances of small local nversions involving two to three adjacent narkers. A substantial difference in position was seen for only a single marker,
AFM263WH1. Our map shows tight STSontent linkge of this tocus to generic markers at 91 cM on the Généthon map, whereas the other map places it near genetic markers at 105 cM . In fact, the position on our map agrees well with the reported genetic map location for this locus (at 93 cm), so we believe it to be correct. In any case, the 3) Internal consistency checking. Wo looked for instances in which pairs of loci occurred in an order on the final STS map that was strongly disfavored by the RH or

Table 3. Genetic and RH maps. Dashes indicate not applicable.

Chr.	Physical length $(\mathrm{Mb})^{*}$	Genetic map			RH map			
		$\begin{aligned} & \text { No. of } \\ & \text { loci } \end{aligned}$	$\begin{aligned} & \text { Length } \\ & (\mathrm{CM}) \end{aligned}$	Genetic vs. physical (cM/Mb)	Framework map No. of loc	Total RH map	$\begin{gathered} \mathrm{RH} \\ \text { length } \\ (\mathrm{CR})^{+} \end{gathered}$	RH vs. Physical (cR/Mb)
1	248	461	293	1.2	107	559	743	3.0
2	240	452	277	1.2	119	532	977	4.1
3	202	353	233	1.2	95	475	801	4.0
4	191	280	212	1.1	80	370	552	2.9
5	183	312	198	1.1	60	339	508	2.8
6	173	311	201	1.2	97	374	739	4.3
7	161	272	184	1.1	63	360	591	3.7
8	146	249	166	1.1	77	264	711	4.9
	137	189	166	1.2	75	260	440	3.2
10	136	281	182	1.3	71	297	599	4.4
11	136	273	156	1.1	66	302	515	3.8
12	135	249	169	1.3	58	294	565	4.2
13	92	164	117	1.3	46	169	309	3.3
14	88	162	129	1.5	38	210	319	3.6
15	84	145	110	1.3	41	185	342	4.1
16	92	180	131	1.4	33	186	235	2.5
17	87	186	129	1.5	34	156	347	4.0
18	80	136	124	1.5	52	175	450	5.6
19	63	121	110	1.7	21	107	221	3.5
20	68	144	96	1.4	30	157	265	3.9
21	37	61	60	1.6	15	61	151	4.1
22	41	67	58	1.4	15	89	141	3.5
\times	155	216	198	1.3	46	272	521	3.4
Y	26	-	-	-	-	-	-	-
Total	3,000	5,264	3,699	1.2	1,339	6,193	11,042	3.7

SCIENCE - VOL. 270 - 22 DECEMBER 1995

घम!!

of the , corresponding to 6.9 -fold coverag showed double-linkage to at least one othe STS.
The false positive rate was investigated b regrowing and testing individual YACs. Sevcould be directly confirmed, with the remainder constituting actual false positives, deletions during regrowth, or technical fail ures during retesting. The false positive rate is thus at most 5% of definite addresses, and the chance of any particular YAC occurring as a false positive in a given screen is about
1.5×10^{-5}. False positive addreses thus will rarely create false links among STSs known to lie in the same genomic region. The false negative rate cannot be computed directly, but the fact that an average of 6.4 hits was seen in 8.4 genome equivalents suggests a ate of about 20%. False negatives pose a les join incorrect genomic regions) but the can lead to incorrect local ordering of STSs. The false positive and negative rates were reinvestigated once the maps were constructed, as discussed below.
Radiation hybrid mapping. STSs were screened against the GeneBridge 4 wholeof 91 human-on-hamster somatic hybrid cell lines. Each line retains about one-third of the human genome in fragments of about 10 Mb in size. The GeneBridge 4 pane Research Genetics, Huntsville, Alabama) was developed in the laboratory of P. Goodmunity as a resource for the mapping of expressed sequences. As part of a separate project, the panel has been characterized for more than 500 well-spaced genetic marker to confirm that substantial linkage can be obtained across the genome (31).
RH mapping was performed with essenscreening: PCR reactions were set up eithe by the Genomatron (with each 1536 -well microtiter card containing reactions for eigh loci) or by the robotic workstation (by using 192-well microtiter plates), spotted on membranes, hybridized to a chemiluminescent probe, and detected by a CCD camera (32).
Scoring results from RH panels requires onsiderable caution. Human chromosomal ragments are present at various molarities among the hybrid cell lines; thus, the ability to detect their presence may vary with the ensitivity of each PCR assay. As a result, STSs that are immediately adjacent in the genome could conceivably give somewhat
different retention patterns, which would imit the ability to determine fine-structure order. To minimize discrepancies due to assays near the limit of detection, we per-
formed all assays in duplicate. Hybrids were cormed if the two duplicates gave concor-
dant positive or negative results but wer recorded as "discrepant" if the duplicates were discordant. The mean discrepancy rate was 1.2%; loci with a discrepancy rate ex A toeding 4.5\% were eliminated as unreliable. A total of 6469 STSs were successfull The overall retention rate of the panel wa 32% (or about 18% per haploid genom from the diploid donor cell).
Genetic mapping. Genetic linkage infor mation was used from the recent Généthon linkage map of the human genome, contain ing 5264 polymorphic markers (24). Genet for the 1722 CHLC genetic markers studied. Chromosomal assignment. Before under taking map construction, we attempted to assign all loci to specific chromosomes by multiple, independent methods. Most STS were screened against the NIGMS 1 polyin unambiguous chromosomal assignment in about 75% of the cases (with the remain der having high background from the hos genome or poor signal). STSs defining ge netic markers typically had chromosoma assignments on the basis of linkage analysis. STSs were also assigned to chromosomes if
they were tightly linked by RH screening or they were tightly linked by RH screening or mosomally assigned loci (34).
Some 96% of the loci could be chromo somally assigned, with the majority of these being assigned by at least two independen methods. Conflicting assignments were noted in a small proportion of cases (2%)
these were subjected to intense scrutiny and resolved in the majority of cases (35). Loc that could not be reliably assigned to a chromosome were omitted from map con struction, to avoid problems associated with himeric linkages.
Personnel. The project was carried out during a period of 2.5 years by a team at
Whitehead having an average of 16 people nvolved in mapping, three people involved in sequencing, and five people in volved in data management and computational analysis.

Map Construction

Top-down maps. The genetic and RH maps are top-down maps, which provide a global framework and offer many tests of interna RH linkage map was to make high-quality "ramework" maps across each chromosome independent chromosomal asigy loci with with retention rates in the range of 10 to 60% (unusually high or low retention rates can produce spurious linkage). We wrote a computer package, RHMAPPER, that im plements RH mapping for hybrids construct-
ed from diploid sources and incorporates probabilistic error detection and error cor rection (36). Using this program, we gener
ated a framework map-that is, an ordere ated a framework map-that is, an ordered pair was linked with that each consecutive score is the logarithm of the likelihood ratio for linkage), and the order was betrer than all local alternatives by a lod score >2.5. The framework map included 1339 loci and provided complete connectivity across each chromosome arm with no gaps over 30 cen iRays (CR) (cR is a measure of distance that is analogous to centimorgans but depends on
the radiation dose). There were, however large intervals across most centromeres (37), a phenomenon that has been previously seen for chromosome 11 (38). The total length of the map is $11,042 \mathrm{cR}$ (omitting the centro meric intervals), corresponding to a fairl uniform average of most chromosomes.
ers relative to the framework mang mark ers relative to the framework map. Thes
loci could not be uniquely ordered, eithe because of close proximity to a framework marker (loci with identical retention paterns cannot be ordered with respect to one another) or because of potentially errone-
ous typing results (that cause apparent "double-breaks" regardless of the interval in which the marker is placed). RHMAPPER allowed for the possibility of false positive and false negative typings and flagged prob able errors (about two-thirds of which were found to be real errors in cases that wer markers were estimated by the computer nalysis to have an average residual error rate of just less than 1%. To reflect the uncertainty in order, each locus was as signed to the collection of intervals fo which the lod score was within three of the optimal position. Loci were not included work marker (that is, past the end of the map or in a large centromeric gap), because such positions could result from a high pro portion of errors. In all, 6193 of 6469 loci tested were placed in the RH map.
Together, the two top-down maps contained a total of 10,572 loci. The reliability
of the maps can be assessed by studying the loci in common. For loci present in both the genetic map and the framework RH map, there were only four conflicts in order the loci involved were separated by 1 cen imorgan (CM) in three cases and 3 cM in one case. The close agreement between the maps suggests that they correctly re
Botom-up map. Using the STS-co data, we assembled doubly linked contig and checked that they did not connect loci known to map in different chromosoma regions. We then noted information about
single linkages among loci, which could provide connections between nearby dou-
by linked contigs in the course of integrat ing the top-down and botrom-up maps. O the 11,750 STSs successfully screened
against the YAC library, $10,850(92 \%)$ against the YAC library,
showed single linkage to other STSs on the same chromosome. The remaining 8% were not included in the STS-content map. Integrated map. We next sought to construct an integrated map by combining the STS-content, RH, and genetic linkage inseparately: Only loci that had been as signed to the chromosome were used. Pos sible orders for the loci were compared by means of a linear scoring function, with the following three components: (i) continuity of STS content, reflecting whethe the loci were present in the same YACs;
(ii) continuity of RH linkage, reflecting whether the loci were present in the same RH hybrids; and (iii) consistency with top-down maps, incorporating a modest penalty for each violation of the genetic order or RH framework order. The specific parameters were chosen on the basis of th expected chance of concordance and disall scoring function approximated a loga-rithm-likelihood for the order (39). The "optimal" order for the loci was found by combinatorial search through simulated annealing. Once the basic orders were esto identify adition links bes were used by loci. The orders were then subjected to local optimization, manual inspection, and refinements where appropriate.
Gap closure. Loci fell into contigs of consecutive STSs connected by YACs and separated by gaps with no apparent YAC connec tion. Many of these apparent gaps are likely to ations would suggest that most gaps should actually be closed (17). We attempted to close these gaps by using non-STS-based informa tion from the recent CEPH physical mapping project (7), inferring YAC overlaps on the basis of fingerprint analysis and Alu-PCR hy bridization. Because the Alu-PCR hybridizawere closed only when there were at least seven hybridization links between adjacent contigs. Such closures should usually be correct, because only 3% of pairs of distant contigs meet this criterion. The data indicate overlap for about 50% of adjacent contigs, pending direct evaluation.

Description of the Map

The final map contains 15,086 loci, distributed across the 22 autosomes and two se

Chr.	Total STSs	Random STS*	Genes		Genetic markers		$\begin{aligned} & \text { Other } \\ & \text { loci } \end{aligned}$	$\underset{(\text { obs/exp }) \dagger}{\text { ESTs }}$
			ESTs	GenBank	Généthon	CHLC		
1	1,374	252	275	106	460	153	128	1.4
2	1,275	307	181	67	452	146	122	0.8
3	1,097	269	181	64	353	134	96	0.9
4	919	210	112	45	281	121	150	0.7
5	858	196	125	30	312	97	98	0.8
6	858	181	114	39	312	108	104	0.8
7	781	168	141	39	272	83	78	1.1
8	739	183	104	35	248	104	65	0.7
9	577	132	106	30	188	68	53	1.1
10	719	154	131	26	281	60	67	1.1
11	706	122	140	42	272	64	66	1.5
12	707	132	104	64	250	91	66	1.0
13	418	102	48	13	164	54	37	0.6
14	489	106	95	27	163	53	45	1.2
15	428	97	97	22	145	30	37	1.3
16	435	87	79	18	180	32	39	1.2
17	447	66	97	39	186	34	25	1.9
18	403	91	46	18	136	64	48	0.7
19	246	23	45	20	121	15	22	2.6
20	386	84	68	26	144	32	32	1.1
21	156	28	18	12	61	13	24	0.8
22	274	19	38	17	67	12	122	2.6
\times	587	145	63	28	216	28	107	0.6
Y	207	0	0	0		0	207	
Total	15,086	3,154	2,408	827	5,264	1,595	1,838	1.0

our previously reported work (3).

10,850 loci mapped on YACs fall into 653 contigs connecting an average of 17 STS each before gap closure and 377 contig with We. We examined the YAC hits and contigs across the length of each chromosome. The results were rela tively similar across the genome, with the notable exception of the chromosome $1 \mathrm{p} 36,19,22$, and X . The map has les continuity in these regions, apparently be the CEPH Mega YAC library (see YAC density in Table 4), a problem that has been previously noted (7). Chromosome X is underrepresented because the library was made from a male cell line. The autosomal deficits could reflect cloning biases of th yeast host, inasmuch as these are all region of high GC content (40).
ormation, which is ill-ains a wealth of tation in traditional printed form. The complete physical map-including the STS sequences, RH retention patterns, YAC addresses, and order of loci-would require more than 900 journal pages to display. A
compressed view of chromosome 14 is shown in Fig. 3, to illustrate the general nature of the map. The complete data for the map can be freely accessed through a World Wide Web server at the Whitehead Institute (http:///www-genome.wi.mit.edu/)
which includes various tools for analysis. SCIENCE • VOL. 270 - 22 DECEMBER 1995

Coverage

We sought to determine how much of th human genome is covered by the physical map. For this purpose, we derived a new random clones from an M13 library, selecting PCR primers, and retaining those loci that gave consistent amplification of a single fragment in control experiments. The firs 100 STSs produced in this fashion were then screened against the NIGMS 1 hybrid panel,
the RH panel, and the YAC library Because the goal was to obtain an unbiased assess ment of coverage, special efforts were made to obtain complete data for each locus. RH data was obtained for all 100 STSs. (In six cases, it was necessary to resort to acryl amide gel electrophoresis of radioactively la beled products to circumvent problems posed
by rodent background.) All 100 loci could be by rodent background.) All with oci could be
positioned on the RH map with a lod ≥ 8, on the correct chromosome as determined by th polychromosomal hybrid panel (41). The RH map thus appears to cover the vast majority of the human genome.
YAC screening data was also obtained for
100 STSs. Two STSs deter all in the library, consistent with previous ob servations that about 2% of DNA sequences appear to be absent from the CEPH Mega YAC library (7). Four STSs detected YAC hits, but none with links to another STS in

A comprehensive large-insert yeast artificial chromosome library for physical mapping of the mouse genome

Maryann L. Haldi ${ }^{1}$, Corinne Strickland ${ }^{1}$, Prudence Lim ${ }^{1}$, Victor VanBerkel ${ }^{1}$, Xiao-Ning Chen ${ }^{2}$, David Noya ${ }^{2}$, Julie R. Korenberg ${ }^{2}$, Zeeshan Husain ${ }^{1}$, Joyce Miller ${ }^{1}$, Eric S. Lander ${ }^{1,3}$

${ }^{1}$ Whitehead/MIT Center for Genome Research, Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142 USA ${ }^{2}$ Ahmanson Department of Pediatrics, Genetics, Cedars-Sinai Research Institute, UCLA, Los Angeles, CA 90048 USA
${ }^{3}$ Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139 USA

Running head: Construction of YAC library of mouse genome

Correspondence to: Eric S. Lander
Phone: (617) 252-1906
FAX: (617) 252-1933

A yeast artificial chromosome (YAC) library with large insert size and deep coverage is an essential resource for the construction of physical maps of mammalian genomes. Two large-insert YAC libraries of the mouse genome have previously been reported. Larin et al. (1991) constructed a 3 -fold coverage library with average insert size of 700 kb , using the mouse strain C3H. Kusumi et al. (1993) constructed a library with the larger-insert portion providing 3.6 -fold with an average insert size of 680 kb , using the strain $\mathrm{C} 57 \mathrm{Bl} / 6 \mathrm{~J}$. These libraries are excellent resources for positional cloning, but neither is ideal for construction of a physical map of the entire mouse genome.

Here, we report the construction and availability of a mouse YAC library providing roughly 10 -fold coverage with an average insert size of 820 kb . The library will be the basis for our current effort to construct a complete physical map, using the mouse genetic map as a scaffold.

The library was constructed with a different YAC vector than the traditionally used vector PYAC4. The vector (Spencer et al. 1993) consists of two arms carried on different plasmids. The pRML1 vector arm carries a TRP1 selectable marker with a complete promoter element, and the pRML2 arm carries the URA3 marker. Among its advantages, the vector allows simultaneous selection for both Trp ${ }^{+}$and Ura ${ }^{+}$transformants. By contrast, use of pYAC4 vector requires single selection for Ura ${ }^{+}$followed by screening for Trp^{+}, as its TRP1 promoter is weak. The vector also contains T3 and T7 promoters flanking the cloning site to facilitate production of probes from the insert DNA. Additionally, pRML1 carries a yeast centromere with an adjacent GAL1 promoter and a heterologous thymidine kinase gene. Growth on galactose to inactivate the centromere, plus selection for thymidine kinase expression, increases the copy number of the YAC.

The YAC library was prepared using genomic DNA from C57BL/6J female mice according to Foote (1994) with several modifications. DNA was isolated from kidney nuclei as described by Strauss et al. (1992) and partially digested by EcoRI-EcoRI methylase competition. The products of this digestion were size-selected by pulsed field gel electrophoresis to be larger than 800 kb , by using conditions under which DNA of this size migrates in the zone of limiting mobility. This DNA was ligated to pRML1 and pRML2 vector arms prepared by digestion with NotI and EcoRI. The ligation product was again size-selected to be greater than 800 kb . The 1% Seaplaque GTG
(FMC) agarose sizing gels were run in 0.5 X TBE buffer on a Bio Rad CHEF apparatus at $14^{\circ} \mathrm{C}, 55$-sec pulse time and $6 \mathrm{~V} / \mathrm{cm}$ for 24 h (partial digestion product) or 30 h (ligation product). The size-selected ligation mixture was transformed into the yeast host strain J57D (ura3-52, trp1 ade2-101 can1-100 leu2-3, 112 his3-6, a gift from Vladimir Larionov). YACs possessing both vector arms were doubly selected as Trp ${ }^{+} \mathrm{Ura}^{+}$transformants. Agarase treatment of the ligation product prior to yeast transformation was at 400 $42^{\circ} \mathrm{C}$ for 45 min and no calf thymus or other carrier DNA was included in the transformation. We have observed that complete digestion by agarase is critical, and the inclusion of carrier DNA reduces transformation efficiency (data not shown).

The quality of the library was monitored during construction in two ways. Initially, the presence of mouse DNA in the transformants was assessed by a rapid PCR assay to detect the B2-repeat element as described in Kusumi et al. (1993). Some clones containing mouse DNA will fail to amplify in this assay, as intact yeast cells rather than purified DNA were used as the test material. Four percent of the transformants from each ligation were screened and if greater than 90% of the clones yielded a PCR product the ligation was judged to be successful. The insert sizes of the YACs were determined by pulsed field gel electrophoresis of yeast DNA prepared in agarose blocks (Gemmill et al. 1994) in 1% Fast Lane Agarose (FMC) gels. The PFGE conditions used were: $14^{\circ} \mathrm{C}$, 12 to 160 sec pulse time and $6 \mathrm{~V} / \mathrm{cm}$ for 24 hr . The DNA was transfered to a nylon membrane and probed with pUC19 DNA to detect vector sequences. Approximately one percent of the YACs from each ligation were examined. About 20% appeared to be unstable as evidenced by a ladder of smaller bands. Apparent double transformants (only two bands of similar intensity) were present in less than 5% of the clones.

Figure 1 shows the distribution of YAC sizes in the 550 clones tested. The mean size is 820 kb and the median size is 780 kb . Based on the estimated length of the mouse genome as 3 billion bp, the library provides 10 -fold coverage. This would correspond to 99.995% coverage assuming no cloning bias. Unfortunately, systematic cloning biases are known to occur in YAC libraries and so the actual coverage will be lower. Nonetheless, we would expect, based on experience with human YAC libraries (Hudson et al., 1995), that the library covers perhaps 98% of the mouse genome.

We tested the library for representation by screening a randomly chosen marker from each chromosome against a subset of the library. Total yeast DNA was prepared according to Gemmill et al. (1994), from 30 pools of YACs, each pool containing 960 clones. In principle, these pools should represent 7.8 fold coverage of the genome. Each pool was screened by a polymerase chain reaction (PCR) assay for a unique STS marker (Green and Olson, 1990). As shown in Table 1, all markers were detected in at least one pool, with an average predicted coverage of 7.2 fold. This result is not statistically different than the expectation of 7.8 -fold coverage.

We estimated the chimerism rate of the library, by testing 42 of the YACs by fluorescence in situ hybridization (FISH). Total DNA was prepared from the yeast clones according to Rose et al. (1990). FISH was performed essentially as described by Korenberg and Chen (1995). Mouse chromosomes were prepared from female mouse spleen cells using a modification of the method described by Boyle et al. (1990) and Zhu et al. (1995). Forty metaphase cells were evaluated for each test. A test was scored as positive if there were signals on both chromatids of at least one chromosome in at least 50% of the cells examined. Those scored as chimeric also showed hybridization signals on a second pair of chromosomes in at least 50% of positive cells.

There are two unavoidable sources of error in the estimation of the rate of chimerism by FISH. A small proportion of YACs will cross-hybridize to truly homologous sequences elsewhere in the genome and will thereby artificially elevate the estimation of chimerism. Conversely, chimerism involving a small segment of DNA from a second region may be missed due to the weakness of a signal as well as due to the size limit of detection of the YAC FISH assay. This sensitivity has been estimated as approximately 10% of the total YAC size (Korenberg et al., 1996).

The results of the FISH analysis are shown in Table 2. Positive results by the above criteria were obtained in 88% of the tests ($37 / 42$). Of these, 35% ($12 / 37$) indicated that the YAC was chimeric. Since some small segments will not be detected by FISH, this estimate of chimerism is minimal. One YAC hybridized to three pairs of chromosomes. This clone appeared to contain a single unstable molecule on pulsed field gel analysis (data not shown). Although the instability of this insert may reflect a region containing localized repetitive sequences present at three different genomic sites, the insert may also contain more than one genomic fragment.

The entire library, containing approximately 38,400 clones, has been distributed to: Research Genetics, Inc. (Huntsville AL), Genome Systems, Inc. (St. Louis MO), Philip Avner (Institute Pasteur, Paris) and Steven Brown (MRC Mouse Genome Center, Harwell, England), to make it widely accessible to the mammalian genetics community.

Acknowledgments. We thank Ndubuisi Azubuine, Gail Farino, Steven Yoo and Jean Whang for excellent technical assistance. This work was supported by a grant from the National Center for Human Genome Research (NCHGR) to E. S. L., and grants to J. R. K. from the Department of Energy and the NCHGR. J. R. K. holds the Geri and Richard Brawerman chair in Molecular Genetics.

References

Boyle, A., Ballard, S., Ward, D. C. (1990). Differential distribution of long and short interspersed element sequences in the mouse genome: Chromosome karyotyping by fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA 87: 7757-7761.
Foote, S. and Denny, C. (1994). Construction of YAC libraries with large inserts. In Current Protocols in Human Genetics, S. Bonitz, ed. (New York: John Wiley \& Sons), pp. 5.2.1-5.2.20.
Gemmill, R., Bolin, R., Albertsen, H. (1994). Pulsed-Field Gel Electrophoresis for long-range Restriction mapping. In Current Protocols in Human Genetics, S. Bonitz, ed. (New York: John Wiley \& Sons), pp. 5.1.1-5.1.24.
Green, E. and Olson, M. (1990). Systematic screening of yeast artificial chromosome libraries by use of the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 1213-1217.
Hudson, T., Stein, L., Gerety, S., Ma, J., Castle, A., Silva, J., Slonim, D., Baptista, R., Kruglyak, L., Xu, S., Hu, X., Colbert, A., Rosenberg, C., ReeveDaly, M., Rozen, S., Hui, L., Wu, X., Vestergaard, C., Wilson, K., Bae, J., Maitra, S., Ganiatsas, S., Evans, C., DeAngelis, M., Ingalls, K., Nahf, R., Horton, L., Anderson, M., Collymore, A., Ye, W., Kouyoumjian, V., Zemsteva, I., Tam, J., Devine, R., Courtney, D., Renaud, M., Nguyen, H., O'Connor, T., Fizames, C., Faure, S., Gyapay, G., Dib, C., Morissette, J., Orlin, J., Birren, B., Goodman, N., Weissenbach, J., Hawkins, T., Foote, S., Page, D., Lander, E. (1995). An STS-based map of the human genome. Science 270, 1945-1954.
Korenberg, J.R., Chen, X-N. (1995). Human cDNA mapping using a high resolution R -banding technique and fluorescence in situ hybridization. Cytogenetic and Cell Genetics 69, 196-200.
Korenberg, J.R., Chen, X.-N., Mitchell, S., Fannin, S., Gerwehr, S., Cohen, D., Chumakov, I. (1996). A high-fidelity physical map of human chromosome 21q in yeast artificial chromosomes. Genome Research 5, 427-443.
Kusumi, K., Smith, J., Segre, J., Koos, D., Lander, E. (1993) Construction of a large-insert yeast artificial chromosome library of the mouse genome. Mammalian Genome 4, 391-392.

Larin, Z., Monaco, A., Lehrach, H. (1991). Yeast artificial chromosome libraries containing large inserts from mouse and human DNA. Proc. Natl. Acad. Sci. USA 88, 4123-4127.

Rose, M., Winston, F., Hieter, P. (1990). Methods in Yeast Genetics. A Laboratory Course Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press), pp. 128-129.
Spencer, F., Ketner, G., Connelly, C., Hieter, P. (1993). Targeted recombination-based cloning and manipulation of large DNA segments in yeast. Methods: A companion to Methods in Enzymology 5, 161-175.
Strauss, W., Jaenisch, E., Jaenisch, R. (1992). A strategy for rapid production and screening of yeast artificial chromosome libraries. Mammalian Genome 150-157.

Zhu, Y., Qi, C., Korenberg, J.R., Chen X-N., Noya, D., Rao, M., Reddy, J. (1995).
Structural organization of mouse peroxisome proliferator-activated receptor g (mPPARg) gene: Alternative promoter use and different splicing yield two mPPARg isoforms. Proc. Natl. Acad. Sci. USA 92: 7921-7925.

Figure Legend

Fig. 1. Histogram showing the sizes of 550 randomly selected YAC clones.

Table 1. Detection of chromosomal markers in YAC pools for subset of library predicted to provide 7.8 -fold coverage of genome.

Marker Chromosome Number of positive pools
D1Mit464 $1 \quad 7$

D2Mit104 24
D3Mit60 311
D4Mit182 411
MPC1896 5 9
D6Mit133 611
D7Mit270 7
D8Mit64 $8 \quad 7$
D9Mit227 9 1
D10Mit152 $10 \quad 9$
D11Mit173 $11 \quad 8$
D12Mit37 $12 \quad 7$
D13Mit78 $13 \quad 7$
D14Mit80 14
D15Mit56 $15 \quad 7$
D16Mit138 16
D17Mit177 17 3
D18Mit177 18 5
D19Mit36 $19 \quad 12$
DXMit166 X 10
Average 7.2

Table 2. Analysis of chimerism in YACs by FISH.

YAC clone	size (kb)	chimeric
$02-1$	945 kb	no
$02-9$	1250	no
$02-10$	\therefore	610
$02-20$	1100	no
$02-23$	1100	no
$02-24$	1050	no
$02-26$	1200	yes
$02-27$	610	no
$02-28$	1100	yes
$02-29$	1050	yes
04-17	1800	yes
04-19	1100	yes
04-22	750	yes
04-24	750	yes
04-25	750	yes
05-4	750	no
05-5	2000 (unstable)	no
05-7	750	yes (three signals)
360A1	1200	no
360A9	915	no
360A10	945	no
361A8	1300	no
362A1	920	yes
362A2	920	no
362A8	1100	no
362A9	980	no
362A10	870	no
387A1	920	no
387A2	680	no
387A9	1200	no
387A11	600	no
388A7	1000	yes
388A8	730	no
		yes

(continuation of Table 2)

388A10		920
397A8	1000	no
405A12	900	no
407A1		915

A comprehensive large-insert yeast artificial chromosome library for physical mapping of the mouse genome

Maryann L. Haldi ${ }^{1}$, Corinne Strickland ${ }^{1}$, Prudence Lim ${ }^{1}$, Victor VanBerkel ${ }^{1}$, Xiao-Ning Chen ${ }^{2}$, David Noya ${ }^{2}$, Julie R. Korenberg ${ }^{2}$, Zeeshan Husain ${ }^{1}$, Joyce Miller ${ }^{1}$, Eric S. Eander ${ }^{1,3}$

${ }^{1}$ Whitehead/MIT Center for Genome Research, Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142 USA ${ }^{2}$ Ahmanson Department of Pediatrics, Genetics, Cedars-Sinai Research Institute, UCLA, Los Angeles, CA 90048 USA
${ }^{3}$ Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139 USA

Running head: Construction of YAC library of mouse genome

Correspondence to: Eric S. Lander
Phone: (617) 252-1906
FAX: (617) 252-1933

A yeast artificial chromosome (YAC) library with large insert size and deep coverage is an essential resource for the construction of physical maps of mammalian genomes. Two large-insert YAC libraries of the mouse genome have previously been reported. Larin et al. (1991) constructed a 3 -fold coverage library with average insert size of 700 kb , using the mouse strain C3H. Kusumi et al. (1993) constructed a library with the larger-insert portion providing 3.6 -fold with an average insert size of 680 kb , using the strain C57Bl/6J. These libraries are excellent resources for positional cloning, but neither is ideal for construction of a physical map of the entire mouse genome.

Here, we report the construction and availability of a mouse YAC library providing roughly 10 -fold coverage with an average insert size of 820 kb . The library will be the basis for our current effort to construct a complete physical map, using the mouse genetic map as a scaffold.

The library was constructed with a different YAC vector than the traditionally used vector pYAC4. The vector (Spencer et al. 1993) consists of two arms carried on different plasmids. The pRML1 vector arm carries a TRP1 selectable marker with a complete promoter element, and the pRML2 arm carries the URA3 marker. Among its advantages, the vector allows simultaneous selection for both Trp^{+}and Ura ${ }^{+}$transformants. By contrast, use of pYAC4 vector requires single selection for Ura ${ }^{+}$followed by screening for Trp^{+}, as its TRP1 promoter is weak. The vector also contains T3 and T7 promoters flanking the cloning site to facilitate production of probes from the insert DNA. Additionally, pRML1 carries a yeast centromere with an adjacent GAL1 promoter and a heterologous thymidine kinase gene. Growth on galactose to inactivate the centromere, plus selection for thymidine kinase expression, increases the copy number of the YAC.

The YAC library was prepared using genomic DNA from C57BL/6J female mice according to Foote (1994) with several modifications. DNA was isolated from kidney nuclei as described by Strauss et al. (1992) and partially digested by EcoRI-EcoRI methylase competition. The products of this digestion were size-selected by pulsed field gel electrophoresis to be larger than 800 kb , by using conditions under which DNA of this size migrates in the zone of limiting mobility. This DNA was ligated to pRML1 and pRML2 vector arms prepared by digestion with NotI and EcoRI. The ligation product was again size-selected to be greater than 800 kb . The 1% Seaplaque GTG
(FMC) agarose sizing gels were run in 0.5X TBE buffer on a Bio Rad CHEF apparatus at $14^{\circ} \mathrm{C}$, $55-\mathrm{sec}$ pulse time and $6 \mathrm{~V} / \mathrm{cm}$ for 24 h (partial digestion product) or 30 h (ligation product). The size-selected ligation mixture was transformed into the yeast host strain J57D (ura3-52, trp1 ade2-101 can1-100 leu2-3, 112 his3-6, a gift from Vladimir Larionov). YACs possessing both vector arms were doubly selected as Trp ${ }^{+}$Ura ${ }^{+}$transformants. Agarase treatment of the ligation product prior to yeast transformation was at 40° $42^{\circ} \mathrm{C}$ for 45 min and no calf thymus or other carrier DNA was included in the transformation. We have observed that complete digestion by agarase is critical, and the inclusion of carrier DNA reduces transformation efficiency (data not shown).

The quality of the library was monitored during construction in two ways. Initially, the presence of mouse DNA in the transformants was assessed by a rapid PCR assay to detect the B2-repeat element as described in Kusumi et al. (1993). Some clones containing mouse DNA will fail to amplify in this assay, as intact yeast cells rather than purified DNA were used as the test material. Four percent of the transformants from each ligation were screened and if greater than 90% of the clones yielded a PCR product the ligation was judged to be successful. The insert sizes of the YACs were determined by pulsed field gel electrophoresis of yeast DNA prepared in agarose blocks (Gemmill et al. 1994) in 1% Fast Lane Agarose (FMC) gels. The PFGE conditions used were: $14^{\circ} \mathrm{C}$, 12 to 160 sec pulse time and $6 \mathrm{~V} / \mathrm{cm}$ for 24 hr . The DNA was transfered to a nylon membrane and probed with pUC19 DNA to detect vector sequences. Approximately one percent of the YACs from each ligation were examined. About 20% appeared to be unstable as evidenced by a ladder of smaller bands. Apparent double transformants (only two bands of similar intensity) were present in less than 5% of the clones.

Figure 1 shows the distribution of YAC sizes in the 550 clones tested. The mean size is 820 kb and the median size is 780 kb . Based on the estimated length of the mouse genome as 3 billion bp, the library provides 10 -fold coverage. This would correspond to 99.995% coverage assuming no cloning bias. Unfortunately, systematic cloning biases are known to occur in YAC libraries and so the actual coverage will be lower. Nonetheless, we would expect, based on experience with human YAC libraries (Hudson et al., 1995), that the library covers perhaps 98% of the mouse genome.

We tested the library for representation by screening a randomly chosen marker from each chromosome against a subset of the library. Total yeast DNA was prepared according to Gemmill et al. (1994), from 30 pools of YACs, each pool containing 960 clones. In principle, these pools should represent 7.8 fold coverage of the genome. Each pool was screened by a polymerase chain reaction (PCR) assay for a unique STS marker (Green and Olson, 1990). As shown in Table 1, all markers were detected in at least one pool, with an average predicted coverage of 7.2 fold. This result is not statistically different than the expectation of 7.8 -fold coverage.

We estimated the chimerism rate of the library, by testing 42 of the YACs by fluorescence in situ hybridization (FISH). Total DNA was prepared from the yeast clones according to Rose et al. (1990). FISH was performed essentially as described by Korenberg and Chen (1995). Mouse chromosomes were prepared from female mouse spleen cells using a modification of the method described by Boyle et al. (1990) and Zhu et al. (1995). Forty metaphase cells were evaluated for each test. A test was scored as positive if there were signals on both chromatids of at least one chromosome in at least 50% of the cells examined. Those scored as chimeric also showed hybridization signals on a second pair of chromosomes in at least 50% of positive cells.

There are two unavoidable sources of error in the estimation of the rate of chimerism by FISH. A small proportion of YACs will cross-hybridize to truly homologous sequences elsewhere in the genome and will thereby artificially elevate the estimation of chimerism. Conversely, chimerism involving a small segment of DNA from a second region may be missed due to the weakness of a signal as well as due to the size limit of detection of the YAC FISH assay. This sensitivity has been estimated as approximately 10% of the total YAC size (Korenberg et al., 1996).

The results of the FISH analysis are shown in Table 2. Positive results by the above criteria were obtained in 88% of the tests ($37 / 42$). Of these, 35% ($12 / 37$) indicated that the YAC was chimeric. Since some small segments will not be detected by FISH, this estimate of chimerism is minimal. One YAC hybridized to three pairs of chromosomes. This clone appeared to contain a single unstable molecule on pulsed field gel analysis (data not shown). Although the instability of this insert may reflect a region containing localized repetitive sequences present at three different genomic sites, the insert may also contain more than one genomic fragment.

The entire library, containing approximately 38,400 clones, has been distributed to: Research Genetics, Inc. (Huntsville AL), Genome Systems, Inc. (St. Louis MO), Philip Avner (Institute Pasteur, Paris) and Steven Brown (MRC Mouse Genome Center, Harwell, England), to make it widely accessible to the mammalian genetics community.

Acknowledgments. We thank Ndubuisi Azubuine, Gail Farino, Steven Yoo and Jean Whang for excellent technical assistance. This work was supported by a grant from the National Center for Human Genome Research (NCHGR) to E. S. L., and grants to J. R. K. from the Department of Energy and the NCHGR. J. R. K. holds the Geri and Richard Brawerman chair in Molecular Genetics.

References

Boyle, A., Ballard, S., Ward, D. C. (1990). Differential distribution of long and short interspersed element sequences in the mouse genome: Chromosome karyotyping by fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA 87: 7757-7761.
Foote, S. and Denny, C. (1994). Construction of YAC libraries with large inserts. In Current Protocols in Human Genetics, S. Bonitz, ed. (New York: John Wiley \& Sons), pp. 5.2.1-5.2.20.
Gemmill, R., Bolin, R., Albertsen, H. (1994). Pulsed-Field Gel Electrophoresis for long-range Restriction mapping. In Current Protocols in Human Genetics, S. Bonitz, ed. (New York: John Wiley \& Sons), pp. 5.1.1-5.1.24. Green, E. and Olson, M. (1990). Systematic screening of yeast artificial chromosome libraries by use of the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 1213-1217.
Hudson, T., Stein, L., Gerety, S., Ma, J., Castle, A., Silva, J., Slonim, D., Baptista, R., Kruglyak, L., Xu, S., Hu, X., Colbert, A., Rosenberg, C., ReeveDaly, M., Rozen, S., Hui, L., Wu, X., Vestergaard, C., Wilson, K., Bae, J., Maitra, S., Ganiatsas, S., Evans, C., DeAngelis, M., Ingalls, K., Nahf, R., Horton, L., Anderson, M., Collymore, A., Ye, W., Kouyoumjian, V., Zemsteva, I., Tam, J., Devine, R., Courtney, D., Renaud, M., Nguyen, H., O'Connor, T., Fizames, C., Faure, S., Gyapay, G., Dib, C., Morissette, J., Orlin, J., Birren, B., Goodman, N., Weissenbach, J., Hawkins, T., Foote, S., Page, D., Lander, E. (1995). An STS-based map of the human genome. Science 270, 1945-1954.
Korenberg, J.R., Chen, X-N. (1995). Human cDNA mapping using a high resolution R-banding technique and fluorescence in situ hybridization. Cytogenetic and Cell Genetics 69, 196-200.
Korenberg, J.R., Chen, X.-N., Mitchell, S., Fannin, S., Gerwehr, S., Cohen, D., Chumakov, I. (1996). A high-fidelity physical map of human chromosome 21q in yeast artificial chromosomes. Genome Research 5, 427-443.
Kusumi, K., Smith, J., Segre, J., Koos, D., Lander, E. (1993) Construction of a large-insert yeast artificial chromosome library of the mouse genome.
Mammalian Genome 4, 391-392.

Larin, Z., Monaco, A., Lehrach, H. (1991). Yeast artificial chromosome libraries containing large inserts from mouse and human DNA. Proc. Natl. Acad. Sci. USA 88, 4123-4127.
Rose, M., Winston, F., Hieter, P. (1990). Methods in Yeast Genetics. A Laboratory Course Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press), pp. 128-129.
Spencer, F., Ketner, G., Connelly, C., Hieter, P. (1993). Targeted recombination-based cloning and manipulation of large DNA segments in yeast. Methods: A companion to Methods in Enzymology 5, 161-175.
Strauss, W., Jaenisch, E., Jaenisch, R. (1992). A strategy for rapid production and screening of yeast artificial chromosome libraries. Mammalian Genome 150-157.

Zhu, Y., Qi, C., Korenberg, J.R., Chen X-N., Noya, D., Rao, M., Reddy, J. (1995). Structural organization of mouse peroxisome proliferator-activated receptor g (mPPARg) gene: Alternative promoter use and different splicing yield two mPPARg isoforms. Proc. Natl. Acad. Sci. USA 92: 7921-7925.

Figure Legend

Fig. 1. Histogram showing the sizes of 550 randomly selected YAC clones.

Table 1. Detection of chromosomal markers in YAC pools for subset of library predicted to provide 7.8 -fold coverage of genome.

Marker Chromosome Number of positive pools

D1Mit464 1 . 7

D2Mit104 $2 \quad 4$
D3Mit60 311
D4Mit182 411
MPC1896 5 9
D6Mit133 611
D7Mit270 7
D8Mit64 8
D9Mit227 $9 \quad 1$
D10Mit152 $10 \quad 9$
D11Mit173 $11 \quad 8$
D12Mit37 $12 \quad 7$
D13Mit78 $13 \quad 7$
D14Mit80 14
D15Mit56 $15 \quad 7$
D16Mit138 163
D17Mit177 17 3
D18Mit177 18 5
D19Mit36 $19 \quad 12$
DXMit166 X 10
Average 7.2

Table 2. Analysis of chimerism in YACs by FISH.

YAC clone	size (kb)	chimeric
02-1	945kb	no
02-9	1250	no
02-10	610	no
02-20	1100	no
02-23	1100	no
02-24	1050	yes
02-26	1200	no
02-27	610	yes
02-28	1100	yes
02-29	1050	yes
04-17	1800	yes
04-19	1100	yes
04-22	750	yes
04-24	750	yes
04-25	750	no
05-4	750	no
05-5	2000 (unstable)	yes (three signals)
05-7	750	no
360A1	1200	no
360A9	915	no
360A10	945	no
361A8	1300	yes
362A1	920	no
362A2	920	no
362A8	1100	no
362A9	980	no
362A10	870	no
387A1	920	no
387A2	680	no
387A9	1200	no
387A11	600	yes
388A7	1000	no
388A8	730	yes

A comprehensive genetic map of the mouse genome

William F. Dietrich*, Joyce Miller*, Robert Steen*, Mark A. Merchant*, Deborah Damron-Boles*, Zeeshan Husain*, Robert Dredge*, Mark J. Daly*, Klmberly A. Ingalls*, Tara J. O'Connor*, Cheryl A. Evans*, Margaret M. DeAngelis*, David M. Levinson*, Leonid Kruglyak*, Nathan Goodman*, Neal G. Copeiand \dagger, Nancy A. Jenkins \dagger, Trevor L. Hawkins*, Lincoin Stein*, David C. Page* $\ddagger \S$ \& Eric S. Lander* $\ddagger \|$
* Whitehead/MIT Center for Genome Research, Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
† Mammalian Genetics Laboratory, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
\ddagger Department of Biology, and § Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
|| To whom correspondence should be addressed.

The availability of dense genetic linkage maps of mammalian genomes makes feasible a wide range of studies, including positional cloning of monogenic traits, genetic dissection of polygenic traits, construction of genome-wide physical maps, rapid markerassisted construction of congenic strains, and evolutionary comparisons ${ }^{1.2}$. We have been engaged for the past five years in a concerted effort to produce a dense genetic map of the laboratory mouse ${ }^{3-6}$. Here we present the final report of this project. The map contains $\mathbf{7 , 3 7 7}$ genetic markers, consisting of $\mathbf{6 , 5 8 0}$ highly informative simple sequence length polymorphisms integrated with 797 restriction fragment length polymorphisms in mouse genes. The average spacing between markers is about 0.2 centimorgans or 400 kilobases.

To construct a simple sequence length polymorphism (SSLP) map, we.identified more than 9,000 sequences from random genomic clones and public databases containing simple sequence repeats (mostly, (CA) -repeats), designed polymerase chain reaction (PCR) primers flanking the repeat. and tested each for polymorphism by measuring the allele sizes in 12 inbred mouse strains. Of the successful PCR assays, we genoryped the 90% of loci that revealed different alleles between the OB and CAST strains in an ($O B \times C A S T$) F_{2} intercross with 46 progeny. These data were assembled into a map by performing genetic linkage analysis with the MAPMAKER computer package ${ }^{7.8}$.

A total of 6.336 SSLP loci were scored in the F_{2} intercross, with 6,111 derived from anonymous sequence and 225 from known genes (Table 1). Of these, 5,905 were scored as codominant markers and 431 as dominant markers (because the pattern of one allele obscured the other). The map provides dense coverage of all 20 mouse chromosomes, with a total genetic length of 1,361 centimorgans (cM). Because the cross involves 92 meioses, the mean spacing between crossovers is 1.1 cM and thus loci can be mapped to 'bins' of this average size. The map has 1,001 occupied bins (Table 3(a)), with an average of 6.3 markers per bin and an average spacing of 1.36 cM between consecutive bins.

We next sought to integrate the map of largely anonymous SSLPs with the locations of known genes, because this information can suggest candidates for the genes underlying mouse mutations. We analysed a (B6 \times SPRET) backcross that has been extensively used for restriction fragment length polymorphism (RFLP) mapping ${ }^{\text {2-11 }}$. The backcross has been genotyped for 797 RFLPs. To integrate the maps, we genotyped 1,245 SSLPs from our map in 46 progeny from the SPRET backcross, providing a common reference point approximately every 1.1 cM . We also genotyped 244 additional SSLPs that were not polymorphic-and thus could not be mapped-in the ($\mathrm{OB} \times \mathrm{CAST}$) intercross, but were polymorphic in the (B6 \times SPRET) backcross. The SPRET cross was thus scored for a total of 1,543 SSLPs and 797 RFLPs.

The final map with 7,377 loci is shown in Fig. 1, with the SSLP map on the right and the integration with the RFLP map on the left. A full description of the markers-including primer sequences, locus sequence, genotypes in each cross, and allele

| Chromosome | No. of markers | No. of random markers | No. from GENBANK | 'Consensus' genetic length \dagger | Observed genetic length \ddagger | Polymorphism among lab strains (\%)§\|| | Lab strains versus SPR or CAST (\%) \|| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 511 | 494 | 17 | 98 | 109.9 | 57 | 92 |
| 2 | 507 | 491 | 16 | 107 | 95.7 | 49 | 94 |
| 3 | 343 | 332 | 11 | 100 | 67.5 | 51 | 95 |
| 4 | 350 | 342 | 8 | 81 | 74.2 | 51 | 93 |
| 5 | 402 | 391 | 11 | 93 | 82.9 | 48 | 95 |
| 6 | 368 | 349 | 19 | 74 | 59.1 | 46 | 94 |
| 7 | 357 | 341 | 16 | 89 | 59.8 | 48 | 94 |
| 8 | 350 | 345 | 5 | 81 | 72.0 | 44 | 94 |
| 9 | 336 | 318 | 18 | 70 | 62.9 | 52 | 95 |
| 10 | 293 | 286 | 7 | 78 | 73.0 | 35 | 96 |
| 11 | 350 | 326 | 24 | 78 | 82.0 | 53 | 94 |
| 12 | 278 | 268 | 10 | 68 | 61.5 | 50 | 94 |
| 13 | 303 | 296 | 7 | 72 | 60.2 | 48 | 95 |
| 14 | 259 | 246 | 13 | 53 | 65.6 | 49 | 94 |
| 15 | 264 | 257 | 7 | 62 | 62.2 | 51 | 94 |
| 16 | 215 | 214 | 1 | 59 | 51.0 | 43 | 94 |
| 17 | 255 | 239 | 16 | 53 | 51.0 | 56 | 93 |
| 18 | 231 | 226 | 5 | 57 | 39.7 | 53 | 95 |
| 19 | 134 | 131 | 3 | 42 | 57.2 | 52 | 93 |
| X | 230 | 219 | 11 | 88 | 73.5 | 33 | 95 |
| Total | 6,336 | 6,111 | 225 | 1,503 | 1,360.94 | 48 | 94 |

[^5](Chromosome 19 shows a slight deficit, which is not statistically significant after correction for multiple testing; it may reflect the unusually large proportion of heterochromatin on this chromosome.) In contrast, chromosome X shows a clear deficit, with only about 57% as many as expected (Table 2). This phenomenon appears to be general in mammalian genomes, as we have also found a similar deficit in an SSLP map of the rat ${ }^{12}$ (62% of expectation), and Weissenbach and colleagues report a slightly less pronounced deficit in the human genome ${ }^{13}(75 \%$ of expectation). In principle, the deficit of SSLPs on chromosome X could occur if (CA) $)_{n}$-repeats were either less frequent on chromosome X, or were equally frequent but less polymorphic. The latter hypothesis would predict that the deficit of polymorphic loci on chromosome X would be offset by a great excess of non-polymorphic repeats. Of the SSLPs monomorphic between OB and CAST, 37% would have to lie to chromosome X to explain the observed data. We determined the chromosomal location of >100 monomorphic loci (by genetic mapping for those that were polymorphic between B6 and SPRET and by somatic cell hybrid mapping for those that were not), but we found no significant excess on chromosome X . Accordingly, the deficit appears to be primarily due to an actual shortage of (CA) $)_{n}$-repeats on chromosome X.
The SSLPs show a polymorphism rate of about 50% among inbred laboratory strains surveyed and about 95% between laboratory strains and CAST or SPR (Table 1). The pairwise polymorphism rates among the 12 strains surveyed have not changed significantly from our previous report ${ }^{6}$ and are not presented here. Interestingly, the distribution of polymorphism across the genome is not uniform ${ }^{11}$. The average polymorphism rate among the Mus musculus strains surveyed was just under 50%, but two chromosomes showed substantially lower polymorphism rates: chromosome X at 33%, and chromosome 10 at 35\% (Table 1). Decreased polymorphism could reflect recent selection for specific ancestral chromosomes. For the X chromosome, it could also reflect a different mutation rate (inasmuch as each chromosome X resides in males only two-thirds as often each autosome, and most mutations are thought to occur in male germline) or different population genetic forces (with hemizygosity affecting selection and effective population size).

Our mouse genetic-mapping project is now at its conclusion. Although more SSLPs remain to be found (newly

TABLE 3 Clusters of consecutive crossovers and markers
(a) Number of crossovers between consecutive random markers*

No. of

crossovers	Observed		Expectedt		
per interval	No.	(percentage)	No.	(percentage)	P(longestrun $\geqslant n$) (\%) t
0	5,095	(83.85)	$5,035.5 \pm 29.6$	(82.59)	
1	784	(12.90)	876.7 ± 27.4	(14.38)	100.0
2	151	(2.49)	152.6 ± 12.2	(2.50)	100.0
3	27	(0.44)	26.6 ± 5.1	(0.44)	100.0
4	14	(0.23)	4.6 ± 2.2	$10.08)$	99.6
5	4	(0.07)	0.8 ± 0.9	(0.01)	62.2
6	0	(0.00)	0.1 ± 0.4	(<0.01)	15.6
7	0	(0.00)	0.0 ± 0.2	(<0.01)	2.9
8	1	(0.02)	0.0 ± 0.1	(<0.01)	0.5

(b) Random markers occurring between consecutive crossovers \ddagger

No. of markers per block	Observed No. (percentage)		$\begin{aligned} & \text { Expec } \\ & \text { Number } \end{aligned}$	d§ (percentage)	P (longestrun $\geqslant n)(\%) \S$
0	288	(22.3)	227.9 ± 13.7	(17.4)	100.0
1	208	(16.1)	188.2 ± 12.7	(14.4)	100.0
2	126	(9.8)	155.5 ± 11.7	(11.9)	100.0
3	111	(8.6)	128.4 ± 10.8	(9.8)	100.0
4	84	(6.5)	106.0 ± 9.9	(8.1)	100.0
5	73	(5.7)	87.6 ± 9.0	(6.7)	100.0
6	62	(4.8)	72.3 ± 8.3	(5.5)	100.0
7	51	(4.0)	59.7 ± 7.6	(4.6)	100.0
8	36	(2.8)	49.3 ± 6.9	(3.8)	100.0
9	38	(2.9)	40.7 ± 6.3	(3.1)	100.0
10	32	(2.5)	33.7 ± 5.7	(2.6)	100.0
11	37	(2.9)	27.8 ± 5.2	(2.1)	100.0
12	19	(1.5)	23.0 ± 4.7	(1.8)	100.0
13	28	(2.2)	19.0 ± 4.3	(1.4)	100.0
14	18	(1.4)	15.7 ± 3.9	(1.2)	100.0
15	7	(0.5)	12.9 ± 3.6	(1.0)	100.0
16	12	(0.9)	10.7 ± 3.3	(0.8)	100.0
17	5	(0.4)	8.8 ± 3.0	(0.7)	100.0
18	5	(0.4)	7.3 ± 2.7	(0.6)	100.0
19	6	(0.5)	6.0 ± 2.4	(0.5)	100.0
20	10	(0.8)	5.0 ± 2.2	(0.4)	100.0
21	3	(0.2)	4.1 ± 2.0	(0.3)	100.0
22	5	(0.4)	3.4 ± 1.8	(0.3)	100.0
23	7	(0.5)	2.8 ± 1.7	(0.2)	100.0
24	4	(0.3)	2.3 ± 1.5	(0.2)	100.0
25	0	(0.0)	1.9 ± 1.4	(0.1)	100.0
26	5	(0.4)	1.6 ± 1.3	(0.1)	99.9
27	1	(0.1)	1.3 ± 1.1	(0.1)	99.8
28	1	(0.1)	1.1 ± 1.0	(0.1)	99.3
29	0	(0.0)	0.9 ± 0.9	(0.1)	98.4
30	1	(0.1)	0.7 ± 0.9	(0.1)	96.7
31	1	(0.1)	0.6 ± 0.8	(<0.1)	94.0
32	0	(0.0)	0.5 ± 0.7	(<0.1)	90.3
33	0	(0.0)	0.4 ± 0.6	(<0.1)	85.4
34	1	(0.1)	0.3 ± 0.6	(<0.1)	79.6
35	1	(0.1)	0.3 ± 0.5	(<0.1)	73.1
38	1	(0.1)	0.2 ± 0.4	(<0.1)	52.2
40	1	(0.1)	0.1 ± 0.3	(<0.1)	39.6
54	1	(0.1)	$<0.1 \pm 0.1$	(<0.1)	3.4
Total	1,289				

*The intervals with $\geqslant 1$ crossover represent the 981 gaps between consecutive bins of recombinationally inseparable markers. Only random markers are considered to avoid biases in distribution of known genes. :
\dagger The probability of the longest run is calculated in ref. 6. Briefly, if a coin with heads probability P is tossed n times, the length R_{n} of the longest head run has expected value $\mu=\log _{1 / 0}[(n-1)(1-p)+1]$ and the distribution of R_{n} is given approximately by $\operatorname{Prob}\left(R_{n}-\mu>t\right)=1-\exp \left(-p^{2}\right)$. In this case, $p=0.17$.
\ddagger The blocks with $\geqslant 1$ marker represent the 1,001 bins of recombinationally separable markers. Only random markers are considered to avoid biases in distribution of known genes.
§ The probability of the longest head run is calculated with $p=0.83$.

A comprehensive genetic map of the mouse genome

Willam F. Dletrich*, Joyce Miller*, Robert Steen*, Mark A. Merchant*, Deborah Damron-Boles*, Zeeshan Husain*, Robert Dredge*, Mark J. Daly*, Kimberly A. Ingalls*, Tara J. O'Connor*, Cheryl A. Evans*, Margaret M. DeAngells*, David M. Levinson*, Leonid Kruglyak*, Nathan Goodman*, Neal G. Copeland \dagger, Nancy A. Jenkins \dagger, Trevor L Hawkins*, Uncoln Steln*, David C. Page* $\ddagger \S$ \& Eric S. Lander* $\ddagger \|$

\author{

* Whitehead/MIT Center for Genome Research, Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
 \dagger Mammalian Genetics Laboratory, ABL-Basic Research Program, NCl -Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
 \ddagger Department of Biology, and § Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
 || To whom correspondence should be addressed.
}

The availability of dense genetic linkage maps of mammalian genomes makes feasible a wide range of studies, including positional cloning of monogenic traits, genetic dissection of polygenic traits, construction of genome-wide physical maps, rapid markerassisted construction of congenic strains, and evolutionary comparisons ${ }^{1,2}$. We have been engaged for the past five years in a concerted effort to produce a dense genetic map of the laboratory mouse ${ }^{3-}$. Here we present the final report of this project. The map contains 7,377 genetic markers, consisting of $\mathbf{6 , 5 8 0}$ highly informative simple sequence length polymorphisms integrated with 797 restriction fragment length polymorphisms in mouse genes. The average spacing between markers is about 0.2 centimorgans or 400 kilobases.

To construct a simple sequence length polymorphism (SSLP) map, we identified more than 9,000 sequences from random genomic clones and public databases containing simple sequence repeats (mostly, (CA) $)_{n}$-repeats), designed polymerase chain reaction (PCR) primers flanking the repeat, and tested each for polymorphism by measuring the allele sizes in 12 inbred mouse strains. Of the successful PCR assays, we genotyped the 90% of loci that revealed different alleles between the OB and CAST strains in an ($\mathrm{OB} \times \mathrm{CAST}$) F_{2} intercross with 46 progeny. These data were assembled into a map by performing genetic linkage analysis with the MAPMAKER computer package ${ }^{78}$.

A total of 6,336 SSLP loci were scored in the F_{2} intercross, with 6,111 derived from anonymous sequence and 225 from known genes (Table 1). Of these, 5,905 were scored as codominant markers and 431 as dominant markers (because the pattern of one allele obscured the other). The map provides dense coverage of all 20 mouse chromosomes, with a total genetic length of 1,361 centimorgans (cM). Because the cross involves 92 meioses, the mean spacing between crossovers is 1.1 cM and thus loci can be mapped to 'bins' of this average size. The map has 1,001 occupied bins (Table 3(a)), with an average of 6.3 markers per bin and an average spacing of 1.36 cM between consecutive bins.

We next sought to integrate the map of largely anonymous SSLPs with the locations of known genes, because this information can suggest candidates for the genes underlying mouse mutations. We analysed a (B6 \times SPRET) backcross that has been extensively used for restriction fragment length polymorphism (RFLP) mapping ${ }^{9-11}$. The backcross has been genotyped for 797 RFLPs. To integrate the maps, we genotyped 1,245 SSLPs from our map in 46 progeny from the SPRET backcross, providing a common reference point approximately every 1.1 cM . We also genotyped 244 additional SSLPs that were not polymorphic-and thus could not be mapped-in the ($\mathrm{OB} \times \mathrm{CAST} \mathrm{)} \mathrm{intercross}$, but were polymorphic in the ($\mathrm{B} 6 \times$ SPRET) backeross. The SPRET cross was thus scored for a total of 1,543 SSLPs and 797 RFLPs.

The final map with 7,377 loci is shown in Fig. 1, with the SSLP map on the right and the integration with the RFLP map on the left. A full description of the markers-including primer sequences, locus sequence, genotypes in each cross, and allele

| Chromosome | No. of markers | No. of random markers | No. from GENBANK | 'Consensus' genetlc length \dagger | Observed genetc length \ddagger | Polymorphism among labstrains (\%)§\|| | Lab strains versus SPR or CAST (\%)\|| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 511 | 494 | 17 | 98 | 109.9 | 57 | 92 |
| 2 | 507 | 491 | 16 | 107 | 95.7 | 49 | 94 |
| 3 | 343 | 332 | 11 | 100 | 67.5 | 51 | 95 |
| 4 | 350 | 342 | 8 | 81 | 74.2 | 51 | 93 |
| 5 | 402 | 391 | 11 | 93 | 82.9 | 48 | 95 |
| 6 | 368 | 349 | 19 | 74 | 59.1 | 46 | 94 |
| 7 | 357 | 341 | 16 | 89. | 59.8 | 48 | 94 |
| 8 | 350 | 345 | 5 | 81 | 72.0 | 44 | 94 |
| 9 | 336 | 318 | 18 | 70 | 62.9 | - 52 | 95 |
| 10 | 293 | 286 | 7 | 78 | 73.0 | 35 | 96 |
| 11 | 350 | 326 | 24 | 78 | 82.0 | 53 | 94 |
| 12 | 278 | 268 | 10 | 68 | 61.5 | 50 | 94 |
| 13 | 303 | 296 | 7 | 72 | 60.2 | 48 | 95 |
| 14 | 259 | 246 | 13 | 53 | 65.6 | 49 | 94 |
| 15 | 264 | 257 | 7 | 62 | 62.2 | 51 | 94 |
| 16 | 215 | 214 | 1 | 59 | 51.0 | 43 | 94 |
| 17 | 255 | 239 | 16 | 53 | 51.0 | 56 | 93 |
| 18 | 231 | 226 | 5 | 57 | 39.7 | 53 | 95 |
| 19 | 134 | 131 | 3 | 42 | 57.2 | 52 | 93 |
| χ | 230 | 219 | 11 | 88 | 73.5 | 33 | 95 |
| Total | 6,336 | 6,111 | 225 | 1,503 | 1,360.91 | 48 | 94 |

[^6]| TABLE 2 Distribution of random markers based on cytogenetic length of chromosomes | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | | Based on cytogenetic length* | | |
| Chromosome | No. of random markers \dagger | Percentage of total length | Expected number of markers \ddagger | Z-score§ |
| Autosomes only | | | | |
| 1 | 494 | $7.68 \pm .15$ | 452.7 ± 22.4 | 1.84 |
| 2 | 491 | $7.42 \pm .15$ | 437.0 ± 21.9 | 2.47 |
| 3 | 332 | $6.39 \pm .13$ | 376.7 ± 20.2 | -2.20 |
| 4 | 342 | $6.29 \pm .13$ | 360.4 ± 20.0 | -1.41 |
| 5 | 391 | $6.06 \pm .12$ | 356.2 ± 19.7 | 1.73 |
| 6 | 349 | $5.90 \pm .12$ | 347.7 ± 19.4 | 0.07 |
| 7 | 341 | $5.54 \pm .11$ | 326.4 ± 18.7 | 0.79 |
| 8 | 345 | $5.30 \pm .11$ | 312.5 ± 18.3 | 1.78 |
| 9 | 318 | $5.11 \pm .10$ | 301.2 ± 17.9 | 0.94 |
| 10 | 286 | $5.06 \pm .10$ | 298.1 ± 17.8 | -0.67 |
| 11 | 326 | $5.04 \pm .10$ | 296.8 ± 17.8 | 1.65 |
| 12 | - 268 | $5.21 \pm .10$ | 306.9 ± 18.1 | -2.14 |
| 13 | 293 | $4.67 \pm .09$ | 275.4 ± 17.1 | 1.21 |
| 14 | 246 | $4.76 \pm .10$ | 280.5 ± 17.3 | -1.99 |
| 15 | 257 | $4.32 \pm .09$ | 254.7 ± 16.4 | 0.15 |
| 16 | 214 | $4.07 \pm .08$ | 239.6 ± 15.9 | -1.60 |
| 17 | 239 | $4.12 \pm .08$ | 242.7 ± 16.0 | -0.22 |
| 18 | 226 | $4.14 \pm .08$ | 244.0 ± 16.0 | -1.11 |
| 19 | 131 | $2.91 \pm .06$ | 171.7 ± 13.4 | -3.04 |
| Total | 5,892 | 100.0 | 5,892.0 | |
| Autosomes versus X chromosome | | | | |
| Autosomes | $5,892$ | $93.76 \pm .12$ | $5,729.7 \pm 20.4$ | 7.96 |
| x | 219 | $6.24 \pm .12$ | 381.3 ± 20.4 | -7.96 |
| Total | 6,111 | 100.0 | 6,111.0 | |

[^7]sizes in the characterized strains-would require over 500 pages of this journal. The complete information is available electronically on the WorldWide Web (see Fig. 1 legend).

The maps constructed in the CAST intercross and SPRET backcross maps have similar lengths (1,361 and $1,385 \mathrm{cM}$ respectively), despite the fact that the intercross reflects sex-averaged recombination rates and the backcross reflects female recombination rates (because heterozygous mothers were used). Because there is typically about 80% more recombination in females than males, the SPRET backcross map might be expected to be about 40% longer. That it is not probably reflects recombinational suppression owing to structural heterogeneity (inasmuch as the laboratory mouse is evolutionarily twice as distant from SPRET as from CAST).
The SSLP map constructed in the cross was subjected to rigorous quality control and quality assessment ${ }^{3,8}$. All obligate double crossovers were identified and rechecked. The final data set contained no obligate double crossovers involving markers separated by less than 21 cM , indicating strong crossover interference in the mouse. (In the absence of interference, about 100 such events would be expected.) We also filled in any missing genotypes that could alter the position of a locus (by virtue of being adjacent to the site of a crossover). Despite our best efforts, some errors surely remain: in particular, an incorrect genotype adjacent to the site of a crossover would not necessarily produce a double crossover, and could shift a locus by 1.1 cM . Each chromosome is thus likely to contain a handful of loci that are slightly misplaced. The SSLPs used for integration with the SPRET backcross provided a different assessment of accuracy. We checked whether these 1,245 loci mapped to the same location in both crosses. There were ten apparent discrepancies. In five cases (D5Mit198,D7Mit173,D9Mit132,D9Mit150 and D19Mit61), the loci were found to reproducibly amplify polymorphic fragments at different chromosomal locations in the two crosses. This probably occurs because strain variation creates an alternative
target for amplification, although the possibility that CAST and SPRET differ by small insertional translocations cannot be excluded. In remaining five cases, the results from the CAST cross were found not to be reproducible. These probably arose from laboratory errors that unfortunately cannot be identified in retrospect. These five loci were removed from the map. Based on the frequency (5 of 1,245), we would expect that 20 further erroneous loci remain, which corresponds to about one per chromosome.

We used several criteria to analyse the genomic distribution of loci. The spacing between SSLPs agrees reasonably well with expectation under a random distribution, although some deviation from randomness can be detected. The relative positions of markers and crossovers can be inferred completely in an experimental cross, and the entire data set can be reduced to a string of the form 'mmeccmmmccemcmem...', with each m and c denoting the occurrence of a marker or a crossover, respectively. The hypothesis that markers are randomly distributed with respect to crossovers can be tested by comparing the observed clustering of consecutive markers and crossovers to that expected for tossing a biased coin with the probability of a marker being $p_{\mathrm{m}}=M /(M+C)$, where M is the number of markers and C the number of crossovers ${ }^{6}$. There is some statistically significant evidence of clustering by this test (Table 3). The map contains an interval with eight consecutive crossovers (on chromosome 19) and a block of 54 recombinationally inseparable markers (on chromosome 2); the probability of such clusters of crossovers and markers occurring at random somewhere in the map is 0.5% and 3.4%, respectively. More generally, the frequency of both large and small clusters slightly exceeds expectation. Nonetheless, the distribution is not far from random expectation, at least at the level of resolution provided by the meioses studied here.
The chromosomal distribution of SSLPs among the autosomes agrees well with expectation under the assumption that loci are uniformly distributed with respect to cytogenetic length.
(Chromosome 19 shows a slight deficit, which is not statistically significant after correction for multiple testing; it may reflect the unusually large proportion of heterochromatin on this chromosome.) In contrast, chromosome X shows a clear deficit, with only about 57% as many as expected (Table 2). This phenomenon appears to be general in mammalian genomes, as we have also found a similar deficit in an SSLP map of the rat ${ }^{12}$ (62% of expectation), and Weissenbach and colieagues report a slightly less pronounced deficit in the human genome ${ }^{13}$ (75% of expectation). In principle, the deficit of SSLPs on chromosome X could occur if (CA) $)_{n}$-repeats were either less frequent on chromosome X, or were equally frequent but less polymorphic. The latter hypothesis would predict that the deficit of polymorphic loci on chromosome X would be offset by a great excess of non-polymorphic repeats. Of the SSLPs monomorphic between OB and CAST, 37% would have to lie to chromosome X to explain the observed data. We determined the chromosomal location of >100 monomorphic loci (by genetic mapping for those that were polymorphic between B6 and SPRET and by somatic cell hybrid mapping for those that were not), but we found no significant excess on chromosome X. Accordingly, the deficit appears to be primarily due to an actual shortage of (CA) $)_{n}$-repeats on chromosome X .

The SSLPs show a polymorphism rate of about 50% among inbred laboratory strains surveyed and about 95% between laboratory strains and CAST or SPR (Table 1). The pairwise polymorphism rates among the 12 strains surveyed have not changed significantly from our previous report ${ }^{6}$ and are not presented here. Interestingly, the distribution of polymorphism across the genome is not uniform ${ }^{11}$. The average polymorphism rate among the Mus musculus strains surveyed was just under 50%, but two chromosomes showed substantially lower polymorphism rates: chromosome X at 33%, and chromosome 10 at 35% (Table 1). Decreased polymorphism could reflect recent selection for specific ancestral chromosomes. For the X chromosome, it could also reflect a different mutation rate (inasmuch as each chromosome X resides in males only two-thirds as often each autosome, and most mutations are thought to occur in male germline) or different population genetic forces (with hemizygosity affecting selection and effective population size).

Our mouse genetic-mapping project is now at its conclusion. Although more SSLPs remain to be found (newly

TABLE 3 - Clusters of consecutive crossovers and markers
(a) Number of crossovers between consecutive random markers*

No. of

crossovers	Observed		Expected		
per interval	No.	(percentage)	No.	(percentage)	P (longestrun $\geqslant n)(\%) \dagger$
0	5,095	(83.85)	$5,035.5 \pm 29.6$	(82.59)	
1	784	(12.90)	876.7 ± 27.4	(14.38)	100.0
2	151	(2.49)	152.6 ± 12.2	(2.50)	100.0
3	27	(0.44)	26.6 ± 5.1	(0.44)	100.0
4	14	(0.23)	4.6 ± 2.2	(0.08)	99.6
5	4	(0.07)	0.8 ± 0.9	(0.01)	62.2
6	0	(0.00)	0.1 ± 0.4	(<0.01)	15.6
7	0	(0.00)	0.0 ± 0.2	(<0.01)	2.9
8	1	(0.02)	0.0 ± 0.1	(<0.01)	0.5
Total	6,076				

(b) Random markers occuring between consecutive crossovers \ddagger

No. of
markers per block
0
1
2
$\begin{array}{ll}1 & 288 \\ 3 & 126 \\ 4 & 111\end{array}$
4
5
6
7
8
9
10
11
12
13
14
15
$\begin{array}{lrrrrl}16 & 7 & (0.5) & 12.9 \pm 3.6 & (1.0) & 100.0 \\ 16 & 12 & (0.9) & 10.7 \pm 3.3 & (0.8) & 100.0 \\ 17 & 5 & (0.4) & 8.8 \pm 3.0 & (0.7) & 100.0 \\ 18 & 5 & (0.4) & 7.3 \pm 2.7 & (0.6) & 100.0\end{array}$
$\begin{array}{lrrrrl}18 & 5 & (0.5) & 6.0 \pm 2.4 & (0.5) & 100.0 \\ 19 & 10 & (0.8) & .5 .0 \pm 2.2 & (0.4) & 100.0 \\ 20 & 3 & (0.2) & 4.420 & (0.3) & 100.0\end{array}$
$\begin{array}{llllll}21 & 3 & (0.2) & 4.1 \pm 2.0 & (0.3) & 100 \\ 22 & 5 & (0.4) & 3.4 \pm 1.8 & (0.3) & 100\end{array}$

$23 \quad 7$| | 7 | (0.5) | 2.8 ± 1.7 |
| :--- | :--- | :--- | :--- |
| | 4 | (0.3) | 2.3 ± 15 |

$\begin{array}{lllll}25 & 4 & (0.3) & 2.3 \pm 1.5 & (0.2) \\ & 0 & (0.0) & 1.9 \pm 1.4 & (0.1)\end{array}$
$\begin{array}{lllll}26 & 5 & (0.4) & 1.6 \pm 1.3 & (0.1) \\ 27 & 1 & (0.1) & 1.3 \pm 1.1 & (0.1)\end{array}$
$\begin{array}{lllll}27 & 1 & (0.1) & 1.3 \pm 1.1 & (0.1) \\ 28 & 1 & (0.1) & 1.1 \pm 1.0 & (0.1)\end{array}$
$\begin{array}{rrrrrr}29 & 0 & (0.0) & 0.9 \pm 0.9 & (0.1) & 98.4 \\ 30 & 1 & (0.1) & 0.7 \pm 0.9 & (0.1) & 96.7 \\ 31 & 1 & (0.1) & 0.6 \pm 0.8 & (<0.1) & 94.0\end{array}$
$\begin{array}{llllll}32 & 0 & (0.0) & 0.5 \pm 0.7 & (<0.1) & 90 \\ 33 & 0 & (0.0) & 0.4 \pm 0.6 & (<0.1) & 85 .\end{array}$
$\begin{array}{llllll}34 & 1 & (0.1) & 0.3 \pm 0.6 & (<0.1) & 79.6 \\ 35 & 1 & (0.1) & 0.3 \pm 0.5 & (<0.1) & 73.1\end{array}$
$38 \quad 1 \quad(0.1) \quad 0.2 \pm 0.4 \quad(<0.1) \quad 52.2$
$\begin{array}{ll}40 & 1 \\ 54 & 1\end{array}$
Total $\quad 1,289$
*The intervals with $\geqslant 1$ crossover represent the 981 gaps between consecutive bins of recombinationally inseparable markers. Only random markers are considered to avoid biases in distribution of known genes.
\dagger The probability of the longest run is calculated in ref. 6. Briefly, if a coin with heads probability P is tossed n times, the length R_{n} of the longest head run has expected value $\mu=\log _{1 / \mathrm{p}}[(n-1)(1-p)+1]$ and the distribution of R_{n} is given approximately by $\operatorname{Prob}\left(R_{n}-\mu>t\right)=1-\exp \left(-p^{t}\right)$. In this case, $p=0.17$.
\ddagger The blocks with $\geqslant 1$ marker represent the 1,001 bins of recombinationally separable markers. Only random markers are considered to avoid biases in distribution of known genes.
§The probability of the longest head run is calculated with $p=0.83$.
isolated repeats show $<10 \%$ overlap with our current set), we have reached the point of diminishing returns. The map covers the entire mouse genome, with the markers being sufficiently abundant, polymorphic and stable to allow the mapping of monogenic or polygenic traits in virtually any mouse cross of interest ${ }^{5,8}$. Moreover, the markers are sufficiently dense to facilitate positional cloning of most mouse mutations. With $>\mathbf{9 0 \%}$ of the mouse genome being within 750 kb of a marker, and current mouse yeast artificial chromosome (YAC) libraries ${ }^{14,15}$ having a mean insert size $>750 \mathrm{~kb}$, the map affords ready access to the vast majority of the genome with little need for chromosomal walking, and provides a preliminary scaffold for constructing a genome-wide physical map ${ }^{16}$.

The map also provides a common framework for the mapping of mutations and cloned genes. In addition to our integration with the Frederick cross, the SSLP map is being used as a framework for other mapping crosses, including public resources at the Jackson Laboratory ${ }^{17}$ and the European Collaborative Interspecific Backcross (EUCIB) ${ }^{18}$. The EUCIB project (http://www.hgmp.mrc.ac.uk/MBx/MBxHomepage.html) is rescoring our SSLP markers in a cross with 1,000 meioses, which should yield finer resolution of order and correct remaining errors.

Together with the final report on the human genetic map ${ }^{13}$, this paper marks the close of the first phase of the Human Genome

Project: the construction of dense genetic maps of mouse and man.

Received 23 October 1995; accepted 19 February 1996.

1. Copeland, N. G. et al. Science 262, 57-66 (1993)
2. Copeland, N.G. et al. Sclence 262, 67-82 (1993).
3. Dietrich, W. F. et al. Genetics 131, 423-447 (1992).
4. Dietrich, W. F. et al. in Genetic Maps 1992 (ed. O'Brien, S.) 4.110-4.142 (Cold Spring Harbor Laboratory Press, NY, 1992).
5. Miller, J. C. et al. in Genetic Varlants and Strains of the Laboratory Mouse 3rd edn. (eds Lyons, M. F. \& Searie, A.) (Oxford Univ. Press, New York, 1994).
6. Dietrich, W. F. et al. Nature Genet. 7, 220-245 (1994).
7. Lander, E. S. et al. Genomics 1, 174-181 (1987).
8. Lincoln, S. E. \& Lander, E. S. Genomics 14, 604-610 (1992).
9. Copeland, N. G. \& Jenkins, N. A. Trends Genet 7, 113 (1991).
10. Ceci, J. D. et al. Genomics E, 699-709 (1989).
11. Bucriberg. A. M. et al. Genetics 122, 153-161 (1989).
12. Jacob. H. J. et al. Nature Genet 9, 63-69 (1995).
13. Dib, C. et al. Nature 380, 152-154 (1996).
14. Larin, Z, Monaco, A. P. \& Lehrach, H. Proc. natn. Acad. Sel. U.S.A. 88, 4123 (1991).
15. Kusumi, K et al. Mamm. Genome 4, 391-392 (1993).
16. Hudson, T. et al. Science 270, 1945-1955 (1995).
17. Rowe, L. B. et al. Mamm. Genome 5, 253-274 (1994).
18. The European Backcross Collaborative Group. Hum, molec. Genet. 3, 621-627 (1994).
19. Evans, E. in Genetic Varlants and Svains of the Laboratory Mouse 3rd edn (eds Lyons, M. F. \& Searle, A.) (Oxford Univ. Press, New York, 1994).

ACKNOWLEDGEMENTS. We thank L. Wangchuk, D. Tsering, G. Farino and K Norbu for technical assistance; D. Gilbert and L. Maltais for help in ascertaining official nomenclature for gene loci; and Research Genetics Inc. for making SSLP primers available to the community. This work was supported in part by a grant from the National Center for Human Genome Research (to ES.L). LK. was supported by a Special Emphasis Research Career Award from the National Center for Human Genome Research.

A comprehensive genetic map of the human genome based on 5,264 microsatellites

Colette Dlb*, Sabine Fauré*, Céclle Fizames*, Delphine Samson*, Nathalle Drouot*, Alain Vignal*, Philippe Millasseau*, Sophle Marc*, Jamilé Hazan*, Eric Seboun*, Mark Lathrop \dagger, Gabor Gyapay*, Jean Morissette* \ddagger \& Jean Weissenbach*§

* Généthon and CNRS URA 1922, 1 rue de l'Internationale, 91000 Evry, France
\dagger INSERM U358, Hôpital Saint-Louis, Paris, France
\ddagger Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec G1V 4G2, Canada
§To whom correspondence should be addressed
The great increase in successful linkage studies in a number of higher eukaryotes during recent years has essentially resulted from major improvements in reference genetic linkage maps ${ }^{1-6}$, which at present consist of short tandem repeat polymorphisms of simple sequences or microsatellites ${ }^{78}$. We report here the last version of the Généthon human linkage map ${ }^{6}$. This map consists of $\mathbf{5 , 2 6 4}$ short tandem (AC/TG) ${ }_{n}$ repeat polymorphisms with a mean heterozygosity of 70%. The map spans a sex-averaged genetic distance of $3,699 \mathrm{cM}$ and comprises 2,335 positions, of which 2,032 could be ordered with an odds ratio of at least $1,000: 1$ against alternative orders. The average interval size is $1.6 \mathrm{cM} ; 59 \%$ of the map is covered by intervals of 2 cM at most and 1% remains in intervals above 10 cM .
Microsatellite markers were obtained as described previously ${ }^{5.6}$. A heterozygosity above 0.5 was observed for 93% of the markers and above 0.7 for 58%. These values remain very close to those of our previous version ${ }^{6}$. Average heterozygosity per chromosome varied from 0.65 (chromosome X) to 0.73 (chromosome 19), with a mean value of 0.70 for the entire collection of markers (Table 1). Database sequence comparisons and searches detected matches of AFM (Association Française contre les Myopathies) markers with 19 genes and 74 anonymous markers.

Genotyping of the microsatellite markers was performed as described previously on the same eight CEPH (Centre d'Etudes du Polymorphisme Humaine) families (20 for the X chromosome), which comprised a total of 134 individuals and 186 meioses $^{5.6}$ (304 individuals and 291 meioses for the X chromosome). Genotypes were submitted to the same error-checking procedures as reported earlier ${ }^{6}$. These procedures consisted of (1) a reinvestigation of.families with abnormally elevated recombination frequencies between pairs of markers, and (2) correction or elimination of all double recombinant genotypes of markers placed in short linkage intervals. Such apparent double recombinations probably result from mutation events that converted an allele of one individual into the other allele. A more detailed analysis of double-recombination events and mutations in microsatellites is in preparation.
Map construction was done in a stepwise manner with multiple controls at each step. The total length of this map as evaluated from the CILINK algorithm ${ }^{9}$ is $3,699 \mathrm{cM}$ (Table 1). This is almost identical in length to our previous version, despite the addition of new terminal markers that extend the $93 / 94$ chromosome maps by $145 \mathrm{cM}(4 \%)$. The absence of increase in length probably results from a very thorough error-checking process and from elimination of apparent double-recombinant genotypes. The 5,264 markers are distributed in 2,335 positions (Fig. 1), 2,032 of which are ordered with odds ratios against alternative orders of at least $1,000: 1$. The mean interval size is 1.6 cM . The fraction of the map in intervals above 10 cM represents only 1 per cent of the total linkage distance and consists of 3 intervals spanning 11 cM . Fiftynine per cent of the map is covered by intervals of 2 cM at most, and 92 per cent by intervals of 5 cM at most. Markers from the CEPH and CHLC databases have been integrated into this map as shown in Fig. 2, which presents the map of chromosome 22 as an example. Detailed information, including integrated maps of all chromosomes, a list of markers, their primer sequences, heterozygosity, number and size-range of alleles observed in the 8 (or 20) genotyped CEPH families, sex-specific distances, and mutations, will be presented in an extended reprint available on request and on an electronic server (http://www.genethon.fr).

The total sex-specific lengths of autosomes estimated by CILINK ${ }^{9}$ show only slight variations when compared to the lengths of the previous map ${ }^{6}$. The length excess observed for the female map is comparable to other published maps. This excess

FIG. 1 Genetic map of the mouse. The map on the right was constructed in the Whitehead Institute/MIT CAST intercross; that on the left was constructed in the SPR backcross. For SSLPs, formal locus names have been abbreviated; for example, the locus $D 7$ Mit3 is simply denoted by 3 on chromosome 7 . For the few SSLP loci developed elsewhere, the laboratory designation is retained (for example, D4Nds1 is denoted Nds1). For SSLPS developed from genes for which a gene symbol has been assigned by the Mouse Nomenclature Committee, the gene symbol is given in parentheses. For RFLPs in genes, the gene symbol is given. Linkage groups are represented by lines, with the centromere at the top. Loci genotyped in both crosses are followed by an asterisk; a line connects the respective positions in the two crosses. Loci genotyped as dominant systems are indicated by brackets. The map position of such loci is not certain because the meioses are not fully informative. The range of possible positions for the locus can be found by examining our electronic database, which contains the underlying genotypes for all loci. Loci that did not recombine in the meioses studied are listed together in a block. Distances were calculated by using Kosambi's map function ${ }^{6}$. Map scale is shown to the side of the map of chromosome 1 . One anomaly should be noted: in the (B6 \times SPRET) backcross, an SSIP (D9Mit33) derived from the sequence of the Crabp1 gene maps to a different region of chromosome 9 than does an RFLP detected by a probe for this gene. This does not appear to be due to genotype errors, but may anse because the two assays detect different loci for technical reasons. The underlying data are all available electronically from our World-Wide Web site (http://ww-genome.wi.mit.edu), an electronic mail server (send a message with the single word 'help' to genome_database@genome.w.mit.edu), and anonymous ftp (at ftp-genome.w.mit.edu). The analysis tools are also available electronically.

Solid-phase reversible immobilization for the isolation of PCR products

Margaret M. DeAngelis, David G. Wang and Trevor L. Hawkins*

Whitehead Institute/MIT, Center for Genome Research, One Kendall Square, Cambridge, MA 02139, USA

Received March 15, 1995; Revised and Accepted October 12, 1995

Large numbers of templates for DNA sequencing can be produced via PCR directly from plaques, colonies or genomic DNA. Sequencing directly from PCR products has many advantages over subcloning; the ability to PCR directly from plaques or colonies removes the need for template preparation and is highly amenable to automation. The main problem with this approach is the subsequent purification of the amplified products prior to DNA sequencing, especially since the sequence quality is proportional to the purity of the template. This is especially important when sequencing PCR products to identify sequence polymorphisms.

The advantages of using magnetic particles in molecular and diagnostic biology have been described previously (1-4). The use of solid phase techniques has significantly increased over the past few years as more biochemical methods have become adapted for use with magnetic particles.

We introduce here a general method for producing quality DNA sequencing template from PCR products. This procedure is rapid and inexpensive ($\$ 0.15$ per prep.). The method termed SPRI (solid-phase reversible immobilization) avoids organic extraction, filtration and centrifugation steps (5). The SPRI method employs a carboxyl coated magnetic particle manufactured by PerSeptive Diagnostics, Cambridge, MA. (cat no \#8-4125). We discovered that these particles could reversibly bind DNA in the presence of polyethylene glycol (PEG) and salt.

This solid phase has no streptavidin, making the use of biotinylated primers or probes attached to the particles unnecessary. When using biotinylated primers one must exercise caution since excess primer will compete for streptavidin particle binding (6). This in turn may also contribute to lower yield and quality of the template.

Here we describe a general PCR isolation procedure which is amenable to automation, rapid and yields double-stranded PCR product suitable for DNA sequencing. The method is as follows.
PCR primers. Forward primers are tailed with -21 M 13 sequences. TGTAAAACGACGGCCAGT (18 nt).

$P C R$ reagents.

1. $10 \times$ PCR buffer [100 mM Tris- HCl (pH 9.3); 500 mM KCl ; $15 \mathrm{mM} \mathrm{MgCl} 2 ; 0.01 \%$ gelatin].
2. 10 mM dNTPs .
3. $10 \mu \mathrm{M}$ forward and reverse primers.
$4.20 \mathrm{ng} / \mu \mathrm{l}$ genomic DNA.

Figure 1. This gel shows an example of PCR products before and after purification using SPRI. Lanes M are $200 \mathrm{ng} \phi \mathrm{X} 174$ HaeIII digest, lanes 1 and 2 are one-tenth of a PCR product before and after SPRI purification, lanes 3 and 4 are one tenth of a PCR product spiked with 100 nmol of excess primer (36 nt) prior to purification, lane 3 is before and lane 4 is after SPRI. Lanes 5 and 6 are identical to lanes 3 and 4 using a different PCR product. Lanes 7 and 8 are 100 nmol excess primer (36 nt) before and after purification using SPRI.

Standard PCR reaction $(50 \mu l)$.

1. $6.5 \mu \mathrm{l}$ PCR MIX [$10 \times$ PCR buffer, $5 \mu \mathrm{l} ; 10 \mathrm{mM}$ dNTPs, 0.5 $\mu \mathrm{l} ; \mathrm{Taq}, 1 \mathrm{U} ; \mathrm{dH}_{2} \mathrm{O}$ to add up to $6.5 \mu \mathrm{l}$].
2. $41 \mu \mathrm{l}$ primer dilution [$10 \mu \mathrm{M}$ F\&R primers, $0.5 \mu \mathrm{l} ; \mathrm{dH}_{2} \mathrm{O}$, $40.5 \mu 1$].
3. $2.5 \mu \mathrm{l}$ genomic DNA (50 ng).

PCR conditions (35 cycles). $96^{\circ} \mathrm{C}, 5 \mathrm{~min} ; 96^{\circ} \mathrm{C}, 30 \mathrm{~s} ; 57^{\circ} \mathrm{C}$ or $55^{\circ} \mathrm{C}, 2 \mathrm{~min} ; 72^{\circ} \mathrm{C}, 2 \mathrm{~min} ; 72^{\circ} \mathrm{C}, 5 \mathrm{~min} ; 4^{\circ} \mathrm{C}$.

Solid-phase reversible immobilization for the purification of $P C R$ products (96-well format).

1. Wash $10 \mathrm{mg} / \mathrm{ml}$ carboxyl coated magnetic particles three times with WASH BUFFER [0.5 M EDTA (pH 8.0)].
2. For each PCR reaction ($50 \mu \mathrm{l}$), add $10 \mu \mathrm{l}$ of washed particles and $50 \mu \mathrm{l}$ of HYB BUFFER ($2.5 \mathrm{M} \mathrm{NaCl} / 20 \%$ PEG 8000). Mix well and incubate at room temperature for 10 min .
3. Place the microtitre plate on a magnet for 2 min and wash the particles twice with $150 \mu 1$ of $70 \% \mathrm{EtOH}$.
4. Air dry for 2 min , and resuspend the particles in $20 \mu \mathrm{l}$ of ELUTION BUFFER [10 mM Tris-acetate (pH 7.8)] and incubate at room temperature for 5 min .
5. Magnetically separate the particles and remove the supernatant for testing and sequencing.

[^8]

Figure 2. Sequencing traces derived from three related individuals are aligned to show the reliability of calling heterozygous bases. The cycle sequencing reactions of purified double-stranded SPRI purified PCR products were performed using AmpliTaq FS DNA polymerase (Applied Biosystems Division of Perkin Elmer, CA) using dye-labeled -21 M13 primers. The reactions were then run on an ABI 373A following the manufacturers protocols.

The SPRI PCR method binds DNA based upon size as shown in Figure 1. This figure shows that for a 2 kb PCR product, the final yield is $80-90 \%$ whereas the yield from a PCR primer $<50 \mathrm{nt}$ in length is almost undetectable. We have shown previously that the lower limit at which yields in excess of 80% are achieved is 200 bp , the maximum limit is in excess of 200 kb (BAC DNA isolation).

Overall this solid-phase procedure is fast, simple and highly automatable. Over the past year, this method has been used to isolate >5000 PCR products for DNA sequencing, the majority of which have been purified on our robotic systems. As shown in Figure 2, the sequence data is of the highest quality, allowing the identification of single base pair polymorphisms.

ACKNOWLEDGEMENTS

We would like to thank Dr Chris Burns for supplying the magnetic
particles. In addition we would like to thank the members of the DNA Sequencing group for help and support during this project. This work was supported by NIH and DOE funding.

REFERENCES

1 Uhlen,M. (1989) Nature 340, 733-744.
2 Hulman,T., Stahl,S., Hornes,E. and Uhlen,M. (1989) Nucleic Acids Res. 17, 4937-4946.
3 Hawkins,T.L (1992) J. DNA Seq. Mapping 3, 65-69.
4 Hawkins, T.L. (1994) In Craig Venter J. (ed.) Automated DNA sequencing and analysis.
5 Hawkins,T.L., O'Connor-Morin,T., Roy,A. and Santillan,C. (1994) Nucleic Acids Res. 22, 4543-4544.
6 Sibson, D.R. (1994) In Craig Venter J. (ed.) Automated DNA sequencing and analysis.

Thermal Cycle DNA Sequence Setup Using a Modified Lab Workstation

T. L. Hawkins, ${ }^{\dagger}$ S. R. Banerjee, C. Brodowski, F. Days, C. A. Evans, D. Levinson, and K. Ingalls

Abstract

Novel biochemical approaches and the modification of a commercially available robotic device has led to the development of a small flexible system that can perform the setup of thermal cycle DNA sequencing reactions in a high-throughput manner. The system is highly flexible without the need for large or expensive automation. Our results from using this small footprint robotic system open up the possibility of using this system for other molecular biology tasks.

INTRODUCTION

Widespread laboratory automation is set to be the next evolutionary step for molecular biology. Basic robotic workstations are becoming available although, at first inspection, their day one usefulness is rather limited (Kristensen et al. [1], Watson et al.

[^9][2], and Smith et al. [3]). Molecular biology projects such as the Human Genome initiative and associated model organism studies have led to the need for useful and effective automation. For our research, we utilize three basic molecular biology techniques: clone picking, DNA purification, and DNA sequencing. When looking at ways to automate these tasks, we failed to find an all-purpose commercially available system. Rather than designing our own system, which could be redundant and out of date by completion, we decided to purchase the most flexible $X Y Z$ system that would allow us to develop our applications. We started with a Tecan RSP 5032, which had a working area of $434 \times 300 \mathrm{~mm}$ with two robotic arms. One arm had a single fixed tip, while the second had four fixed tips. All tips were capable of capacitance sensing.

Our aim was to provide our lab with a small, highly flexible, robotic system that could initially perform the task of DNA sequence setup to feed six ABI 373 DNA sequencers per day. The device needed to be usable by personnel without knowledge of robotics, programming, or biological processes being carried out. To achieve this goal, we made a number of significant modifications to the Tecan system. To aid the user, we wrote our own menu-driven soft-
ware that allowed procedures to be called via a point and click environment. We also developed a $12-$ channel pipette tip to replace the Tecan's more standard four fixed tips, which dramatically decreased the time spent in liquid handling. To allow flexibility, we designed various workstation layouts for different procedures, the designs of which are all available free from the authors (e-mail: tlh@genome.wi.mit.edu).

This article describes the modification of the Tecan RSP 5032 robot to facilitate high-throughput DNA sequencing setup. Here we discuss the approaches used, the time taken, and the results from using the device.

MATERIALS AND METHODS

Tecan RSP 5032 Dimensions and Specifications

The Tecan RSP 5032 is a small footprint robotic workstation (Figure 1). The system has two arms: one with a single fixed tip and the other with 12 fixed

Figure 1. The Tecan microtiter plate layout, with the Cavro syringes shown at the back of the instrument in two banks of 8 and 4 syringes. Both arms can access the common 9 microtiter plate positions. The reagent tubes can only be accessed by arm 1 while the reagent reservoirs can only be accessed by arm 2.
tips (tip spacing 9 mm , own design). All tips are capable of liquid detection using capacitance sensing.

12-Channel Modifications

The RSP 5032 normally utilized a single tip on one arm and a four tip on the other. In order to expand to 12 channels, we removed the internal Tecan diluters and replaced these with an eight-channel diluter Cavro XL 3000-8 with RS-232 communication (Cavro \#724522) and a four-channel diluter Cavro XL 3000-4 (Cavro \#724510). The two diluters were connected in parallel so that from the software point of view they were one unit. A Newark 24 V power supply was used to power the units. The Cavro units were different from the Tecan diluters in that one stepper motor drives all syringes in each unit. Each syringe input and output was controlled using different switch valves. This allowed no individual volume control but facilitated on/off switching of all channels. For the 12 -channel device, this approach was suitable since our applications always used all 12 channels with identical volumes.

Time Parameters of the Modified 12-Tip Tecan

General

Purging time for syringes and tips: 20 seconds
Preparing duplicates of 96 samples into a microtiter plate aspirating $10 \mu \mathrm{~L}$ of sample: $\quad 2$ minutes Transfer: 35 seconds
Tip washing: 1 minute, 25 seconds
Dispensing $100 \mu \mathrm{~L}$ of reagent into microtiter plate: 20 seconds

Sequencing Setup

Transferring $50 \mu \mathrm{~L}$ of sample by aliquoting 10 and $15 \mu \mathrm{~L}$ volumes into cycle plates: 4 minutes, 30 seconds
Transfer:
2 minutes
Tip washing:
2 minutes, 30 seconds

Adding $10 \mu \mathrm{~L}$ dye-primer mix to a microtiter plate performed by the single tip:

10 minutes
Mix addition: 9 minutes, 20 seconds
Tip washing: 40 seconds

Software

The Tecan robot was available with INTEGRATOR, a PASCAL-like language. The compiler ran on a standard 486PC, though a 286 would have been suf-

TABLE 1. Tecan RSP 5032 Specifications

	Width (mm)	Depth (mm)	Height (mm)
Overall dimensions	770	647	500
Common workspace (two arms)	434	300	160
	$X(\mathrm{~mm})$	$Y(\mathrm{~mm})$	$Z(\mathrm{~mm})$
Smallest addressable move	0.229	0.127	0.100
Maximum velocity	$0.92 \mathrm{~m} / \mathrm{s}$	$0.64 \mathrm{~m} / \mathrm{s}$	$0.6 \mathrm{~m} / \mathrm{s}$

ficient. The INTEGRATOR package included low level procedures such as "movetopos (rack, position)" to which parameters could be passed in the normal manner. Racks such as microtiter arrays were defined using the INTEGRATOR teach mode. The teach mode allowed users to define positions such as maximum z displacement, dispensing height, and travel height. A series of racks (e.g., rectangular, circular, discrete) together comprised a layout.

We used the layout system of the INTEGRATOR to define specific areas of the common workspace for wash sites, positions of microtiter plates, DNA plates, pipette tip holders, reagents, etc. Specific racks were defined by a starting point (position 1), a final point (position n), and the number of columns and rows of points (rectangular rack) between the start and end points. The INTEGRATOR then calculated the separation distance between the wells and assigned each well a specific location in the rack. The rack system alleviated the problem of having to define well positions individually. In the case of $96-$ well microtiter plates, we defined the first well and the last well, as well as the number of rows (8) and columns (12).

The INTEGRATOR also offered the possibility of external device control through a standard serial port. Upon designating the auxiliary devices in the INTEGRATOR, we were able to directly send commands to any external devices via the programming environment. Because the software allowed us to manipulate any three external devices simultaneously, our system rapidly became amenable to expansion.

DNA Sequencing Chemistry Modifications

Taq Dye-Primer-Cycled Sequencing Reactions for the ABI 373A DNA Sequencer: Buffers and Solutions

Cycle buffer: 400 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.9,100 \mathrm{mM}$ ammonium sulfate, and 25 mM magnesium chloride.
Mix
Mix
A: $\quad 62.5 \mu \mathrm{M} \mathrm{dATP} \quad$ C: $\quad 250 \mu \mathrm{M} \mathrm{dATP}$

$250 \mu \mathrm{M} \mathrm{dCTP}$		$62.5 \mu \mathrm{M} \mathrm{dCTP}$
$250 \mu \mathrm{M} \mathrm{dGTP}$		$250 \mu \mathrm{M}$ dGTP
$250 \mu \mathrm{M} \mathrm{dTTP}$		$250 \mu \mathrm{M}$ dTTP
1.5 mM ddATP		0.75 m ddCTP
	Mix	
$250 \mu \mathrm{M}$ dATP	$\mathrm{T}:$	$250 \mu \mathrm{M}$ dATP
$250 \mu \mathrm{M}$ dCTP		$250 \mu \mathrm{M}$ dCTP
$62.5 \mu \mathrm{M} \mathrm{dGTP}$		$250 \mu \mathrm{M}$ dGTP
$250 \mu \mathrm{M}$ dTTP	$62.5 \mu \mathrm{M}$ dTTP	
0.125 mM ddGTP	1.25 m ddTPP	

Primers: HPLC purified and made up to 1 pmol $/ \mu \mathrm{L}$. DNA: single or double stranded at $15 \mathrm{ng} / \mu \mathrm{L}$.
Taq polymerase: ca. $5 \mathrm{U} / \mu \mathrm{L}$

Thermal Cycling

Reaction mix for 96 reactions. This required the following:

A Stock	C Stock	G Stock	T Stock
$400 \mu \mathrm{~L}$ buffer			
$104 \mu \mathrm{~L} \mathrm{~A} \mathrm{mix}$	$104 \mu \mathrm{~L} \mathrm{C} \mathrm{mix}$	$200 \mu \mathrm{~L}$ G mix	$200 \mu \mathrm{~L} \mathrm{~T}$ mix
$104 \mu \mathrm{~L}$ Taq mix	$104 \mu \mathrm{~L}$ Taq mix	$200 \mu \mathrm{~L}$ Taq mix	$200 \mu \mathrm{~L}$ Taq mix
$32 \mu \mathrm{~L}$ primer	$32 \mu \mathrm{~L}$ primer	$64 \mu \mathrm{~L}$ primer	$64 \mu \mathrm{~L}$ primer
$340 \mu \mathrm{~L}$ water	$340 \mu \mathrm{~L}$ water	$100 \mu \mathrm{~L}$ water	$100 \mu \mathrm{~L}$ water

Taq mix: $120 \mu \mathrm{~L}$ Taq, $96 \mu \mathrm{~L}$ buffer, $480 \mu \mathrm{~L}$ water.
These mixes were placed on the robot which added the following to each well:

Reagent	A	C	G	T
Stock solution	$10 \mu \mathrm{~L}$	$10 \mu \mathrm{~L}$	$10 \mu \mathrm{~L}$	$10 \mu \mathrm{~L}$

Then the following was added using the 12 -channel manifold:
DNA template $\quad 10 \mu \mathrm{~L} \quad 10 \mu \mathrm{~L} \quad 15 \mu \mathrm{~L} \quad 15 \mu \mathrm{~L}$
After completion, the cycle plates were removed from the Tecan, capped, and then placed on Techne GeneE thermal cyclers, which had heated lids to prevent evaporation. The cycle times for the M13 clones were as follows:
$96^{\circ} \mathrm{C}, 30$ seconds; $51^{\circ} \mathrm{C}$, 1 second; and $72^{\circ} \mathrm{C}, 1$ minute for 1 cycle followed by:
$96^{\circ} \mathrm{C}$, 1 second; $51^{\circ} \mathrm{C}, 1$ second; and $72^{\circ} \mathrm{C}, 1$ minute for 15 cycles followed by:
$96^{\circ} \mathrm{C}, 1$ second; and $72^{\circ} \mathrm{C}, 1$ minute for 15 cycles.

RESULTS

Software Developments

The Cavro diluter units required independent control from the RSP workstation since the functions within INTEGRATOR were specific to the Tecan diluters. In our system, we retained the Tecan dual diluter for arm one and only used the Cavro systems for arm two. This required the writing of new functions within INTEGRATOR to control the Cavro diluters and to move the arm to correct positions when removing or adding liquids. These functions were added to the standard INTEGRATOR architecture.

Hardware Developments

To utilize the 12 -channel system, we designed a suitable head and mounting assembly, as shown in Figure 2. The tips were stainless steel with siliconized internal and external surfaces and had an internal diameter of 1 mm . The main problems in assembly of this new part involved the elimination of torque on the head. This was achieved by adding a second z rod and fixing assembly. With these modifications, we were able to achieve reproducible positioning of all 12 tips.

The Cavro diluter units, fitted with 1 mL syringes, gave a working accuracy of $+/-5 \%$ on volumes of $10 \mu \mathrm{~L}$ well within our required specifications. We were able to control volumes, ramp speeds, cutoff speeds, and individual switching to enable liquids of various viscosities to be dispensed. In all experiments, we found no edge effects or variations from tip to tip. Washing the tips involved flushing of the tip to a waste position followed by immersion of the tips into water and further dispensing of water through the tips. This had the effect of cleaning both the internal and external surfaces of the tips.

DNA Sequence Setup

The 12 -channel system has been in full operation in this lab since September 1994 with over 25,000 DNA sequence reactions performed to date. The setup for the DNA sequencing process (Figure 3) required four cycling plates, the reaction mixes for $\mathrm{A}, \mathrm{C}, \mathrm{G}$, and T, and the purified DNA presented in a 96 -well plate. For our system, the DNA were M13 clones containing either human or mouse DNA that had been isolated using a magnetic particle purification process (Hawkins [4, 5]). The DNA sequencing chemistry employed was taq dye-primer sequencing that required $600-800$ ng DNA and could be set up and then thermal cycled to provide linear amplification. This system could, however, be used for other types

Figure 2. The 12 -channel pipette head. The head was constructed from aluminum with stainless steel pins used as tips. To prevent torque, we fitted an additional z rod, which was secured to the z-actuator mounting. The 12 channel wash reservoir is also shown.
of DNA sequencing chemistry, such as primer and terminator approaches (Hawkins et al. [6]) and those employed by the Pharmacia ALF or the LiCor systems.

The robot took 14 minutes to set up 96 dyeprimer sequencing reactions using four wells per reaction. This is limited by the addition of the reagent mixes by the single tip, which takes 10 minutes. We rejected the use of the 12 tip for mix addition since this would require time to aliquot mixes from tubes to plates to allow the 12 tip access. The setup of ABI style dye terminators would be much faster because only one well would be used per clone. In using the robotic system, we found that the overall quality of reactions increased compared to the manual system, especially because the robot required no further intervention until the cycle plates were removed and placed on thermal cyclers. We decided not to integrate thermal cyclers into the system since this would "lock up" the robot for many hours while the re-

Figure 3. The DNA sequencing setup. Five of the available nine microtiter plate positions are occupied. Centrally, one can see the DNA plate presented as a flexible Falcon 9311 plate. The remaining four plates are composed of 0.2 mL thin-walled tubes. In the reagent position, the four sequencing mixes, $\mathrm{A}, \mathrm{C}, \mathrm{G}$, and T are placed.
actions were being cycled. An example of the data quality from this approach is shown in Figure 4.

DISCUSSION

Using the modified RSP system, we can set up the 432 sequencing reactions, necessary to fill our 6 ABI
sequencers (36 lanes $\times 2$ runs/day), in less than 2 hours. The automation of the DNA sequencing process highlighted two key points in process automation. First, designing Peltier-driven heat blocks into the workspace would have allowed us to set up and cycle our sequencing reactions, however, this would have incapacitated the robot for several hours during thermal cycling. Second, pipetting small volumes is difficult to reproduce; therefore, it was easier to redesign the biochemistry than reengineer the robot. As with all process automation, there are limitations from both the biochemical and the engineering facets. In many ways, our tasks have been to expedite the biochemical techniques so that they are compatible with specifications of the robot, while not compromising the yield or the quality of the DNA products.

The features of the INTEGRATOR software such as the rack and layout system, the database, and external device control provided us a basic system from which to expand. The Tecan $X Y Z$ system furthermore furnished us with a flexible system that allowed us to customize our applications through its simple liquid handling capabilities and through the addition of the Cavro diluters.

The design of a small highly flexible system with both single- and 12 -tip pipetting heads has ob-

Figure 4. Shown here is an example of the data quality produced by samples set up on this device. The sequence chromatograph is from a taq dye-primer reaction, which was electrophoresed on an ABI 373A following the manufacturers protocols.
viously provided us with a unit to automate many other biochemical tasks. Currently under development are the automation of clone picking, PCR set up, and DNA purification using magnetic particles as a solid phase.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Kais Arfaoui from Tecan US for his help in INTEGRATOR use and Cavro control. This work was supported by NIH Grant HG\#000948.

REFERENCES

[1] T. Kristensen, H. Voss, and W. Ansorge, "A simple and rapid preparation of M13 sequencing templates
for manual and automated dideoxy sequencing," Nucl. Acids Res., 15, 5507-5516 (1987).
[2] A. Watson, N. Smaldon, R. Lucke, and T. Hawkins, "The Caenorhabditis elegans genome project: first steps in automation." Nature, 362, 569-560 (1993).
[3] V. Smith, C. Brown, A. Bankier, and B. Barrell, "Semiautomated preparation of DNA templates for large-scale sequencing projects." J. DNA Seq. Mapping, 1, 73-78 (1990).
[4] T. Hawkins, "M13 single-strand purification using a biotinylated probe and streptavidin coated magnetic beads." J. DNA Seq. Mapping, 3, 65-69 (1992).
[5] T. L. Hawkins, "The use of custom magnetic particles in molecular biology," in J. Craig Venter (ed), Automated DNA Sequencing and Analysis (1986).
[6] T. Hawkins, Z. Du, N. Halloran, and R. Wilson, "Fluorescence chemistries for automated primer-directed DNA sequencing." Electrophoresis, 13, 552559 (1992).

DNA purification and isolation using a solid-phase

Trevor L.Hawkins, Tara O'Connor-Morin, Aparna Roy ${ }^{1}$ and Cynthia Santillan Whitehead Institute/MIT, Center for Genome Research, One Kendall Square, Cambridge, MA 02139 and 'PerSeptive Diagnostics, 735 Concord Avenue, Cambridge, MA 02138, USA

Reprinted from Nucleic Acids Research, Volume 22 No. 21 (1994) pp 4543-4544
() PerSeptive Diagnostics, Inc.

A Subsidiary of PerSeptive Biosyslems, Inc.
735 Concord Avenue • Cambridge, MA 02138 USA Toll-free: (800) 343-1346 • International: (617) 499-1433 • Fax: (617) 497-6927

DNA purification and isolation using a solid-phase

Trevor L.Hawkins*, Tara O'Connor-Morin, Aparna Roy ${ }^{1}$ and Cynthia Santillan
Whitehead Institute/MIT, Center for Genome Research, One Kendall Square, Cambridge, MA 02139 and ${ }^{1}$ PerSeptive Diagnostics, 735 Concord Avenue, Cambridge, MA 02138, USA

Received August 4, 1994; Revised and Accepted September 17, 1994

Preparation and manipulation of high quality DNA is a vital step in molecular biology. Although there are many methods reported for single and double stranded DNA isolations (1, 2, 3, 4, 5) there are few procedures that are rapid, low cost and procedurally identical for all DNA types, from plasmids to single copy BAC clones.
We have noted that under conditions of high polyethylene glycol (PEG) and salt concentration (10% PEG 8000 and 1.25 M NaCl final concentrations) (6), DNA would bind to the surface of carboxyl coated magnetic particles. Once bound, the DNA bead complex could be extensively washed and finally eluted in water to yield purified DNA.
We have used carboxyl coated magnetic particles (Cat No. \#84125 B) available from PerSeptive Diagnostics (Cambridge, MA) or all our applications. These particles are $1 \mu \mathrm{M}$ in diameter groups on the surface. These surface features are important since we have obtained reduced yields when either the iron or the negative charge are removed from the solid-phase surface. We have adapted the procedure, called SPRI (solid-phase reversible immobilization) for use in all scales of template preparations and manipulations. As well as the standard mini of the SPRI technology in the extraction of DNA from agarose. The method for the mini prep protocol is as follows:

1. Take 1 ml of overnight culture containing the plasmid clone in an Eppendorf ${ }^{\mathrm{TM}}$ tube
Centrifuge for 2 minutes to pellet the cells
Pour off the supernatant and resuspend the pellet in 30μ Solution 1 (50 mM Glucose, 25 mM Tris.Cl $\mathrm{pH} 8,10 \mathrm{mM}$ EDTA pH 8, $100 \mu \mathrm{~g} / \mathrm{ml}$ RNase).
Add $60 \mu \mathrm{l}$ Solution 2 ($0.2 \mathrm{~N} \mathrm{NaOH}, 1 \%$ SDS) and mix by shaking. Leave at room temperature for 5 minutes.
Add 4 I Solution 3 (3 M KAAc), mix by shaking and leave Centrifuge for 10 minutes to a new Eppendorf tube. wash three times in 0.5 m . $10 \mu 10.5$ EDTA. Add to the cleared 7.2 and resuspend in Add $100 \mu \mathrm{l}$ of the binding buffer (20% PEG $8000,2.5 \mathrm{M} \mathrm{NaCl}$) and mix.
. Allow to incubate at room temperature for 5 minutes.
2. Wash the magnetic particles twice with 5 M NaCl and onc
with wash buffer (25 mM Tris.Acetate $\mathrm{pH} 7.8,100 \mathrm{mM}$ KOAc, $10 \mathrm{mM} \mathrm{Mg} \mathrm{Mg}_{2} \mathrm{OAc}, 1 \mathrm{mM}$ DTT). There is no need to resuspend the particles during each wash
3. Resuspend the particles in $50 \mu \mathrm{l}$ water and incubate at room temperature for 1 minute
4. Magnetically separate the particles and remove the DNA to a new tube.
From our results, shown in Figure 1, we estimate the initial binding efficiency to be approximately 100% under conditions in which the particles were in excess. Washing the solid phase in which the particles were in excess. Washing the solid phase
then reduces this yield to approximately 80%, dependent on the types of wash solutions used. The solid-phase will bind to all types of DNA, which facilitates the same procedure to be applied to all DNA vectors and fragments. We have demonstrated the application of SPRI for the isolation of PCE products, M13 single stranded DNA, plasmids, cosmids and BACs with inserts up to 240 Kb . The procedures for all these DNA isolations are identical.

Figure 1. This gel shows the various types of DNA that can be isolated using Figure 1. This gel shows the various types of DNA that can be isolated using
the SPRI technique. M is a 200 ong Lambda HindIII marker. Lane 1 shows the the SPRI technique. M is a 200ng Lambda HinduI marker. Lane 1 shows the
pUCI8 superatant after DNA binding to the solid-phase,demonstrating 100%
binding Lane 2 shows uncut pUC18, lane 3 SmaIA cut pUC18, lane 4 uncut

Disruption of the nuclear hormone receptor ROR α in staggerer mice

Bruce A. Hamilton*, Wayne N. Frankel \dagger, Anne W. Kerrebrock*, Trevor L. Hawkins*, William FitzHugh ${ }^{*}$, Kenro Kusumi* ${ }^{\text {Ann }}$, Lane B. Russells, Ken L Mueller* ${ }^{\text {² }}$ Victor van Berkel*, Bruce W. Birren*, Leonid Kruglyak* \& Eric S. Lander* \ddagger

Whitehead Institute for Biomedical Research, Nine Cambridge Centre, ambridge, Massachusetts, 02142, USA
The Jackson Laboratory, Bar Harbor, Maine 04609, USA
Department of Biology, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
$37831-8077$, USA
Homozygous staggerer (sg) mice show a characteristic sever cerebellar ataxia due to a cell-autonomous defect in the develop ment of Purkinje cells ${ }^{1,2}$. These cells show immature morphology ynaptic arrangement, biochemical properties and gene expresion, and are reduced in numbers ${ }^{3-12}$. In addition, sg heterosuggesting that $s g$ has a role in mature Purkinje cells. Effects o his mutation on cerebellar development have been studied for 2.5 years, but its molecular basis has remained unknown. We have enetically mapped staggerer to an interval of 160 kilobases on oouse chromosome 9 which was found to contain the gene superfamily. Staggerer mice were found to carry a deletio within the RORa gene that prevents translation of the ligandinding homology domain. We propose a model based on thes results, in which RORa interacts with the thyroid hormon ignalling pathway to induce Purkinje-cell maturation

736

We set out to identify the defective gene in staggerer by positional cloning, using genetic and physical mapping (Fig. 1). Apart from some large chromosomal deletions (such as Df 10FDFoD; Fig. 1), there is only one allele of sg. We mapped this allele relative
to simple sequence length polymorphisms (SSLPs) from the Whitehead/MIT map ${ }^{14}$ in 2,497 informative meioses. Marker loci that remained tightly linked to $s g$ after 1,000 meioses were
used to isolate clones fromyeast artificial chromosomes (YACs) ${ }^{15}$. Genetic mapping localized $s g$ to a 610 -kilobase (kb) YAC and subsequ.
In the course of sequencing clones from this region, we discovered that the ROR α gene was at least partially contained in hormone receptor of the class that can bind DNA and activa hormone receptor of the class that can bind DNA and activate Although ROR α has been extensively studied, its ligand, if any, remains unknown.
To study the genomic region in more detail, we used shotgun sequencing (with ninefold redundancy) to determine the nucleotide sequence of BAC $287 E 5$. In addition, we isolated and
sequenced a complementary DNA clone that contains the entire coding region for the mouse ROR $\alpha 1$ isoform. A full description of these sequences will be presented elsewhere. Comparison of the CDNA and genomic sequences revealed that 1,370 base pairs (bp) of the $1,566-\mathrm{bp}$ coding region is spread over $\sim 35 \mathrm{~kb}$ of BAC
287 E 5 and provided the complete exon-intron structure of this portion of the gene. The 5^{\prime} end extends some 20 kb further beyond BAC 28 A1.
Because chimaera experiments have shown that $s g$ affects Purkinje cells in a cell-autonomous fashion ${ }^{1220}$, we expected that the sg gene should be expressed in cerebellar Purkinje cells in
normal mice and should be altered in either its expression or normal mice and should be altered in either its expression or
coding sequence in the mutant. To evaluate ROR α by these criteria (Fig. 2), we first hybridized northern blots to a probe from the hinge and ligand-binding domains of ROR α. Of three transcripts seen in wild-type cerebellum ($\sim 10.5,6.5$ and 2.4 kb), the larger two were of approximately normal length but greatly
reduced abundance in sg/sg cerebella. Analysis using reverse

NATURE • VOL $379 \cdot 22$ FEBRUARY 1996

FIG. 1 Genetic and physical map of the staggerer locus. Top line, genetic
map based on 2,497 informative meioses typed for SSLP markers and an map based on 2,497 informative meioses typed for SSLP markers and an SSCP in the mek-1 gene. A chromosomal deficiency that removes sg
(10FDFoD) and one that does not (99G) are shown as open bars. A minimum tiling path of YACS used as a scaffold for physical mapping and
the full complement of BAC and P1 clones used for high-resolution mapping and sequencing are show
DNA polymorohisms used as genetic markers are indicated by vertical DNA polymorphisms used as genetic markers are indicated by vertical
lines; meiotic recombinants are indicated by an arowhead and the
corresponding animal ID number at the bottom of the figure. Arrows corresponding animal ID number at the bottom of the figure. Arrows
indicate the genes for RORx and calpactin 136 (p 36), which was also found to lie nearby but outside the sg intenal.
METHODS. Genetic mapping was performed in two crosses, B6CWD-sg/+
\times MOLF/Ei and C57BL $/ 6 \mathrm{~J}-\mathrm{sg} /+\times \mathrm{CAST} / \mathrm{E}$. In the first cross a single sg $\times \mathrm{MOLF} / \mathrm{EE}$ and $\mathrm{C} 57 \mathrm{BL} / \mathrm{JJ} \mathrm{-sg} /+\times \mathrm{CAST} / \mathrm{EE}$. In the first cross, a single sg
heterozygous male from an earlier mapping cross (C57BL $/ 6 \mathrm{~J}$-sg $/+$
 genotyped and sg heterozygotes were mated with each other as an
 cross, , 57 BBL/ $/ \mathrm{J}$-Sg/ + animals were mated with CAST//i a and the resulting
ss heteroygotes were intercosssed. Marker order was inferred by minimizsg heterozygotes were intercrossed. Marker order was infered by min iniz-
ing double recombinants and virifid or refined for markers between which
no recombinations were obsenved by byysical map STS content. STS f trom no recombinations were observed) by physical map STS content. STSs from
the ends of YACs were isolated by inverse PCR. Additional STSs were the ends of YACS were isolated by inverse PCR. Additional STSs were
obtained from YACs by equencing frand Sau3Al and EcoRI subclones obtained from YACs by sequencing on random
made from CHEF gel-isolated YAC DNA. P1 clones were obtained from Genome Systems (St Louis) using PCR assays. BAC clones (B.W.B.
unpublished results) were identifed by a combination of PCR assays and

oligonucleotide hybridization. Ends of physical mapping clones were iso-
lated by inverse PCR and sequenced to provide additional STS coverage.

FG. 2 Evaluation of
ROR x as a candidate
RORx as a candidate
gene for staggerer
gene for staggerer.
a,
arnerthem blot
hybridization shows
that 0 Rex transcrits that ROR x transcripts
are expressed in adult are exxersssed
staggerer cerebellum stagser cererebellam
at low levels relitive
to wild type controls. to wild-type controls.
The blot was striped and rehybridized with GAPDH as a control for the amount of
RNA loaded in each RNA loaded in each
lane. b, RORx gen lane. b, RORX gen
provuct, showing the
positions of the DNA positions of the D
binding domain and ligand-binding
domain homology. domain
The line
homology.
indicates The line indicates
sequences used to
probe the northem probe the northem
blot shown in a;
shaded bar indicates sequence missing
from sg transcripts. from sg transcripts. acid positions refer to the mouse RORa1

c

$\stackrel{\mathrm{E}}{\mathrm{Ggta}}$
$\underset{\text { Ggtaaggcagtatgcagtgctcctcctgg.................ccttaccccagcacatg }}{\text { E. }}$ $\xrightarrow[\text { gtattttg }]{\text { getaac }}$ L 1

 En Y ${ }^{\mathrm{O}} \mathrm{N}^{\mathrm{N}} \mathrm{K}$
ctccattccatcaccttcaaactgtaa
aa gctaggaatctcagtaggcagaaaggatacgg aagcaggctttataacctaagtaacagagactattttttttaatcctataatcttttt taacccatttccaaagaaagctttttacaaactaggaagccagcecgaggctggetgcac

 $\underset{T}{\text { afceat }}$
Torthem blots, $3 \mu \mathrm{~g}$ poly(()$^{+}$RNA were treated with glyoxal, electrophoresed through 1% agarose gels and transferred to nylon membranes
as described ${ }^{3}$. For RT-PCR, 1 Hg poly(A) $)^{+}$RNA was reverse-transcribed and
 ing, PCR products were reamplified using chimaeric primers carrying M13 sequencing primer sites and
fluorescently labelled primers.
isoform. c, Key
sequence features of
the
the region deleted in sg. Exons are shown in capital letters, introns in lower case. Omitted sequences are represented by ellipses. Deletion breakpoints
are marked with arrows; only one copy of the underlined sequence GCTA is retained in sg. Widd-type coding sequence the translation is shown above the
nucleotide sequence of the exons, and the shifted frame translation of the nucledtide seaquence of the exons, and the shifted rimeme translation of the ceptual translation of the si ROR α codings sequence from both genomic and
RT-PCR sequencing predicts a frameshift at amino-acid 273 of the $\alpha 1$ RT-PCR sequencing predicts a fromeshift at amino-acid 273 of the $\alpha 1$
isoform, leading to a truncation 27 residues later. Sequence of PRR fragments from BAC demonstrates that the sequence deleted from the RNA coresponds to
a single 122 -pp exon removed by a $6.5-\mathrm{-b}$ genomic deletion. METHODS. RNA was isolated from frozen tissue with the Trizol reagent and
polyadenylated RNAs selected by oligo(dT)-cellulose chromatography. For

LETTERS TO NATURE

FIG. 3 In situ hybridization of ROR x to sagittal sections of
E15 mouse embryos and coronal sections through adut mouse hindbrain. The positions of the reope sequences mouse hind brain. The positions of the probe sequence
within the ROR α gene are shown in Fig. $2 b . a, c, R O R \alpha$ antisense probe; b, d, sense probe. a, b, Hybridization signals detected in E15 cerebellum. The fourth ventricle
(IV) and choroid plexus (CP), which lie below and posterior (IV) and choroid plexus (CP), which lie below and posterior
to the cerebellum, are marked for orientation. Anterior is to the left. Bar, $200 \mu \mathrm{~mm} . \mathrm{c}, \boldsymbol{d}$, Hybridization to the Purkinje cell
layer detected in layer detected in coronal sections through adult cere-
bellum. Letters denote the molecular (M). Purkinje cell (P) and granule cell (G) layers. Bar, $50 \mu \mathrm{~m}$. MEHODS. Two cDNA tragments. 500 bp were used for
each sense and antisense probe. $D N A$ coren each sense and antisense probe. CDNA corresponding to
the ROR α constant region were amplifed by RT.PC the RORa constant region were amplified by RT-PCR
(pimers 66800.2 : AGITGGTCGGATGTCCAAG and rora.2 (pincers bagaiutacctag), reamplified with intemal chimaeric primers bearing, priming sites for dye-primer
sequencing, gel-purified and sequenced. Sequenced fragsequencing, gel-purified and sequenced. Sequenced frag ments were reampified with chimaeric primers, etiner with
the antisense strand carning a 77 RNA polymerase
promoter (TTrora. : TGIAATACGACTCACAATAGGGCGAG promoter (TTrora.8: TGTAATACGACTCACTATAGGGCGAG
TCAAGGCACGGCAC or TTrora. 6 : TGTAATACGACTCACTAT AGGGCGATCTAGAAGTGCTCGG- GCG), or with the sense strand carying a T3 RNA polymerase promoter TITriora.3: AATIAACCCTCACTAAACITGACGGGAAGTATGCG), and gel-isolated. RNA probes incorporating 11-digoxygenin-UTP were synthesized with the appropriate polymerase.

Hybrid-ready tissue sections (from Novagen) were processed accordin the prodecond phosphatase-conjugated anti-digorygenin antibody using 5 -b
chloro-3-indolyl phosphate and nitroblue tetrazolium substrates.
ranscription and the polymerase chain reaction (RT-PCR) revealed a 122 -bp deletion, which removes the start of the ligand-binding homology domain and shifts the reading frame, causing a stop codon after 27 amino acids. Comparison with the genomic sequence showed that the deletion corresponds to a ingle exon.
Southern blot and long-range PCR analysis revealed a $6.5-\mathrm{kb}$ precise deletion breakpoints were localized by sequencing. The precise deletion breakpoints were localized by sequencing geno-
mic PCR products (Fig. 2). The deletion is not present on $\mathrm{C} 3 \mathrm{H} /$ HeJ chromosomes, on which $s g$ apparently arose. (Specifically, $s g$ arose in F_{2} progeny of a non-inbred V-ob/ob male and a
$\mathrm{C} 3 \mathrm{H} / \mathrm{He} \times \mathrm{BALB} / \mathrm{cHm}$ female (P . W. Lane, personal nication). Of existing strains related to these progenitors, the $s z$ chromosome most closely resembles $\mathrm{C} 3 \mathrm{H} / \mathrm{HeJ}$, having identical allele sizes at 16 SSLPs within 1 cM of sg .)
The deletion would be predicted to create a null or severe hypomorphic allele, because truncation of the ligand-binding
homology domain of ROR α has been shown to preserve DNA binding but greatly to reduce or abolish transactivation activity of the unliganded receptor in vitro ${ }^{19}$. The predicted loss-of-function is consistent with our observation that $s g$ behaves genetically as a null allele, with the behavioural and histological phenotype in sg/ We examined the pattern of ROR α RNA expression in mouse embryos and adult brain to determine whether it is consistent with the cell-autonomous Purkinje cell defects seen in young homozygotes and the accelerated atrophy seen in heterozygotes (Fig. 3). Purkinje neurons arise from a proliferative zone above the fourth
ventricle beginning on embryonic day 13 (E13) in normal mice and entricle beginning on embryonic day 13 (E13) in normal mice anar
migrate along radial glia from E14 to E17; they form a laminar shell in the presumptive cerebellar cortex and position themselves in a monolayer during postnatal development ${ }^{11}$. In situ hybridization to sagittally sectioned embryos reveals prominent expression in large cells of the cerebellar anlage by E14. The position and size with Purkinje cell precursors. In addition, hybridization to coronal sections through adult hindbrain reveals expression only in the Purkinje cell layer. Prominent hybridization is also detected in embryonic midbrain, with weaker signals in thymus, whisker ollicles, eye, lung, kidney tubules, gut. The expression in
o have delayed thymic development and a defect in terminatin T-cell responses ${ }^{22}$.
The data provide compelling evidence that the deletion in ROR α is the cause of the sg defect: the deletion lies in the small ($162-\mathrm{kb}$) region containing $s g$, is not found on the presumed eliminates a domain required for transcriptional activity in vitro, eliminates a domain required for transcriptional activity in vitro, development. Ultimate proof will require transgenic rescue.
Identification of the sg gene as a nuclear hormone receptor is Identification of the sg gene as a nuclear hormone receptor is TH) plays in cerebellar development. Hypothyroidism cause
reduced dendritic arborization of Purkinje cells and decreased granule-cell proliferation similar to that seen in $s g$ mutants whereas TH replacement alleviates these defects in a dose dependent fashion ${ }^{23}$. Interestingly, the sg mutation block Purkinje cell response to TH ${ }^{24}$. One apparently direct target of TH action is the Purkinje cell protein-2 ($p c p-2$) gene, which responds to TH levels in vivo and which is activated by ligand we used RT-PCR to test whether $s g$ affects expression of either TR β or $p c p$-2 RNA. We found that $p c p-2$ expression is undetect ble in $s g$ mutants, despite significant levels of TR β expression
not shown). Taken together, this strongly suggests that ROR α not shown). Taken together, this strongly suggests that ROR a maturation of cerebellar Purkinje cells. Such a model would be onsistent with recent examples of crosstalk among nuclear ormone receptor signalling pathways ${ }^{26-29}$. Further elucidation of the $\mathrm{ROR} \alpha$ signalling pathway should provide new insights int nd trophic events that are defective in staggerer.

ceived 6 December 1995; accepred 11 Januag 1996

S. Sidman, R. L. Lane, P. W. \& Pidike, M.M.SCiene 137, 610 -612 (1962).

NATURE • VOL $379 \cdot 22$ FEBRUARY 1996

41 Kilobases of Analyzed Sequence from the Pseudoautosomal and Sex-Determining Regions of the Short Arm of the Human Y. Chromosome

L. Simon Whitfield, *, ${ }^{1}$ Trevor L. Hawkins, ${ }^{2}$ Peter N. Goodfellow,* and John Sulston \dagger
*Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom; and tSanger Centre,
. Hinxton Hall, Hinxton, Cambridgeshire, CB10 1RQ, United Kingdom

Received December 9, 1994; accepted March 17, 1995

Abstract

Determination of 41.2 kb of Y chromosome genomic sequence has been made from a cosmid that spans the Yp pseudoautosomal boundary and includes 18.5 kb of sequence from the patient-defined sex-determining region of the Y chromosome. An AceDB database of the sequence and the analysis data have been produced as a resource for studies of the evolution and population genetics of the Y chromosome. Comparison of the 18.5 $k b$ from the sex determining region to the sex determining region of mouse does not locate any areas of similarity outside SRY/Sry. Indeed, no coding regions other than those previously reported can be detected anywhere in the 41 kb . The Y-specific and pseudoautosomal portions of this sequence have different repeat sequence and GC contents: this may have relevance both to the events defining the pseudoautosomal boundary and to the course of sequence evolution in the absence of recombination. O 1995 Academic Press, Inc.

INTRODUCTION

Different portions of the human Y chromosome have different modes of inheritance. The regions at the telomeres of the long and short arms are pseudoautosomal in character; the telomeric 2.6 Mb of Yp and 0.4 Mb of Yq are identical to the corresponding regions of Xp and Xq , respectively, and these regions recombine during male meiosis (Simmler et al., 1985; Goodfellow et al., 1987; Freije et al., 1992). The remainder of the Y chromosome normally does not exchange with the X chromosome, and this portion remains male-specific. The lack of recombination and unique mode of inheritance of these sequences are associated with their startling lack of polymorphism within Homo sapiens. Conventional restriction fragment length polymorphisms (RFLPs) are found on the Y chromosome at a many-

[^10]fold lower frequency than they are found on autosomes (Jakubiczka et al., 1989; Malaspina et al., 1990; Spurdle and Jenkins, 1992) although Y-linked hypervariable loci do exist (Jobling, 1994). There may be, therefore, a marked difference in the levels of polymorphism between adjacent regions on either side of the pseudoautosomal boundary. Studies of Y-chromosome evolution and population genetics are hampered not only by the lack of Y-specific sequence polymorphism but also by the lack of Y-chromosome sequence, a raw material for all manner of such studies.
Aberrant X-Y recombination events can transfer Yspecific material onto the X chromosome. A zygote containing the product of such an event can give rise to a sex-reversed "XX male" if the transferred Y-chromosome material includes the Y -borne component of the male sex-determining pathway. The study of such XX males enabled this sex-determining locus to be mapped to the 35 kb of Y chromosome immediately proximal to the Yp pseudoautosomal boundary. The region was cloned in a cosmid and phage batk" beginning at the pseudoautosomal gene MIC2 (Ellis et al., 1989). Cosmid cAMF3.1, isolated during this walk, lies across the pseudoautosomal boundary and contains 18.5 kb of the patient-defined sex-determining region. The DNA used in the cosmid library was that of an Italian Caucasian. The single-exon gene $S R Y$ was located in a Y-specific subclone of this cosmid. SRY lies approximately 5 kb from the pseudoautosomal boundary with the 3^{\prime} end closer to the boundary (Sinclair et al., 1990). Although a growing body of evidence suggests that $S R Y$ is necessary and sufficient for the sex-determining function of the Y chromosome (Goodfellow and Lovell-Badge, 1993; Hawkins, 1994), it remains formally possible that the 35 kb of Y chromosome proximal to the pseudoautosomal boundary contain other loci involved in sex-determination.
The mouse sex-determining region has also been defined. Chromosomally female mice transgenic for a 14kb fragment of the Y chromosome, which contains mouse Sry, are phenotypically male (Koopman et al.,
1991). Sry does not map close to the pseudoautosomal boundary of the mouse Y chromosome.
The Y-chromosome location of cAMF3. 1 is shown in Fig. 1. cAMF3. 1 contains, in addition to $S R Y$, exons 2 and 3 of $X G$, which encodes the X-linked blood group antigen Xg_{a} (Mann et al., 1962; Ellis et al., 1994a,b). $X G$ is truncated on the Y chromosome by the pseudoautosomal boundary (Weller et al., 1994).

In this paper we report the sequencing and analysis of cosmid cAMF3.1. The analysis has been performed with two aims; first, to discover whether this portion of the sex-determining region contains genes other than $S R Y$, and second, to identify organizational, structural, or functional features that might either illuminate the evolution of the pseudoautosomal boundary region or provide comparative markers for mapping these evolutionary events in primates.

MATERIALS AND METHODS

Shotgun sequencing of cAMF3.1. Details of the shotgun sequencing strategy can be found in Wilson et al. (1994) and references therein. In outline the procedure was as follows. CAMF3.1 was shotgun cloned into m 13 mp 18 . M13 minipreps were prepared for approximately 800 clones as per Hawkins (1992). These were sequenced by linear amplification dideoxy termination cycle sequencing using dyelabeled M13 forward primers. Electrophoresis was performed on Applied Biosystems 373A sequencers. Sequences of M13 clones were assembled and edited into the sequence of cAMF3.1 using the STA. DEN package (Dear and Staden, 1991; Gleeson and Staden, 1991). Security against misplacement of Alu-containing sequences was achieved by identifying Alu repeat regions prior to assembly so that assembly based solely on Alu-Alu sequence matches could be carefully examined. Initially the sequences from 800 random clones (of average read length 271 bases) resolved into $20-25$ "contigs."

The contigs were joined and the sequence was completed on both DNA strands using a combination of strategies: (i) primer walking in individual M13 clones, sequencing with dye-labeled dideoxy analogues (Applied Biosystems) rather than dye-labeled primers; (ii) sequencing the opposite end of the insert of appropriate M13 clones via a PCR amplification product of the single-stranded clone; (iii) resequencing and electrophoresing samples on a stretch-liner ABI 373 sequencer to generate longer reads. Additional measures required to sequence a minisatellite region in CAMF3.1 are described in the next section.

Cloning of PCR products and generation of DNase digestion subclones. The sequence of the minisatellite region could not be obtained from the 800 random M13 clones. A PCR product containing this region was therefore cloned, and nested subclones were generated by DNase digestion (Jones and Sulston, 1995). The PCR product was treated with mung bean nuclease to generate blunt-ended fragments that were ligated into the plasmid pSC. The recombinant plasmid was linearized with a single cut with I-Sce meganuclease (Boehringer Mannheim), and the end of the insert was made susceptible to Exonuclease III digestion by the ligation of oligonucleotides. Brief Exonuclease III digestion was used to shorten the insert before recircularization and retransformation of the plasmid. The sequence of the portion of insert newly adjacent to the M13 primer site was then obtained. Taq polymerase cycle sequencing of this region proved difficult with any template.

Computer-aided sequence analysis. BLASTN $(B=1,000,000)$ was used to compare nucleotide sequences (Altschul et al., 1990). BLASTX ($B=1,000,000, S=50, M=$ BLOSUM62-12) was used to produce hypothetical six-frame translations of nucleotide sequences and compare these to protein sequences (Altschul et al., 1990; Gish and States, 1993). The sequence of cAMF3.1 was compared to three
sequence databases to identify coding regions and other features of interest: EMBL release 38, SWIR version 5 (SWIR 5 is a Sanger Centre nonredundant compilation of SWISSPROT 28, PIR 39, and WORMPEP 5), and dbEST version 2.1. Prior to the execution of database comparisons, human repeat sequence family members were - identified (using the database assembled by J. Jurka, available from the PYTHIA server (Milosavljevic and Jurka, 1993a)) and replaced with the character "N". A hidden Markov model (Krogh et al., 1994) was used to identify Alu elements (Micklem and Eddy, unpublished. Software available by anonymous ftp from /pub/sre at cele.mrclmb.cam.ac.uk.), while BLASTN was used to identify LINE and MER sequences. The program ALUS from the PYTHIA package (Milosavljevic and Jurka, 1993a, 3b) was used to assign Alu elements to subfamilies. All maximal segment pairs produced by BLAST were screened with MSPcrunch to identify significant matches as previously defined (Sonnhammer and Durbin, 1994). Tandem repeats were detected using the programs QUICKTANDEM and TANDEM (R. Durbin, unpublished).

To detect regions with the characteristics of coding sequence, CAMF3.1 (without repeat elements masked) was examined using GRAIL II, an artificial intelligence-based technique trained with non-Y chromosome sequences (Xu et al., 1994a,b). All GRAIL IIpredicted exons were entered into AceDB rather than just its "final predictions." The program CPG (Micklem and Durbin, unpublished) was used to identify "CpG islands," regions in which the CG dinucleotide is as uncommon as it normally is in the genome of mammals and that are generally located within or near genes (Bird, 1986).

The sequence and the outputs of all analysis programs were entered into AceDB (Durbin and Thierry-Mieg, unpublished) for crosscomparison, storage, and presentation.

RESULTS AND DISCUSSION

Sequencing of cAMF3.1

From CAMF3.1, 41,155 bases of Y chromosome genomic sequence were obtained with 7.95 -fold coverage per consensus base. The sequence of both DNA strands has been completely determined, except for the central 796 bp of a minisatellite repeat for which only one strand has been sequenced.

An estimate of the sequencing error frequency can be made because 5684 bp of sequence from within the region covered by cAMF3.1 have been previously reported (EMBL Accession Nos. HSSRYZ and HSPABY01). Comparison of these two sequences to cAMF3.1 identified an incorrectly called base in the sequence of cAMF3.1. One basepair error in 5684 bp suggests approximately 99.98% sequencing accuracy. This is in line with estimates of error frequency published by large-scale sequencing projects ($\sim 99.97 \%$ for Saccharomyces cerevisiae chromosome XI (Dujon et al., 1994)).

Sequence Analysis: The Search for Novel Coding Regions

The first aim of the sequence analysis was to discover whether the sequence of cAMF3.1-in particular the portion from the sex-determining region-contains any coding regions not previously reported.

The 18.5 kb of sequence from the sex-determining region were compared to the 14 kb of the mouse sexdetermining region in both untranslated and translated forms to identify sequences common to both re-

FIG. 1. The region of the Y chromosome covered by cAMF3.1 is depicted with respect to the pseudoautosomal boundary, PAB, the sexdetermining gene, $S R Y$, the gene for the Xga blood group antigen, XG, and MIC2. Exons are not to scale.
gions. First, the nucleotide sequences were compared using BLASTN; second, cAMF3.1 was translated in all six reading frames before BLASTX was used to similarly translate the mouse sequence and compare the two. The only matches between the human and the mouse sequences were either in the high mobility group (HMG) domains of SRY and Sry or, as expected, between low-complexity repetitive sequences. Matches were seen at the nucleotide level and at the amino acid level.

Coding regions were also sought by searching protein and nucleotide sequence databases, by using GRAIL II, and by identifying CpG islands. The assessment of candidate coding regions was made by simultaneous cross-comparison of these data in AceDB as shown in Fig. 2. Figure 2 is derived from the AceDB display.
The three pieces of coding sequence and one pseudogene known to exist within cAMF3.1 (see Figs. 1 and 2) acted as internal controls for gene-finding. The single 612 -base exon of SRY lies 5 kb from the pseudoautosomal boundary on the bottom DNA strand as depicted in Figs. 1 and 2. Exons $2(41 \mathrm{bp})$ and $3(23 \mathrm{bp})$ of $X G$, the gene encoding the Xg_{a} blood group antigen (Ellis et al., 1994a,b), lie in the pseudoautosomal portion of cAMF3.1 on the top strand. The pseudogene reported by Behlke et al. (1993) (hereafter referred to as T6) lies 3 kb from $S R Y$ toward the pseudoautosomal boundary but on the opposite DNA strand (see Fig. 2).
Y-specific sequence. $S R Y$ is detected by GRAIL II although the predicted gene is shorter at the 3^{\prime} end than the actual coding sequence. A CpG island and two high-scoring GRAIL II predicted exons fall within the region of the pseudogene T6. It is notable that an RTPCR product has been found in which a region encompassing the GRAIL II hits and the CpG island (shown in Fig. 2) is spliced onto the pseudoautosomal exons of the X chromosome gene $X G$ (Weller et al., 1994). This transcript is not thought to be functional. A weaker GRAIL II-predicted exon is found in the same position as the strong hits on T6 but on the opposite DNA strand. There are no other predicted exons in the Yspecific portion of cAMF3.1.

BLASTX detects one region of Y-specific sequence other than $S R Y$ that, when translated, matches any SWIR entry. The score is marginally above the MSPcrunch cutoff score and the sequence contains stop codons, so no further characterization has been attempted. BLASTN detected many similarities between cAMF3.1 (involving either Y-specific or pseudoautosomal sequence) and DNA sequence database entries, but these matches were generally to noncoding portions of entries, many of which, if not already known to be repetitive areas, seemed to be of low sequence complexity. As expected, therefore, the vast majority of the data accrued from nucleotide database searches was not useful for gene searching. The BLASTN search does indicate, however, that two Y-specific sequence tagged sites, EMBL entries HSPH09R and HSPH09F, come from the region covered by cAMF3.1. They are close to one another, 7.5 kb proximal to $S R Y$ (see Fig. 2).
Pseudoautosomal sequence. GRAIL II successfully detects only exon 2 of $P B D X / X G$; the $23-\mathrm{bp}$ exon 3 is missed. Low-confidence prediction of coding sequence is made for five other short pseudoautosomal regions. The only prediction deemed "good" by GRAIL II is made for the bottom DNA strand, although a prediction is made for the same place on the other strand; a topstrand exon could be part of $X G$. The other predicted exons are low scoring and lie in areas for which there is no other evidence for coding sequence. They have not been further analyzed. The higher number of predicted exons in the pseudoautosomal sequence may reflect its higher GC content.
The only region of the pseudoautosomal portion of cAMF3.1 for which BLASTX detects a similarity to a protein database entries seems to be repetitive, giving a proline-rich sequence when translated. For this reason this sequence also has not been analyzed further.
In summary, it seems that there is no strong evidence for any coding sequence in CAMF3.1 other than that previously reported, although this conclusion can and should be reviewed as gene-finding techniques improve and sequence databases expand. cAMF3.1 is cur-

FIG. 2. The principal sequence features of cAMF3.1. The figure is derived from the AceDB display. cAMF3.1 is in the same orientation as in Fig. 1. (Middle) In this panel boxes show the location of CpG islands, Alu, LINE, and MER elements, tandem repeats, and "DNA DB matches." DNA DB matches are regions where the sequence of cAMF3.1 matches one or more entries in the EMBL database. The height of the box denotes the percentage similarity between the sequence and the database entry sequence. When one region of sequence matches multiple database entries, the overlaid boxes cause dark shading. (Top and bottom) Above the central panel, boxes mark the locations of GRAIL II-predicted exons and "protein DB matches" for the three reading frames of the top strand of cAMF3.1. The three reading frames of the bottom strand of CAMF3.1 are shown below. Protein DB matches are regions where the sequence of CAMF3.1 translated in that frame matches an entry in the SWIR5 database (see Materials and Methods). The height of the boxes denoting GRAIL II-predicted exons denotes the confidence of the prediction. The height of the boxes marking protein DB matches also denotes the percentage similarity of the sequence to the database sequence. In addition, $X G$ exons and the Y-specific region found spliced to these exons in a RT-PCR product (see text) are marked on the top strand. $S R Y$ is marked on the bottom strand.
rently known to contain, therefore, less than 2% coding sequence.

Sequence Analysis: Repetitive Sequence Elements

The second aim of the sequence analysis was to identify organizational, structural, and functional features useful in the investigation of the evolution of the sexdetermining and pseudoautosomal boundary regions. Overall base composition of large regions can reflect aspects of origin and function, whereas length variation in tandem repeats and insertions of transposable elements can provide useful makers for inter- or intraspecies studies. For example, the Alu present at the pseudoautosomal boundary is found in great apes but is absent in Old World monkeys (Ellis et al., 1990).
Transposable elements. There are several Alu subfamilies of different "ages." Alu-J and Alu-S are the major subfamilies, Alu-J being the older. The Alu-S
subfamily is divided into subgroups $-\mathrm{Sb},-\mathrm{Sc},-\mathrm{Sp},-\mathrm{Sq}$, and -Sx. Alu-Sb, the youngest subset of Alu-S, contains two even younger groups Sb 1 (also known as the HS subfamily) and Sb2 (Jurka and Milosavljevic, 1991; Jurka, 1993). cAMF3.1 contains 30 whole or truncated copies of the Alu element; 5 are Alu-J, 1 is Alu-Sp, 12 are Alu-Sx, 4 are Alu-Sc, and 8 are Alu-Sb. In addition there are two regions of cAMF3.1 that appear to have LINE (long interspersed nuclear element) sequence similarity and six areas that match known medium reiteration frequency (MER) repeats. The locations of all transposable elements are shown in Fig. 2.
It is clear that $A l u$ (and other) elements are nonrandomly distributed in the human genome. Large sequencing projects have reported a range of $A l u$ frequencies, from 0.1 elements/kb for the $K A L-X$ region of Xp22.3 (Legouis et al., 1991) to 1.4 elements/kb in the ERCC1 region of 19q13.3 (Martin-Gallardo et al., 1992). They appear to be concentrated in the G/C-rich,
"reverse" or "Giemsa light" bands of chromosomes (Korenberg and Rykowski, 1988) and may comprise up to 30% of these regions (Bernardi, 1989). The Y-specific portion of cAMF3.1 contains 10 whole or truncated Alus in 18.5 kb (i.e., 0.54 Alus/kb. This figure does not include the Alu that was inserted at the pseudoautosomal boundary (Ellis et al., 1990). and is 39.1% G/C. The pseudoautosomal portion has higher Alu and G/C content; it has 19 whole or truncated Alus in 22.7 kb (0.84 elements $/ \mathrm{kb}$) and is. $47.5 \% \mathrm{G} / \mathrm{C}$. The contrast lends support to the notion that the pseudoautosomal boundary was generated by a chromosomal rearrangement. There is as yet insufficient evidence to say whether the pseudoautosomal boundary also marks the junction between the light and the dark bands observed at the tip of $\mathrm{Yp} ; A l u$ density and G / C content can vary greatly within a chromosome band; the β-globin cluster on 11p15.5 (EMBL entry HSHBB), for example, has a low G/C and Alu content ($39.5 \% \mathrm{G} / \mathrm{C}$ and 0.1 Alus/kb) but is located in a Giemsa light band.

Tandem repeats. Although microsatellites and minisatellites have been sought on the Y chromosome as potentially highly polymorphic markers for Y-specific population studies, those detected seem to be almost exclusively pseudoautosomal. The pseudoautosomal portion of cAMF3.1 is indeed much richer in tandem repeats than the Y -specific region. It contains five regions of tandem repeats totaling 1.2 kb . The largest is a minisatellite sequence located 8 kb from the boundary. It is composed of 45 copies of a 16 -bp element, with sequence similarity between elements averaging 81%, and it does appear to be polymorphic (data not shown). A region of related sequence occurs 4 kb further toward the telomere. It is composed of 3 copies of a 16-base element with 88% sequence conservation. Two other tandem arrays close to the telomeric end of cAMF3.1 are composed of elements that have compositions similar to each other. It is not known whether any of these sequences are polymorphic. The Y-specific portion of cAMF3.1 contains a single, short microsatellite repeat sequence, 17 kb from the pseudoautosomal boundary. Unfortunately it did not show any repeat number variation in a sample of 42 males, which included representatives from a variety of ethnic groups (data not shown).
Total repetitive sequence content of cAMF3.1. cAMF3.1 contains two known repeat sequences in addition to those discussed above: first, the sequence of the human sex chromosome repeat pDP316 (Fisher et al., 1990) (EMBL Accession No. HSSEXRPA) matches cAMF3.1, 5 kb from the telomeric end of the clone, with only a single difference, suggesting that this is the genomic origin of pDP316; second, 248 bp of pseudoautosomal sequence located approximately 5 kb from the boundary are 85% similar to part of the Yp pseudoautosomal telomere clone HSTARS7A (Brown et al., 1990). When this sequence was used to probe Southern
blots of digested genomic DNA, multiple copies were detected (data not shown).
In total, 12.7 kb or 30.9% of cAMF3.1 is repetitive sequence. Alu, LINE, and MER elements account for 10.4 kb of sequence. The pseudoautosomal portion is particularly rich in repetitive sequence: 42.5% of this area but only 16.8% of the Y -specific region is composed of repetitive DNA. It is likely that the totals will increase as the more rare repetitive elements are characterized. Many of the matches already noted between cAMF3.1 and noncoding portions of nucleotide database entries may be caused by this type of sequence. The sequence at the pseudoautosomal boundary (not including the $A l u$ element) makes one such match.

CONCLUSION

The sequence of the cosmid cAMF3.1 has been determined with high accuracy. The cosmid straddles the Yp pseudoautosomal boundary, and the sequence is approximately half pseudoautosomal and half Y specific. The Y-specific sequence is from the genetically defined sex-determining region of the Y chromosome but does not appear to contain any coding sequences other than $S R Y$. This supports the conclusion that $S R Y$ alone is necessary and sufficient for the sex-determining function of the Y chromosome. Moreover, there is no evidence that the genomic structure of $S R Y$ is other than that which has been previously described (Behlke et al., 1993).
The Y-specific and pseudoautosomal portions of cAMF3.1 seem to differ dramatically in both GC content and repeat content; the pseudoautosomal sequence has a much higher GC content and is much richer in repetitive sequences than is the Y-specific region. This may indicate that a chromosomal rearrangement generated the pseudoautosomal boundary at this location and may further reflect differences in the processes of sequence evolution in nonrecombining regions. It is hoped that this project has generated materials with which this and other questions might be addressed.

ACKNOWLEDGMENTS

Abstract

We thank G. Micklem for patient assistance with computerized sequence analysis and for critical reading of the manuscript, and N. Smaldon and the staff of the Sanger Centre for assistance with sequencing. L.S.W. is supported by an Imperial Cancer Research Fund Bursary; P.N.G. is supported by the Wellcome Trust. This work was supported by the Wellcome Trust (Grant 036522/Z/92 to J.S.).

REFERENCES

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403-410.
Behlke, M. A., Bogan, J. S., Beer-Romero, P., and Page, D. C. (1993). Evidence that the SRY protein is encoded by a single exon on the human Y chromosome. Genomics 17: 736-739.
Bernardi, G. (1989). The isochore organisation of the human genome. Annu. Rev. Genet. 23: 637-671.

Bird, A. (1986). CpG-rich islands and the function of DNA methylation. Nature 321: 209-213.
Brown, W. R. A., MacKinnon, P. J., Vilasanté, A., Spurr, N., Buckle, V. J., and Dobson, M. J. (1990). Structure and polymorphism of human telomere-associated DNA. Cell 63: 119-132.
Dear, S., and Staden, R. (1991). A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res. 19: 3907-3911.
Dujon, B., Alexandraki, D., Andre, B., Ansorge, W., Baladron, V., Ballesta, J. P. G., Banrevi, A., Bolle, P. A., Bolotinfukuhara, M., and Bossier, P. (1994). Complete DNA-sequence of yeast chromo-some-XI. Nature 369: 371-378.
Ellis, N. A. Goodfellow, P. J., Pym, B., Smith, M., Palmer, M., Frischauf, A. M., and Goodfellow, P. N. (1989). The pseudoautosomal boundary in man is defined by an Alu repeat sequence inserted on the Y chromosome. Nature 337: 81-84.
Ellis, N., Yen, P., Neiswanger, K., Shapiro, L. J., and Goodfellow, P. N. (1990). Evolution of the pseudoautosomal boundary in Old World monkeys and Great Apes. Cell 63: 977-986.
Ellis, N. A., Tippett, P., Petty, A., Reid, M., German, J., Weller, P. A., Goodfellow, P. N., Thomas, S., and Banting, G. (1994a). $P B D X$ is the $X G$ blood group gene. Nature Genet. 8: 285-290.
Ellis, N. A., Ye, T. Z., Patton, S., German, J., Goodfellow, P. N., and Weller, P. (1994b). Cloning of PBDX, and MIC2-related gene that spans the pseudoautosomal boundary on chromosome Xp. Nature Genet. 6: 394-400.
Fisher, E. M. C., Alitalo, T., Luoh, S. W., La Chapelle, A., and Page, D. C. (1990). Human sex-chromosome-specific repeats within a region of pseudoautosomal/Yq homology. Genomics 7: 625-628.
Freije, D., Helms, C., Watson, M. S., and Doniskeller, H. (1992). Identification of a second pseudoautosomal region near the Xq and Yq telomeres. Science 258: 1784-1787.
Gish, W., and States, D. J. (1993). Identification of protein coding regions by database similarity search. Nature Genet. 3: 266-272.
Gleeson, T. J., and Staden, R. (1991). An X-windows and UNIX implementation of our sequence analysis package. Comput. Appl. Biosci. 7: 398.
Goodfellow, P. J., Pritchard, C., Tippett, P., and Goodfellow, P. N. (1987). Recombination between the X and Y chromosomes: Implications for the relationship between MIC2, XG and YG. Ann. Hum. Genet. 51: 161-167.
Goodfellow, P. N., and Lovell-Badge, R. (1993). SRY and sex determination in mammals. Annu. Rev. Genet. 27: 71-92.
Hawkins, J. R. (1994). Sex determination. Hum. Mol. Genet. 3: 14631467.

Hawkins, T. L. (1992). M13 single-stranded purification using a biotinylated probe and streptavidin coated magnetic beads. J. DNA Seq. Map. 3: 65-69.
Jakubiczka, S., Arnemann, J., Cooke, H. J., Krawczak, M., and Schmidtke, J. (1989). A search for restriction fragment length polymorphism on the human Y chromosome. Hum. Genet. 84: 86-88.
Jobling, M. A. (1994). A survey of long-range DNA polymorphisms on the human Y-chromosome. Hum. Mol. Genet. 3: 107-114.
Jones, M. C., and Sulston, J. (1995). A new vector and strategy for unidirectional sequential subcloning of DNA. Submitted for publication.
Jurka, J. (1993). A new subfamily of recently retroposed human alu repeats. Nucleic Acids Res. 21: 2252.
Jurka, J., and Milosavljevic, A. (1991). Reconstruction and analysis of human Alu genes. J. Mol. Evol. 32: 105-121.

Koopman, P., Gubbay, J., Vivan, N., Goodfellow, P., and LovellBadge, R. (1991). Male development of chromosomally female mice transgenic for Sry. Nature 351: 117-121.
Korenberg, J. R., and Rykowski, M. C. (1988). Human genome organization: Alu, Lines, and the molecular structure of metaphase chromosome bands. Cell 53: 391-400.
Krogh, A., Brown, M., Mian, I. S., Sjolander, K, and Haussler, D. (1994). Hidden Markov-models in computational biology-Applications to protein modelling. J. Mol. Biol. 235: 1501-1531.
Legouis, R., Hardelin, J.-P., Levilliers, J., Claverie, J.-M., Compain, S., Wunderle, V., Millasseau, P., Le Paslier, D., Cohen, D., Caterina, D., Bougueleret, L., Delemarre-Van de Waal, H., Lutfalla, G., Weissenbach, J., and Petit, C. (1991). The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 67: 423-435.
Malaspina, P., Persichetti, F., Novelletto, A., Iodice, C., Terrenato, L., Wolfe, J., Ferraro, M., and Prantera, G. (1990). The human Y chromosome shows a low level of DNA polymorphism. Ann. Hum. Genet. 54: 297-305.
Mann, J. D., et al. (1962). A sex-linked blood group. Lancet i: 8-10.
Martin-Gallardo, A., McCombie, W. R., Gocayne, J. D., Fitzgerald, M. G., Wallace, S., Lee, B. M. B., Lamerdin, J., Trapp, S., Kelley, J. M., and Liu, L. I. (1992). Automated DNA sequencing and analysis of 106 kilobases from human chromosome 19q13.3. Nature Genet. 1: 34-39.
Milosavljevic, A., and Jurka, J. (1993a). Discovering simple DNAsequences by the algorithmic significance method. Comput. Appl. Biosci. 9: 407-411.
Milosavljevic, A., and Jurka, J. (1993b). Discovery by minimal length encoding-A case-study in molecular evolution. Mach. Learn. 12: 69-87.
Simmler, M.-C., Rouyer, F., Vergaaud, G., Nystrom-Lahti, M., Ngo, K. Y., de la Chapelle, A., and Weissenbach, J. (1985). Pseudoautosomal DNA sequences in the pairing region of the human sex chromosomes. Nature 317: 692-697.
Sinclair, A. H., Berta, P., Palmer, M. S., Hawkins, J. R., Griffiths, B. L., Smith, M. J., Foster, J. W., Frischauf, A. M., Lovell-Badge, R., and Goodfellow, P. N. (1990). A gene from the human sexdetermining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346: 240-244.
Sonnhammer, E. L. L., and Durbin, R. (1994). A workbench for largescale sequence homology analysis. Comput. Appl. Biosci. 10: 301307.

Spurdle, A. B., and Jenkins, T. (1992). The Y chromosome as a tool for studying human evolution. Curr. Opin. Genet. Dev. 2: 487-491. Weller, P. A., Goodfellow, P. N., German, J., and Ellis, N. A. (1994). The human Y chromosome homologue of XG:Transcription of a naturally truncated gene. Hum. Mol. Genet., in press.
Wilson, R., Ainscough, R., Anderson, K., Baynes, C., Berks, M., Burton, J., Connell, M., Bonfield, J., Copsey, T., and Cooper, J. (1994). 2.2 Mb of contiguous nucleotide-sequence from chromosome-III of C. Elegans. Nature 368: 32-38.

Xu, Y., Einstein, J. R., Mural, R. J., Shah, M. B., and Uberbacher, E. C. (1994a). An improved system for exon recognition and gene modeling in human DNA sequences. In "Proceedings of the 2nd International Conference on Intelligent Systems for Molecular Biology," AAAI Press, Menlow Park, CA.
Xu, Y., Mural, R. J., Shah, M. B., and Uberbacher, E. C. (1994b). Recognizing exons in genomic sequence using GRAIL II. in "Genetic Engineering: Principles and Methods" (J. Setlow, Ed.), Plenum, New York.

GENOME MAPPING \& SEQUENCING

May 8-12, 1996

ABSTRACT DEADLINE: February 21, 1996
Dear Colleague:
Cold Spring Harbor Laboratory is organizing the 9th Annual Genome Mapping \& Sequencing Meeting, which will begin at 7:30 pm on Wednesday, May 8th, 1996 and run through noon on Sunday, May 12th. We hope to bring together the major practitioners in the field of genome analysis.

The 1996 meeting will feature sessions on physical mapping, biological insights from multi-organismal genomics, human genetics and biology, informatics, mapping methods and technologies, gene discovery and transcript mapping. We will be highlighting large-scale DNA sequencing projects in a poster symposium session. In addition, last year's successful introduction of interactive demonstrations of genomic computational tools and databases will again form part of the program. The keynote address will be given by Dr. Shirley Tilghman before the banquet on Saturday evening.

We encourage you to submit your registration form and abstract materials by the deadline of February 21, 1996. In an effort to keep each session to a manageable size, we may need to limit the total number of abstracts presented at the meeting. As a result, we urge groups to avoid overlapping or redundant material and ask that each laboratory submit no more than 3 abstracts.

We anticipate that there may be more applicants than can be accommodated bythe facilities at Cold Spring Harbor. Should it be necessary to limit attendance, we will endeavor to ensure that the best possible science is presented and that every effort is made to provide for representation by all groups wishing to participate. Group leaders may be asked for a priority list to aid the organizers in making appropriate decisions.

We expect the availability of a small grant that can provide some support for attending the meeting. If your attendance depends upon the availability of such funding, please be sure to include that information when submitting your application. Cold Spring Harbor is planning to accept submission of abstracts as well as registration information over the World Wide Web. Complete details on how to register and submit abstracts online are available at http://www.cshl.org/meetings/gmas.html. For your convenience, hard copy abstract instructions and registration materials are enclosed.

We look forward to seeing you in May at Cold Spring Harbor.
Sincerely,

THE ORGANIZERS

David Bentley, Sanger Centre
Eric Green, National Institutes of Health
Phil Hieter, Johns Hopkins University

Complete the following information and mail to The Meetings \& Courses Office

MEETING TITLE

DATES
Abstract information (Please underline the presenter's name in the listing of names \& affiliations on your abstract. For further instructions, see enclosures.)
\# OF ABSTRACT(S) ENCLOSED THAT REGISTRANT WILL BE PRESENTING

COMPLETE INFORMATION BELOW ONLY IF APPLICABLE

Roommate Request (if desired)
Early Arival Date $\frac{1}{\text { Late Departure Date }}$

- Special Diet \& Health Needs
\square Kosher \square Vegetarian " Other:

For further information contact:
Cold Spring Harbor Laboratory
The Meetings \& Courses Office
. 1 Bungtown Rd. PO Box 100
Cold Spring Harbor, NY 11724-2213
phone: (516) 367-8346
fax: (516) $367-8845$
e-mail: meetings@cshl.org
World Wide Web site
http://www.cshl.org/

PAYMENT MUST BE SUBMITTED WITH THIS
FORM. Balance due upon arrival. Make checks payable to Cold Spring .Harbor Laboratory. All payments must be in US Dollars drawn on a US Bank. Grad Students must provide photocopy of ID card with registration form to receive reduced rate.

- Registration, Food \& Housing cost: $\$ 200$ housing deposit required with reg. form (CIRCLE APPLICABLE RATE)
Academic Grad Student Corporate

4 Day	$\$ 730$	$\$ 595$	$\$ 930$
5 Day	$\$ 855$	$\$ 695$	$\$ 1075$
7 Day	$\$ 1030$	$\$ 855$	$\$ 1280$

- Registration and Food Only cost:
$\$ 100$ deposit required with reg. form
(CIRCLE APPLICABLE RATE) Academic/Grad Student Corporate

4. Day	$\$ 475$	$\$ 605$
5. Day	$\$ 555$	$\$ 695$
7 Day	$\$ 645$	$\$ 810$

Total Amount Due -	\$
Payment enclosed	\$
Balance Due	\$
Credit Card Information:	
Amount Authorized	\$
Account \#:	
\cdots	
Exp. Date Cardho	der Signature ard Visa

eg. Symposium
(Poster)
Meeting Title

ABSTRACT OF PAPER TO BE PRESENTED

A. N. Other Presenter's Last Name

PRINT TITLE HERE USING ALL CAPITAL LETTERS
Print Authors and Affiliations here. (Underline presenting author's name)
Begin text (Single spaced, using paragraph indent with no space between (paragraphs.)

ABSTRACT INSTRUCTIONS:

- Use plain $81 / 2^{\prime \prime} \times 11$ " paper.
- Limit area of type to $5^{\prime \prime}$ width $\times 7 \frac{1}{2}$ " height ($12.7 \mathrm{~cm} \times 19.05 \mathrm{~cm}$).
- TITLE (all caps), author's name(s), and institution(s) should be flush left as close as possible to the top line.
- Indicate PRESENTER (person who will be attending and actually presenting material) on upper right hand corner of page and by underlining their full name in the list of authors and affiliations.

$\leftarrow 5$ inches $(12.7 \mathrm{~cm}) \rightarrow$
\leftarrow DO NOT TYPE HERE \rightarrow

Mail*Link SMTP for Tina Whalen
To:
Genome Group
From:
Tom Hudson
Date:
Fri, Feb 16, 1996 10:54 AM

Subject:

CSHL Genome Mapping \& Sequencing Meeting
RFC Header:
Received: by gatormail.wi.mit.edu with SMTP;16 Feb 1996 10:54:37 -0500
Received: by genome.wi.mit.edu (5.57/1.1.4/8Aug94)
id AA07927; Fri, 16 Feb 96 10:54:31-0500
Message-Id: 9602161554.AA07927@genome.wi.mit.edu
Date: Fri, 16 Feb 1996 10:54:50 -0500
To: Genome_Group@gatormail
From: thudson@genome.wi.mit.edu (Tom Hudson)
Subject: CSHL Genome Mapping \& Sequencing Meeting
See below for those submitting abstracts.
Tom
>From: The Meetings \& Courses Office meetings@cshl.org
>Subject: CSHL Genome Mapping \& Sequencing Meeting
>Date: Fri, 16 Feb 1996 11:36:14 -0500
>Content-Type: text/plain; charset="us-ascii"
$>$ Content-Transfer-Encoding: quoted-printable
>Apparently-To: jmiller@genome.wi.mit.edu
>Apparently-To: lstein@genome.wi.mit.edu
>Apparently-To: rsteen@genome.wi.mit.edu
>Apparently-To: thudson@genome.wi.mit.edu
$>$
$>$
>Our records indicate that you have attended or requested information for $=$ $>$ the CSHL Genome Mapping \& Sequencing Meeting. This year's meeting will = $>$ take place on $\mathrm{MryP}=8=12 ; 199$
$>=20$
$>$ The abstract dedatne Is Frebruaryezt
$>=20$
>For the first time, you can register and submit abstracts for the =
$>$ meeting via the World Wide Web at $=$
$>$ http://ww.cshl.org/meetings/96genome.htm.
$>=20$
$>$ Keep in mind that, like last year, some abstracts will be prograrmed for =
$>$ projection-style computer demonstrations in Grace Auditorium. =20
$>=20$
$>$ If you are NoT submitting your abstract electronically, please indicate =
>one of the following preferences at the lower right hand corner of your =
>abstract (note that these instructions were accidently left off of the =
$>$ >registration materials sent to you by mail):
$>=20$
$>$ Oral or Poster Presentation
$>$ Poster Presentation Only
$>$ Computer Demonstration Only

```
> Oral or Poster Presentation or Computer Demonstration
>=20
>For additional information concerning this and other CSHL meetings, =
>contact:
>=20
> http://www.cshl.org/meetings
> e-mail: meetings@cshl.org
> fax: 516-367-8845
> phone: 516-367-8346
```

$>$
$>$

Integration of physical, breakpoint and genetic maps of chromosome 22. Localization of 575 yeast artificial chromosomes with 235 mapped markers.
Pls.ile REPRINT

Colum J. Bell ${ }^{1 *}$, Marcia L. Budarf ${ }^{1}$, Bart W. Nieuwenhuijsen ${ }^{2}$, Barry L. Barnoski ${ }^{1}$, Kenneth H. Buetow ${ }^{4}$, Keely Campbell ${ }^{1}$, Angela Colbert ${ }^{3}$, Noelle Collins ${ }^{1}$, Philippe R. Desjardins ${ }^{2}$, Todd DeZwaan ${ }^{2}$, Barbara Eckman ${ }^{2}$, Simon Foote ${ }^{4 * *}$, Kyle Hart ${ }^{2}$, Kevin Hester ${ }^{2}$, Marius J. Van He Mog ${ }^{2}$, Elizabeth Hopper ${ }^{1}$, Alan Kaufman ${ }^{3}$, Heather E. McDermid ${ }^{5}$, G. Christian Overton², Mary Pat Reeve ${ }^{3}$, David B. Searls ${ }^{2}$, Lincoln Stein ${ }^{3}$, Edward Watson ${ }^{1}$, Rachel Winston ${ }^{2}$, Vinay H. Valmiki ${ }^{2}$, Robert L. Nussbaum ${ }^{2 * * *}$, Eric S. Lander ${ }^{3}$, Kenneth H. Fischbeck ${ }^{2}$, Beverly S. Emanuel ${ }^{1}$ and Thomas J. Hudson ${ }^{3}$

1. Children's Hospital of Philadelphia, Division of Human Genetics and Molecular Biology, 34th Street \& Civic Center Blvd., Philadelphia PA 19104
2. University of Pennsylvania School of Medicine, 415 Curie Blvd., Philadelphia, PA 191046146.
3. Center for Genome Research, Whitehead Institute for Biological Sciences/Massachusetts Institute of Technology, 5 Cambridge Center, Cambridge MA 02142
4. Fox Chase Cancer Center, 7701 Burholme Ave, Philadelphia, PA 19111-2412.
5. De, coat of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
*To whom correspondence should be addressed phone:(215)-590-3856 Fax:(215)-590-3764
** Present address: Walter and Eliza Hall Institute of Medical Research, P.O. Royal Melbourne Hospital, Parkville 3050, Australia.
***Present address: Genetic Disease Research NCHGR/NIH, 9000 Rockville Pike, 49/4A72, Bethesda, MD 20892.

Abstract

Detailed physical maps of the human genome are important resources for the identification and isolation of disease genes and for studying the structure and function of the genome. We used data from STS content mapping of YACs and natural and induced chromosomal breakpoints to anchor contigs of overlapping yeast artificial chromosome (YAC) clones spanning extensive regions of human chromosome 22 . The STSs were assigned to specific bins on the chromosome using somatic hybrid mapping panels defining 6 and 25 intervals respectively. YAC libraries were screened by PCR amplification of hierarchical pools of yeast DNA with 235 STSs, and a total of 575 YAC clones were identified. These YACs were assembled into contigs based upon their shared STS content using a simulated annealing algorithm. Fifteen contigs, containing between 2 and 74 STSs were assembled, and ordered along the chromosome based upon the breakpoint, meiotic and PFG maps. Additional singleton YACs were assigned to unique chromosomal bins. These ordered YAC contigs will be useful for identifying disease genes and chromosomal breakpoints by positional cloning and will provide the foundation for higher resolution physical maps for large scale sequencing of the chromosome.

INTRODUCTION

Human chromosome 22 constitutes approximately 1.9% of the haploid autosomal genome (1). Clinical disorders associated with this chromosome include several acquired, tumorrelated translocations such as the $t(9 ; 22)$ of chronic myelogenic leukemia and acute lymphocytic leukemia $(3,4)$, the $t(8 ; 22)$ variant translocation of Burkitt's lymphoma (5) and the $t(11 ; 22)$ of Ewing sarcoma (6,7). Deletions of all or part of chromosome 22 are associated with meningiomas (8,9), acoustic neuromas (10,11), Neurofibromatosis type 2 (NF2) (12,13), and rhabdoid tumors $(14,15)$. Chromosome 22 is also involved in the only recurrent constitutional chromosomal translocation in humans (16,17). In addition, a number of syndromes are caused by microdeletions or duplications of portions of 22q11, including DiGeorge syndrome (18-21), velo-cardio-facial syndrome (22), and cat-eye syndrome (23). Chromosome 22 has a high gene density and contains many duplicated sequences and gene families, which makes it an interesting model for mapping studies. The identification of new disease genes will be facilitated by the integration of detailed genetic and physical maps of this chromosome. Moreover, integrated maps can be used to make sequence-ready DNA templates, to facilitate the identification of novel structural elements and the study of chromosome structure.

We used STS-content mapping (24-26) to assemble contigs representing the majority of the chromosome. 313 STSs and 22 hybridization probes were developed from chromosome 22. Markers suspected of containing repeats, and others giving unsatisfactory results in control experiments were eliminated, and the remainder were localized by PCR or Southern hybridization to unique "bins", which are defined by hybrid mapping panels $(27,47)$. These markers were used to identify YACs (28) in three libraries: the CEPH/Genethon YAC libraries $(29,30)$, a chromosome 22 -only hybrid cell line derived YAC library, and the Washington University YAC library (31). 213 STSs and 22 hybridization probes identified a total of 575 individual YACs which were then assembled into 15 contigs containing between 2 and 196 YACs.

RESULTS

Marker generation

The STSs and hybridization probes used in this study were derived from genes and other publicly available sequences, STRPs (simple tandem repeat polymorphisms) (32), expressed sequence tags (ESTs) $(33,34)$, YAC vector-insert junction fragments (35), inter-Alu PCR fragments (36) and randomly sequenced plasmid clones (27,47). Table 1 lists the STSs and hybridization probes that were used. Also shown are the individual probes/STSs used at each locus, and the source laboratory of each. GGTX, GGTY and GGTZ refer to probes containing sequences homologous to γ-glutamyl transpeptidase 1 (GGT1) (60). These three GGT-like sequences have been shown to be physically linked to the BCR (break point cluster) -like sequences BCRL2 and BCRL4, and BCR itself, respectively, in 22q11 (unpublished observations). These BCR-like sequences can be distinguished from each other by HindIII polymorphisms (61), allowing assignment of the YACs detected by the GGT1 STS to be allocated to unique bins. Details of this study will be presented in a separate publication. Primer sequences for each STS may be found in the public FTP (file transfer protocol) sites of the Philadelphia (cbil.humgen.upenn.edu /pub/22/) and the Whitehead Institute / MIT (genome.wi.mit.edu /pub/human_STS_releases/) Genome Centers. Further details of the origin and primer sequences of the STSs are also presented in a separate publication (27).

YAC identification

Most YACs in the study were identified in the CEPH/Genethon libraries (original library (29) with an average insert size of 470 kb and megaYAC library with an average insert size of 0.9 megabases (30)) by PCR screening of yeast DNAs pooled in two or three dimensions. Additional YACs were isolated from the Washington University YAC library (31), and from a
chromosome 22 specific YAC library constructed with DNA from hybrid cell line GM10888 (chromosome 22 in a Chinese hamster background). The chromosome 22 specific YAC library contains approximately 300 YACs with an average insert size of 200 kb , equivalent to 1 X coverage of the chromosome. YACs isolated from the Washington University library were kindly provided by Collaborators. In addition, limited use was made of a subset of YACs, kindly provided by Ilya Chumakov and Daniel Cohen, identified by hybridization of Alu-PCR products of a chromosome 22-only somatic cell hybrid to the CEPH megaYAC library. YACs from this subset, and from the chromosome 22 -specific library were identified by colony hybridization.

Table 2 is a summary of the YAC/STS screening results, listed in order of cytogenetic "bin", and within each bin, ordered alphabetically by GDB locus name. The YACs that were found at each locus are listed. YAC addresses preceded by "A", "B", "C" or "D" are from the Washington University library. YAC addresses preceded by "l" are from the chromosome 22specific (local) library constructed in the Philadelphia Genome Center. The remaining YACs are from the CEPH libraries. The majority of these results are YACs identified to single microtiter plate addresses, either from unequivocal PCR results in two or three dimensional screens, or from confirmatory PCR tests done on individual YACs. A YAC address consists of three dimensions: plate, row, and column. In initial screening of YAC pools, many of the addresses were incomplete (missing a dimension), or else had more than one possible value in a dimension, which occurs when there is more than one positive YAC per block of 8 microtiter plates (see materials and methods), or from false positive results. Such ambiguous addresses were resolved by several means including fingerprint analysis, comparison with verified YAC addresses of adjacent STSs, or PCR of all possible clones in the degenerate set of addresses. After preliminary contig assembly, most of the clones identified as well as the puïative adjacent YACs were individually tested with each STS in the contig.

In order to resolve confusion caused by possible cross-contamination among microtiter plate wells we adopted two approaches. The first approach compared the CEPH/Genethon
fingerprints, where available, of the putative YAC positives with the fingerprints of other YACs known by STS content to overlap the YAC to be resolved. Shared fingerprint bands among these YACs identified with a high degree of confidence the true positive YAC address among several neighboring candidates in several cases. The second approach was based on a calculation of the actual distances between wells of two YAC addresses sharing STSs, divided by the number of STS hits in common; when this measure fell below a certain threshhold for any pair of addresses, they were consolidated into a single address. This heuristic in all cases corresponded well to human judgements about likely cross-contamination, and was shown to be justified in cases that were checked experimentally. Level 1 data from the CEPH/Genethon genome mapping project were confirmed and included in the table.

YAC Contig Assembly

To date, we have used 235 markers to identify 575 YACs. Although the number of YACs we identified indicates nearly 5 X coverage of the chromosome, the depth of coverage is uneven: all somatic cell hybrid bins contain YACs, but the 22q11.23 to q12.31 region (bins 12-15; see below) has much deeper coverage than elsewhere. The YACs and STSs fall into 15 islands, defined as sets of STSs and sets of YACs all of which can be reached from each other by following a path of connectivity altermating between STSs and YACs. Singleton YACs detected by one STS each, numbering 25 , are omitted from this total. We had difficulty obtaining unequivocal clone and STS order within the largest of these islands, and a clear clone tiling path, even with deep clone coverage of the area and many STSs. In the central portion of the chromosome YAC connectivity has been achieved over a distance exceeding 10 Mb , yet an unbroken clone tiling path remains elusive despite extensive testing of YACs versus STSs in that region. This may be due in part to false positive and negative YAC/STS results (although results have been carefully confirmed), internal deletions within YAC clones, and sequences present at more than one location on the chromosome. Given these problems, the objective becomes to find
an ordering of STSs that minimizes gaps. In ideal data, there should be an order of STSs, corresponding to a true YAC contig, such there are no such gaps. However, in our data all postulated orders of STSs in an island result in some number of "gaps" within MACs in the island, defined as cases where a YAC is negative for some STS but positive for STSs located to both the left and right in the ordering.

For very large islands, finding the STS order with a the absolute minimum number of gaps is computationally intractable, but several approaches have been developed to finding approximate solutions. A simulated annealing $(39,40)$ program we developed employs a random search strategy that seeks local energy minima in the space of all -possible orderings, where energy is defined in terms of numbers and sizes of gaps (see Materials and Methods). This approach can be expected to yield somewhat different results for multiple runs, both because there may be more than one valid ordering even for ideal data, and because for "noisy" data the search may find different local energy minima which are near the actual optimum. In practice, the results of multiple runs of simulated annealing are generally similar, although not identical. We refer to these orderings of STSs and MACs as contigs, though it should be emphasized that the larger islands should be viewed as putative contigs at present.

A schematic representation of the coverage of the chromosome in contigs is shown in Figure 1. The chromosome is shown divided into 25 intervals derived from the somatic cell hybrid map of Budarf et al (27). Bin 1 formally includes the short arm of the chromosome but, since very few single copy sequences have been detected there (42), we consider bin 1 effectively to begin on the 22q side of the centromere. The contigs, based on the bin assignment of the STSs that detected the MACs in each, are shown as dark blocks. Since STS content mapping provides only limited information on contig size, the true extent of coverage and the sizes of the gaps separating the contigs are unknown. The stippled block represents a contig of cosmids in a region that proved difficult to clone in MACs. MACs detected by STSs in this part of the chromosome were unstable, and were underrepresented in the libraries screened (M. Budarf, unpublished observations). The cosmid map of this region will be described in a separate
publication. Figure 1 makes clear the low coverage of the distal portion of the chromosome, which arises from the lower density of markers and underrepresentation of the region in the mega-YAC library.

Figure 2 shows simulated annealing results for the largest contig, using a novel method of representing such data to which we have given the name 'Searls plot', after the author of the program. As noted, results of simulated annealing tend toward local minima of the objective function that may differ among runs. The relative merits of these STS orderings and implied YAC contigs cannot be judged with confidence on the basis of the STS data alone. On the other hand, a number of such orderings independently arrived at may be expected to represent a reasonable sampling of the contours of the search space of possible STS orderings. If the predicted orderings do not resemble each other, then little can be said about which is closest to the true optimum, but if they are all similar, one may be more confident in their consensus. Figure 2 shows the degree and nature of the consensus for multiple simulated annealings. The minimum energy ordering among all runs is indicated by the list of STSs running down the left hand side. The gray boxes in the diagram show the positions along the horizontal axis at which the indicated STS occurs in a run, so that the major diagonal denotes complete agreement with the minimum energy run. Other gray boxes indicate other positions at which that STS occurred in other runs, and the shading of a box reflects the number of times a particular STS occurred at the same position in a run. If the predictions for an STS tend to cluster at more than one position in multiple runs, one may infer that the evidence is not strong enough to greatly favor one position over another, though it may be possible to narrow the possibilities to a few regions.

As noted above, even with ideal data it may be possible to have more than one ordering, particularly over subregions of the contig. Obviously, a given ordering of STSs may be reversed in its entirety, without changing the apparent fit to the YAC data in isolation, and for that reason each simulated annealing run is reversed if necessary to more closely approach the consensus. However, there may also be subregions over which the STSs can be reversed without affecting the energy materially, and in this case the Searls plot will display a characteristic 'X' pattern
across the diagonal, representing the alternative orderings. Another characteristic pattern is a displacement of a subregion laterally on the plor, with either a forward or reversed directionality, indicating parts of the contig that display local integrity but which can be moved elsewhere in the larger scheme of things, with little or no penalty. Finally, there are subregions where STSs tend to be in proximity to each other, but where there is little support for ordering them with respect to each other. This may occur, for example, where there are multiple YACs with the same STS hits, but no YACs with only partial overlap to split the STSs and provide order information. These appear as "clouds" of points at or near the diagonal; it can be seen that with a sufficient sample size such regions would approach a uniform distribution of points within a diffuse "superblock". Figure 2 shows a major " X " indicating that the ordering in the distal half of the contig was inverted in a significant number of the simulated annealing runs. We interpret this to mean that the link between D22S591 and D22S47 should be viewed with caution and we have yet to confirm by other means whether actual continuity of YAC coverage exists in this region.

Figure 2 shows that our data suggest, with some confidence, a general ordering of STSs in most sections of this region of the chromosome, but in some areas there is significant scatter. Some of this deviation is systematic in nature, as described in the previous paragraph, and some in all likelihood merely reflects regions where the data is error-prone. An external test of the accuracy of this method is provided not only by bin information but by the meiotic and pulsedfield gel maps (43-46) of the region; the orders of the subsets of markers in both of these maps are similar in the converged order arrived at by simulated annealing, which in this case was done without regard to information from any of these other methods. Figure 3 shows a single simulated annealing solution to the largest contig.

DISCUSSION

We used physical, meiotic, and breakpoint maps of human chromosome 22 to localize contigs of overlapping YAC clones that provide extensive coverage of the long arm of the chromosome. The physical map is developing rapidly due to considerable new data obtained by screening YAC libraries with STSs. The contigs, most of which are anchored by landmarks that have been ordered by meiotic or hybrid mapping, provide extensive coverage of the long arm of the chromosome. Although long range continuity of the clones is not yet complete, the present information is of immediate use to the gene mapping community for identifying disease genes and chromosomal breakpoints. The current state of the physical map reported here reflects the fundamental characteristics of the reagents and methods used, as well as the inherent nature of chromosome 22 itself.

STSs that were developed for chromosome 22 are not randomly distributed along the chromosome. The contig(s) spanning interval 22q11.2-22q13.1 is(are) the most evolved as the result of the high density of markers in this region and greater than average representation of the region in the YAC libraries. The distribution of markers shows a bias towards the center of the long arm of the chromosome $(27,47)$. This is partly because many STRP markers were used as STSs, and these are known to be concentrated in the 22q12 G-dark chromosomal band (52). However, it is not known why other randomly chosen STSs generated from flow-sorted material should also be biased in this way. The distal third of the long arm is correspondingly poor in STSs, and appears to be underrepresented in the YAC libraries, and as a consequence, contains only 2 small contigs and 7 singleton YACs. Interestingly, the distal portion of the long arm appears to be resistant to cloning in both plasmid and YAC libraries, and the consequent paucity of mapping information indicates the need for alternative strategies for covering this region. Currently, we are targetting the region by generating STSs from inter-Alu plasmid libraries made from radiation hybrid cell lines that retain only the distal portion of the chromosome. Success in developing new STSs in this way has shown that YACs, not markers, are likely to be limiting for

STS-YAC contig mapping, and that complete coverage of this region will probably depend on a different cloning vehicle. Current candidate systems are bacterial artificial chromosomes (BACs) (48), P1 phage clones (49), Pl artificial chromosomes (PACs) (50), and cosmids.

Screening multi-dimensional pools of YACs was the only practical way to test all 25,000 Mega-YACs for the presence or absence of a given STS, but created several types of problems. Contamination of adjacent wells during preparation of the pools, absence of amplification in one dimension, or the presence of more than one YAC in the same pool were examples of difficulties that are inherent to pooling schemes which can result in false positive, false negative, and ambiguous YAC addresses. Most of the results obtained from the pool screenings have been resolved by a variety of methods, including analysis of YACs seen with adjacent STSs, fingerprint analysis of selected YACs, and ultimately, the verification of the PCR on the individual YAC. To decrease the errors caused by false negatives on STS order, most STSs were screened on adjacent YACs as well.

The CEPH mega-YACs, which have an average insert size of $0.9 \mathrm{Mb}(30)$, provided the best tool for linking STSs and assembling contigs, and were screened with all available markers. By requiring double linkage before declaring contiguity among STSs in the largest contig, large clones were required, and YACs from the other libraries, while contributing to deep coverage in most regions, did not, in general, contribute to contig assembly. However, in some notable cases contig construction was dependent upon the smaller clones, and as the map matures, they will be useful in resolving the order of closely spaced STSs, and as tools for isolating cosmids or other smaller clones as the map moves towards a higher level of resolution for eventual sequencing.

In addition to the known families of chromosome 22 specific repeats on long arm, such as the BCR, immunoglobulin and GGT gene families, we observed several markers which appear to behave as low copy repeats. In such cases, the PCR assay amplifies two identical or related sequences with products of similar molecular weights. Examples of this were D22S33 and D22S275, which gave several bands of similar size, and detected 15 and 14 YACs respectively. Repetitive STSs created inconsistencies in the data, manifested as large apparent gaps in YAC
clones, since contig assembly software tries to assign them single contig locations. In fact, they may be present at two or more locations. Repeats therefore artificially connect YACs at disparate locations. We arbitrarily decided that STSs detecting 14 or more megaYACs would be declared potentially repetitive and excluded them form contig construction.

The CEPH-Genethon tiling paths (38), provided relatively little additional information because the areas covered by tiling paths coincided with the region where the STS physical map was already well covered. We independently screened the mega-YAC library for the same Genethon genetic markers $(55,59)$, and confirmed the YAC addresses and the level-1 tiling paths present in the November 1993 CEPH-Genethon data release (38). We extracted a few YAC addresses derived by ALU-PCR hybridizations in 22q11.2- q13.1 region that were missed during YAC pool screening. Unfortunately, the areas where the STS content map was poor was also not represented in the tiling paths, or present only in higher level paths that could not be confirmed. Fingerprint analysis on the megaYACs generated by CEPH $(51,38)$, was utilized to resolve ambiguous addresses derived from screening pools of YACs. This method, successful in one third of ambiguous addresses tested, reduced the number of alternate addresses that need to be verified for YAC determination. We did try to assemble the 22q11.2-q13.1 by fingerprint analysis alone using only the fingerprints of YACs that were previously identified to this region. The results had only limited success, yielding small contigs with less than 10 YACs that were already shown to have extensive overlap in STS content.

We chose to represent the data for the large contig in two ways: a single simulated annealing solution, and the Searls plot, derived from multiple runs of simulated annealing. These representations, combined with the YAC-STS results shown in Table 1, provide an objective and useful means of using these data. Previous localization of markers by recombination or breakpoints greatly facilitated the evaluation of the STS content map. The marker order in region 22q11.2-q 13.1 spanning more than 11 cM , was broadly consistent with the orders of subsets of markers arrived at by meiotic and pulsed-field gel mapping (43-46). The smaller contigs contain at most two genetically ordered markers, which does not allow real comparisons of marker order
with the meiotic map. In essence, we have made the assumption that the framework linkage map (52) is correct, and used it to anchor and orient the smaller contigs. The best validation of the smaller contigs came from concordance with the somatic cell hybrid binning results.

It is clear that due to biological problems with YACs, the STS-content mapping results from the large contig did not allow us to obtain a fine structure order of the region. This may well be true for many other regions in the genome. The need for additional methodologies to obtain a finer scaffold map of STSs is evident. Radiation hybrids, which allow the study of multiple, larger DNA fragments at a higher redundancy will provide more confidence in generating a high resolution STS order. They will also allow contiguity of the STS map in regions where YAC clones are few or absent.

In conclusion, the physical map of human chromosome 22 has advanced considerably, due to the large scale screening of the CEPH Mega-YAC library with chromosome 22 specific STSs. Current efforts to achieve a complete set of overlapping clones for the long arm of the chromosome are directed at the generation of additional STSs for clone screening, as well as targeted strategies for the distal third of the chromosome using ALU-PCR hybridization strategies.

MATERIALS AND METHODS

Pooling of YAC libraries

For use in the Philadelphia genome center, two dimensional pools of the CEPH/Genethon YAC libraries were constructed as described (53). A Biomek• 1000 robotic workstation (Beckman Instruments) was used for yeast DNA isolation and pooling. In brief, yeast clones were grown to saturation in ura- trp- dropout medium in microtiter plates at 30C. 50-75 ul of each clone was pooled into a 1 ml deep-well plate (Beckman Instruments) in which spheroplast preparation and lysis was performed as described elsewhere (54). The lysate was extracted twice
with Strataclean resin (Stratagene) according to manufacturers recommendations. The DNA was then precipitated with isopropanol and the pellet was allowed to dry. After resuspension in TE (10 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.0,1 \mathrm{mM}$ EDTA, pH 8.0) and treatment with DNAase-free RNAase, the DNA was precipitated with isopropanol and the pellet was dried and resuspended in water. Limited use was also made of commercially purchased DNA pools constructed in three dimensional blocks equivalent to eight microtiter plates each (Research Genetics, Huntsville, Albama).

PCR was performed in 20 ul reactions using approximately 20 ng of pooled yeast DNA in standard PCR buffer (1X buffer (Boehringher-Mannheim) : 10 mM Tris- $\mathrm{HCl}, 1.5 \mathrm{mM} \mathrm{Mg} 2+$, $50 \mathrm{mM} \mathrm{KCl}, \mathrm{pH} 8.3$) with 20 nM (final concentration) primers and 0.5 U Taq polymerase (Perkin Elmer Cetus or Boehringher Mannheim). PCR conditions were: a five minute denaturation step at 92°. C followed by forty five cycles of $94^{\circ} \mathrm{C} / 20$ seconds, annealing for 20 seconds, $72^{\circ} \mathrm{C} / 80$ seconds and a 7 minute extension at $72^{\circ} \mathrm{C}$. Suitable annealing temperatures were determined for each STS. The majority of the PCR assays were performed on MJ Research PTC-100 thermal cyclers. Products were analyzed by gel electrophoresis using 1.5 \% agarose.

STSs screened at the Whitehead Institute/MIT Center for Genome Research were analyzed using a semi-automated system. The STSs were screened on plates 709 to 972 of the CEPH megaYAC library, generously provided by Daniel Cohen. The YAC library was screened by a two-level pooling scheme. At the first level, there are 32 superpools consisting of DNA from the 768 YACs in a block of eight 96 well plates. Corresponding to each block, there are 8 row, 12 column, and 8 plate subpools. STSs positive at the superpool screen were then screened on the corresponding subpools to identify YAC addresses.

PCRs were prepared by a robotic station built by ROSYS and modified by IAS (Intelligent Automation Systems, Inc., Cambridge, MA). PCR was performed in 20 ul volumes containing 10 ng target DNA, 1 X PCR Buffer (10 mM Tris $/ \mathrm{HCl}, 50 \mathrm{mM} \mathrm{KCl}, 1.5 \mathrm{mM} \mathrm{Mg++}$, and 0.001% gelatin), 4 nmol dNTP, 5 pmol each primer, and 0.5 units of Taq. PCRs were completed on custom built thermocyclers (locally called waffle irons, by IAS) each having a
capacity of 16192 well plates (Costar, Cambridge MA). PCR conditions were: an initial four minute denaturation at $94^{\circ} \mathrm{C}$ followed by 30 cycles of 50 sec at $94^{\circ} \mathrm{C}, 1.5$ minutes at $58^{\circ} \mathrm{C}, 1$ minutes at $72^{\circ} \mathrm{C}$, and a final extension period of 10 minutes at $72^{\circ} \mathrm{C}$.

STSs were screened by either standard agarose gel stained with ethidium bromide or by high throughput chemi-luminescence dot-blot analysis: The PCR products were transferred from the 192 well plates to nylon membranes using a custom built 96 pin pipettor (IAS) and a 6,144 reaction capacity dot-blotting apparatus (96 X 16 X 4 X well density, IAS). Subsequent hybridization and detection of the Hybond $\mathrm{N}+$ membrane (Amersham) membranes was done using the ECL kit (Amersham). Hybridization occurred overnight using non-radioactive probes designed from PCR products. STSs known to contain an internal repeat sequence such as CA or AGAT were probed with a molecule containing the repeat structure which had also been labeled with horseradish peroxidase (HRP). All blots were stringently washed with Urea, 2X SSC and SDS at 42° and detected using the standard ECL reagents. Computer images of each autoradiography were obtained using a CCD camera. The VIEW software (Carl Rosenberg, Whitehead Institute) can locate and identify the positive dots, as well as generate an intensity reading.

Fingerprint Resolution Of Degenenerate Addresses.

The STS screening on YAC pools yielded many degenerate YAC addresses, which occur as a result of having more than one positive YAC per block of 8 microtiter plates, from having one dimension in a two or three dimensional screen consistently fail to amplify, and from false positive results. These degenerate addresses represent a small set of addresses (2 to 12) of which usually one or two addresses are contain the specific STS. We used fingerprint data to establish overlaps between the set of ambiguous YACs and the set of definite YACs. We applied a simple band-matching test to the CEPH-genethon fingerprint dataset; we declared pairs of clones with a statistically significant number of matching bands as overlapping. We promoted ambiguous

YACs overlapping one or more definite YACs to "disambiguated" status, denoted in table 2 with a superscript "4". Parameters for declaring overlap are stringent, allowing resolution of only $1 / 3$ of degenerate addresses. However, empirical testing of over 500 fingerprint resolved addresses from random STSs has demonstrated that greater than 95% can be confirmed by testing the individual YAC DNAs.

Most YAC addresses obtained by screening the YAC pools, fingerprint analysis, and those derived from adjacent STSs during contig building were verified by testing DNA prepared from individual YACs in the library.

Construction of a chromosome 22 specific YAC library. DNA from hybrid cell line GM10888 (chromosome 22 in a Chinese hamster background) was used to create a chromosome 22 specific YAC library essentially as described (56). In brief, high molecular weight DNA from this cell line was partially digested with EcoRI and after ligation to pYAC4 was size selected on a 1% FMC Seaplaque GTG low melting agarose gel in a CHEF-DRII apparatus (BioRad). YACs containing human chromosome 22 DNA were identified by colony hybridization using total human DNA or human CotI DNA as probes.

Contig assembly was performed using a new software package written for use on SPARCstation Unix workstations (Sun Microsystems, Mountain View CA) in a combination of ' C ', the logic programming language Prolog (SICStus Prolog, Swedish Institute of Computer Science, PO Box 1263, S-164 28 KISTA, Sweden), and the graphical user interface language $\mathrm{Tcl} / \mathrm{Tk}$ [57]. The algorithm is based on the technique of simulated annealing, used by a number of others for contig assembly $[39,58]$; our implementation in particular is similar in broad outline to one developed by CEPH for this purpose [40]. Briefly, in this technique a search space of probe (STS) order permutations, which would be intractable to explore exhaustively, is randomly reordered by selecting from a set of operations such as movement of single probes, swapping of probes, moving of clusters, and inversion of clusters. Any ordering is assigned a notional "energy" that reflects its fit to the STS-YAC data; our energy function involves examining the number and size of apparent gaps required in YACs to account for an ordering of STSs, i.e.
positions where an expected STS hit is not observed, as well as arbitrary other objectives reflecting additional sources of information about probe order. The objective is to minimize this energy by accepting moves that reduce the overall energy. In order to avoid being trapped in a local energy minimum, the process takes place in the context of an abstract "temperature;" a good energy minimum is sought by gradually "cooling" the random search, so that the entire search space is accessible and poor local minima can be escaped, yet there is a gradual convergence (though it cannot be guaranteed that any one solution is optimal). The graphical user interface was designed for maximum interaction with the user, who has the option of reordering probes manually by any of the operations described above, or of asking the program to do so via simulated annealing, for the entire working probe set or any subregion. Islands of connected probe sets can be accumulated in a controlled fashion and with varying stringency as to degree of connectedness. These sets may then be winnowed based on a variety of heuristics to eliminate non-informative or doubtful probes, clones, or points. For example, adjacent or nearby wells with similar reactivities, likely to be due to cross-contamination, may be automatically combined, or YACs that appear to span noncontinuous bins may be removed, etc.

Acknowledgments

The work undertaken in the human genome center for chromosome 22 was supported by grant numbers P50-HG00425 (NCHGR) and CA39926 (NCI) from the NIH. Studies in the Whitehead Institute/MIT Center for genome research were supported by National Institute of Health Center for Genome Research Grant P50-HG00098. We wish to thank Eric Green and Glen Evans for screening for Washington University YACs, Eckart Meese and Marco Giovannini for providing STSs prior to publication, Daniel Cohen, Ilya Chumakov and Jean Weissenbach for the CEPH YAC libraries and the Alu-PCR generated chromosome 22 subset, and Willem Van Loon for biomek routines. Thomas Hudson is a recipient of a Clinician-Scientist Award from the Medical Research Council of Canada.

REFERENCES

1. Morton, N.E. (1991) Parameters of the human genome. Proc. Natl. Acad. Sci. U.S.A. 88, 74747476.
2. Kaplan,J.C., Aurias,A., Julier,C., Prieur,M. and Szajnert,M.F. (1987) Human chromosome 22. J. Med. Genet. 24, 65-78.
3. Nowell,P.C. and Hungerford,D.A. (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132, 1497-1499.
4. Rowley,J.D. (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290-293.
5. Berger,R., Bernheim,A., Weh,H.J., Flandrin,G., Daniel,M.T., Brouet,J.C. and Colbert,N. (1979) A new translocation in Burkitt's tumor cells. Hum. Genet. 53, 111-112.
6. Aurias,A., Rimbaut,C., Buffe,D., Dubousset,J. and Mazabraud,A. (1983) Chromosomal translocations in Ewing's sarcoma. N. Engl. J. Med. 309, 496-497.
7. Turc-Carel,C., Philip,I., Berger,M.P., Philip,T. and Lenoir,G.M. (1983) Chromosomal translocations in Ewing's sarcoma. N. Engl. J. Med. 309, 497-498.
8. Zang,K.D. (1982) Cytological and cytogenetical studies on human meningioma. Cancer Genet. Cytogenet. 6, 249-274.
9. Dumanski,J.P., Carlbom,E., Collins,V.P. and Nordenskjold,M. (1987) Deletion mapping of a locus on human chromosome 22 involved in the oncogenesis of meningioma. Proc. Natl. Acad. Sci.U.S.A. 84, 9275-9279.
10. Seizinger,B.R., Martuza,R.L. and Gusella,J.F. (1986) Loss of genes on chromosome 22 in tumorigenesis of human acoustic neuroma. Nature 322, 644-647.
11. Seizinger,B.R., Rouleau,G., Ozelius,L.J., Lane,A.H., ST. George- Hyslop,P., Huson,S., Gusella,J.F. and Martuza,R.L. (1987) Common pathogenetic mechanism for three tumor types in bilateral acoustic neurofibromatosis. Science 236, 317-319.
12. Trofatter,J.A., MacCollin,M.M., Rutter,J.L., Murell,J.R., Duyao,M.P., Parry,D.M., Eldridge,R., Kley,N., Menon,A.G., Pulaski,K., Haase,V.H., Ambrose,C.M., Munroe,D., Bove,C., Haines,J.L., Martuza,R.L., MacDonald,M.E., Seizinger,B.R., Short,M.P., Buckler,A.J. and Gusella,J.F. (1993) A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72, 791-800.
13. Rouleau,G.A., Merel,P., Lutchman,M., Sanson,M., Zucman,J., Marineau,C., Hoang-Xuan,K., Demczuk,S., Desmaze,C., Plougastel,B., Pulst,S.M., Lenoir,G., Bijlsma,E., Fashold,R., Dumanski,J., de Jong,P., Parry,D., Eldridge,R., Aurias,A., Delattre,O. and Thomas,G. (1993) Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2 . Nature 363, 515-521.
14. Biegel,J.A., Rorke,L.B., Packer,R.J. and Emanuel,B.S. (1990) Monosomy 22 in rhabdoid or atypical tumors of the brain. J Neurosurg. 73, 710-714.
15. Biegel,J.A., Burk,C.D., Parmiter,A.H. and Emanuel,B.S. (1992) Molecular analysis of a partial deletion of 22 q in a central nervous system rhabdoid tumor. Genes Chromosom.Cancer 5, 104-108.
16. Zackai,E.H. and Emanuel,B.S. (1980) Site-specific reciprocal translocation, $t(11 ; 22)$ (q23;q11), in several unrelated families with 3:1 meiotic disjunction. Am. J. Med. Genet. 7, 507-521.
17. Fraccaro,M., Lindsten,J., Ford,C.E. and Iselius,L. (1980) The 11q;22q translocation: a European collaborative analysis of 43 cases. Human Genet. 56, 21-51.
18. De La Chapelle,A., Herva,R., Koivisto,M. and Aula,P. (1981) A deletion in chromosome 22 can cause DiGeorge syndrome. Hum. Genet. 57, 253-256.
19. Kelley,R.I., Zackai,E.H., Emanuel,B.S., Kistenmacher,M., Greenberg,F. and Punnett,H.H. (1982) The association of the DiGeorge anomalad with partial monosomy of chromosome 22. J. Pediatr. 101, 197-200.
20. Carey,A.H., Roach,S., Williamson,R., Dumanski,J.P., Nordenskjold,M., Collins,V.P., Rouleau,G., Blin,N., Jalbert,P. and Scambler,P. (1990) Localization of 27 DNA markers to
the region of human chromosome 22 q 11 -pter deleted in patients with the DiGeorge syndrome and duplicated in the der 22 syndrome. Genomics 7, 299-306.
21. Fibison, W.J.,Budarf,M., McDermid,H., Greenberg,F. and Emanuel,B.S. (1990) Molecular studies of DiGeorge syndrome. Am. J. Hum. Genet. 46, 888-895.
22. Emanuel,B.S., Driscoll,D., Goldmuntz,E., Baldwin,S., Beigel,J., Zackai,E.H., McDonaldMcGinn,D., Sellinger,B., Gorman,N., Williams,S and Budarf,M. (1993) The Phenotypic Mapping of Down Syndrome ansd Other Aneuploid Conditions, Wiley-Liss: 207-224.
23. McDermid,H.E., Duncan,A.M.V., Brasch,K.R., Holden,J.J.A., Magenis,E., Sheehy,R., Burn,J., Kardon,N., Noel,B., Schinzel,A., Teshima,I. and White,B.N. (1986) Characterization of the supernumery chromosome in cat eye syndrome. Science 232, 646648.
24. Olson,M., Hood,L., Cantor,C. and Botstein,D. (1989) A common language for physical mapping of the human genome. Science 245, 1434-1435.
25. Green,E.D. and Olson,M. (1990) Chromosomal region of the cystic fibrosis gene in yeast artificial chromosomes: a model for human genome mapping. Science 250, 94-98.
26. Green,E.D. and Green,P. (1991) Sequence-tagged site (STS) content mapping of human chromosomes: theoretical considerations and early experiences. PCR Methods Applic. 1, 7790.
27. Budarf, M.L., Eckman, B., Michaud, D., Buetow, K.H., Williams, S., McDermid, H., Goldmuntz, E., Gavigan, S., Meese, E., Biegel, J., Dumanski, J., Bell, C.J. and Emanuel, B.S. (1994) Regional localization of over 300 loci on human chromosome 22 with an extended regional mapping panel. Genomics, submitted.
28. Burke,D.T., Carle,G.F. and Olson,M.V. (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806-812.
29. Albertsen,H.M., Abderrahim,H., Cann,H.M., Dausset,J., Le Paslier,D. and Cohen,D. (1990) Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc. Natl. Acad. Sci. U.S.A. 87, 4256-4260.
30. Chumakov,I., Rigault,P., Guillou,S., Ougen,P., Billaut,A., Guasconi,G., Gervy,P., LeGall,I., Soularue,P., Grinas,L. et al. (1992) Continuum of overlapping clones spanning the entire human chromosome 21q. Nature 359, 380-387.
31. Brownstein,B.H., Silverman,G.A., Little,R.D., Burke,D.T., Korsmeyer,S.J., Schlessinger,D. and Olson,M.V. (1989) Isolation of single-copy human genes from a library of yeast artificial chromosome clones. Science 244, 1348-1351.
32. Weber,J.L. and May,P.E. (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum.Genet. 44, 388-396.
33. Wilcox, A.S., Khan,A.S., Hopkins,J.A. and Sikela,J.M. (1991) Use of 3' untranslated sequences of human cDNAs for rapid chromosome assignment and conversion to STSs: implications for an expression map of the genome. Nucleic Acids Res. 19, 1837-1843.
34. Adams,M.D., Kelley,J.M., Gocayne,J.D., Dubnick,M., Polymeropoulos,M.H., Xiao,H., Merril,C.R., Wu,A., Olde,B. and Moreno,R.F. (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651-1656.
35. Riley,J., Butler,R., Ogilvie,D.J., Finniear,R., Jenner,D., Anand,R., Smith,J.C. and Markham,A.F. (1990) A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res. 18, 2887-2890.
36. Nelson,D.L., Ledbetter,S.A., Corbo,L., Victoria,M.F., Ramirez-Solis,R., Webster,T.D., Ledbetter,D.H. and Caskey,C.T. (1989) Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. Proc. Natl. Acad. Sci. U.S.A. 86, 6686-6690.
37. Lehrach,H. et al. (1990) In Davies,K.E. and Tilghman,S.M. (eds.), Genome Analysis Volume 1: Genetic and Physical Mapping. Cold Spring Harbor Laboratory Press, Cold Spring Harbor: 39-81.
38. Cohen,D., Chumakov,I. and Weissenbach,J. (1993) A first-generation physical map of the human genome. Nature 366, 698-701.
39. Cuticchia,A.J., Arnold,J. and Timberlake,W.E. (1992) The use of simulated annealing in chromosome reconstruction experiments based on binary scoring. Genetics 132, 591-601.
40. Rigault, P. (1993) In Lim,H.A., Fickett,J., Cantor,C.R. and Robbins,R.J. (eds.) Clone ordering by simulated annealing: Application to the STS-content map of chromosome 21. Proceedings of the Second Intemational Conference on Bioinformatics, Supercomputing, and Complex Genome Analysis. World Scientific Publishing: 169-183.
41. Arratia,R., Lander,E., Tavare,S. and Waterman,M. (1992) Genomic mapping by anchoring random clones: a mathematical analysis. Genomics 11, 806-827
42. Schinzel,A.A., Basaran,S., Bernasconi,F., Karaman,B., Yuksel-Apak,M. and Robinson,W.P. (1994) Maternal uniparental disomy 22 has no impact on the phenotype. Am. J. Hum. Genet. 54, 21-24.
43. McDermid,H.E., Budarf,M.L. and Emanuel,B.S. (1993) Long-range restriction map of human chromosome 22q11-22q12 between the lambda immunoglobulin locus and the Ewing sarcoma breakpoint. Genomics 18, 308-318.
44. Bucan,M., Gatalica,B., Nolan,P., Chung,A., Leroux,A., Grossman,M.H., Nadeau,J.H., Emanuel,B.S. and Budarf,M. (1993) Comparative mapping of 9 human chromosome 22q loci in the laboratory mouse. Hum. Mol. Genet. 2, 1245-1252.
45. Dumanski,J.P., Carlbom,E., Collins,V.P., Nordenskjold,M., Emanuel,B.S., Budarf,M.L., McDermid,H.E., Wolff,R., O'Connell,P. and White,R. (1991) A map of 22 loci on human chromosome 22. Genomics 11, 709-719.
46. Delattre,O., Azambuja,C.J., Aurias,A., Zucman,J., Peter,M., Zhang,F., Hors-Cayla,M.C., Rouleau,G. and Thomas,G. (1991) Mapping of human chromosome 22 with a panel of somatic cell hybrids. Genomics 9, 721-727.
47. Hudson, T.J., Colbert, A.M.E., Reeve, M.P., Bae, J.S., Lee, M.K., Nussbaum, R.L., Budarf, M.L., Emanuel, B.S. and Foote, S. (1994) Isolation and regional mapping of 110 chromosome 22 STSs.Genomics, in press.
48. Shizuya,H., Birren,B., Kim,U.J., Mancino,V., Slepak,T., Tachiiri,Y. and Simon,M. (1992) Cloning and stable maintenance of 300 -kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. U.S.A. 89, 87948797.
49. Sternberg,N. (1990) Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Natl. Acad. Sci. U.S.A. 87, 103-107.
50. Ioannou,P.A., Amemiya,C.T., Garnes,J., Kroisel,P.M., Shizuya,H., Chen,C., Batzer,M.A. and de Jong,P.J. (1994) A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat. Genet. 6, 84-89.
51. Barillot,E., Lacroix,B. and Cohen,D. (1991) Theoretical analysis of library screening using a N -dimensional pooling strategy. Nucleic Acids Res. 19, 6241-6247.
52. Buetow,K.H., Duggan,D., Yang,B., Ludwigsen,S., Puck,J., Porter,J., Budarf,M., Spielman,R. and Emanuel.B.S. (1993) A microsatellite-based multipoint index map of human chromosome 22. Genomics 18, 329-339.
53. Amemiya,C.T., Alegria-Hartman,M.J., Aslanidis,C., Chen,C., Nikolic,J ., Gingrich,J.C. and de Jong,P.J. (1992) A two-dimensional YAC pooling strategy for library screening via STS and Alu-PCR methods. Nucleic Acids Res. 20, 2559-2563.
54. Green,E.D and Olson,M.V. (1990) Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction. Proc. Natl. Acad. Sci. U.S.A. 87, 12131217.
55. Weissenbach, J., Gyapay, G., Dib. C., Vignal. A., Morissette. J., Millasseau. P., Vaysseix. G. and Lathrop M. (1992) A second-generation linkage map of the human genome. Nature 359, 777-8
56. Lee,J.T., Murgia,A., Sosnoski,D.M., Olivos,I.M. and Nussbaum,R.L. (1992) Construction and characterization of a yeast artificial chromosome library for Xpter-Xq27.3: a systematic determination of cocloning rate and X -chromosome representation. Genomics 12, 526-533.
57. Ousterhout,J.K. (1994) "Tcl and the Tk Toolkit." Addison-Wesley, Reading, MA.
58. Mott,R., Grigoriev,A., Maier,E., Hoheisel,J. and Lehrach,H. (1993) Algorithms and software tools for ordering clone libraries: application to the mapping of the genome of Schizosaccharomyces pombe. Nucleic Acids Res. 21, 1965-1974.
59. Ḡyapay, G., Morrisette, J., Vignal, A., Dib, C., Fizames, C., Millaseau, P., Marc, S., Bernardi, G., Lathrop, M. and Weissenbach, J. (1994) The 1993-94 genethon human genetic linkage map. Nature Genet. 7, 246-339
60. Figlewicz, D.A., Delattre, O., Guellaen, G., Krizus, A., Thomas, G., Zucman,J., and Rouleau, G.A. (1993) Mapping of human γ-glutamyl transpeptidase genes on chromosome 22 and other autosomes. Genomics 17, 299-305
61. Budarf, M.L., Canaani, E. and Emanuel, B.S. (1988) Linear order of the four BCR-related loci in 22q11. Genomics 3, 168-172

Footnote to Table 2

1, verified by PCR on purified DNA or a single yeast colony
2, clear positive by PCR on DNAs pooled in two or three dimensions
3 , found positive by colony or Southern hybridization
4, disambiguated by restriction fingerprint data.
e, YACs kindly provided by Dr. Glen Evans
r, YACs taken from ref. 13

Figure legends

Figure 1. Estimated coverage of the chromosome in contigs. The horizontal lines are the boundaries separating 22 bins. Contigs are shown as blocks. The stippled block shows the location of a cosmid contig encompassing the DiGeorge critical region (DGCR).

Figure 2. Searls Plot of simulated annealing data for the largest contig accumulated from multiple runs of the program. The list of loci down the left of the figure is the "minimum energy" ordering of markers (see the text for detailed explanation). Gray boxes indicate the position on the horizontal axis at which the indicated STSs occurred during individual runs. Darker boxes indicate that an STS was positioned in the same location in multiple runs. Boxes falling repeatedly on the diagonal indicate high confidence in the minimum energy ordering. Horizontal dotted lines indicate the chromosomal bin location of each STS. The bin intervals are shown at the top of the figure. Circles indicate the consensus positions of markers that are present on the meiotic map.

Figure 3. A single solution for the largest contig in the central region of chromosome 22q. The contig was contructed as follows: YACs and STSs were selected by connectivity to D22S1, obeying the double linkage rule. Singletons (YACs detected by one STS only) were then eliminated, as were markers that detected more the 14 YACs. Singletons were eliminated a second time, and the resulting set of markers and YAcs were subjected to simulated annealing. Marker order is shown along the top of the figure. Above each marker name is the bin interval that the marker was mapped to, e.g. 15/16 indicates the marker is in bin 15-16. YACs are shown as heavy horizontal black lines.

Table titles:

Tablel. Loci used for YAC identification

Table 2. YACs localized on chromosome 22

Locus	Probe	Source	Type
none	22-5	Bell	sts
ACR	ACR	Trofatter- Maccollin	sts
ADORA 1	ADORA1	Budarf	sts
ARSA	$\begin{aligned} & \text { CP8 } \\ & \text { ARSA } \end{aligned}$	Gieselmann Gieselmann	clone sts
ATP6E	$\begin{aligned} & \text { ATPaseP31 } \\ & \text { ATPaseP31-2 } \end{aligned}$	$\begin{aligned} & \text { Bell } \\ & \text { Bell } \end{aligned}$	$\begin{aligned} & \hline \text { sts } \\ & \text { sts } \end{aligned}$
BCR	$\begin{aligned} & \hline \text { 5'BCR } \\ & \text { BCR } \\ & \text { GB21 } \end{aligned}$	Canaani Dunham Hudson	clone sts sts
BCRL2	BCRL2	Budarf	clone
BCRL3	BCRL3	Budarf	clone
BCRL4	BCRL4	Budarf	clone
BZRP	$\begin{aligned} & \text { pPBS11 } \\ & \text { BZRP-2 } \end{aligned}$	$\begin{aligned} & \text { Strauss } \\ & \text { Bell } \end{aligned}$	clone sts
none	CB10	Bell	sts
none	$\begin{aligned} & \text { COS7-1 } \\ & \text { COS7-1-2 } \end{aligned}$	$\begin{aligned} & \hline \text { Bell } \\ & \text { Bell } \end{aligned}$	$\begin{aligned} & \hline \text { sts } \\ & \text { sts } \end{aligned}$
CRKL	CRKL3pr	Bell	sts
CRYBB2	$\begin{aligned} & \text { CRYB2 } \\ & \text { CRYB2A } \end{aligned}$	Haines Dunham	$\begin{aligned} & \hline \text { sts } \\ & \text { sts } \end{aligned}$
CYP2D8P	CYP2D8P	Buetow	sts
D22S1	D22S1	Denny	sts
D22S9	D22S9	Gusella	sts
D22S15	D22S15	Denny	sts
D22S23	D22S23	Gusella	sts
D22S24	D22S24	Unknown	sts
D22S28	W23C	Bell	sts
D22S29	D22S29	Gusella	sts
D22S33	PHI4	Hudson ${ }^{\text {a }}$	sts
D22S37	$\begin{aligned} & \mathrm{pH} 13 \\ & \mathrm{pH} 13 \end{aligned}$	Budarf Budarf	$\begin{array}{\|l} \hline \text { clone } \\ \text { sts } \\ \hline \end{array}$
D22S38	$\begin{aligned} & \mathrm{pH} 15 \\ & \text { PHI15 } \end{aligned}$	Budarf Hudson	$\begin{array}{\|l} \hline \text { clone } \\ \text { sts } \\ \hline \end{array}$
D22S40	PH61	Budarf	sts
D22S42	D22S42*1	Gusella	sts
D22S43	PHI32	Hudson	sts
D22S44	PHI35	Hudson	sts
D22S45	pH41a	Rappaport	sts
D22S47	$\begin{aligned} & \mathrm{pH} 59 \\ & \mathrm{pH} 59 \end{aligned}$	Budarf Budarf	$\begin{array}{\|l\|} \hline \text { clone } \\ \text { sts } \\ \hline \end{array}$
D22S50	pH74-2	Budarf	sts
D22S51	pE6	Rappaport	sts
D22S55	pH91	Budarf	sts
D22S56	$\begin{aligned} & \hline \mathrm{pH97b} \\ & \mathrm{D} 22 \mathrm{~S} 56 \end{aligned}$	Budarf Gusella	clone sts
D22S57	PHI86	Hudson	sts
D22S58	PHI102	Hudson	sts
D22S60	pH109a	Budarf	sts
D22S61	pH109b	Budarf	sts
D22S63	pH120a	Budarf	sts
D22S64	pH130	Budarf	sts
D22S72	$\begin{aligned} & \text { LN15 } \\ & \text { LN15-2 } \end{aligned}$	Budarf Budarf	$\begin{aligned} & \hline \text { sts } \\ & \text { sts } \end{aligned}$
D22S91	KI-211	Bell	sts
D22S102	D22S102*1	Gusella	sts
D22S111	KI-197	Bell	sts

Locus	Probe	Source	Type
D22S117	KI-153/4.9KB	Bell	sts
D22S119	KI-189	Bell	sts
D22S137	K1-222	Bell	sts
D22S156	Mfd33	Weber	sts
D22S184	NB85	Budari	sts
D22S186	NB14	Budarf	sts
D22S190	NB62	Budarf	sts
D22S192	NB97	Budarf	sts
D22S193	D22S193	Dunham	sts
	NB129	Budarf	sts
D22S258	Mid162	Weber	sts
D22S264	COS39	Rouleau	sts
D22S268	D22S268	Rouleau	sts
D22S270	Mfd204	Weber	sts
D22S272	AFM024xc9	Weissenbach	sts
D22S273	AFM106xd2	Weissenbach	sts
D22S274	AFM164th8	Weissenbach	sts
D22S277	AFM168xal	Weissenbach	sts
D22S278	AFM182xd12	Weissenbach	sts
D22S279	AFM205ycl1	Weissenbach	sts
D22S280	AFM225xf6	Weissenbach	sts
D22S281	AFM238wcll	Weissenbach	sts
D22S282	AFM261ye5	Weissenbach	sts
D22S283	AFM262vh5	Weissenbach	sts
D22S292E	D22S292E	Polymeropoulos	sts
D22S294	4.11	Puck	sts
D22S295	9.11	Puck	sts
	9.11-2	Puck	sts
D22S297	27.7	Puck	sts
D22S299	35.12	Puck	sts
D22S300	42.13	Puck	sts
D22S301	45.4	Puck	sts
D22S302	51.3	Puck	sts
D22S303	68.12	Puck	sts
D22S304	76.1	Puck	sts
D22S306	80.1	Puck	sts
D22S307	82.1	Puck	sts
D22S308	99.1	Puck	sts
D22S310	114.1	Puck	sts
D22S315	AFM183xe9	Weissenbach	sts
D22S351	22TG1	Mcphail	sts
D22S412E	D22S412E	Maglott	sts
D22S417	D22S417	Gerken	sts
D22S418	AFM031yb10	Weissenbach	sts
D22S419	AFM211yf10	Weissenbach	sts
D22S420	AFM217xf4:	Weissenbach	sts
D22S425	AFM265yf5	Weissenbach	sts
D22S427	AFM288we5	Weissenbach	sts
D22S431	UT582	White	sts
D22S447	59.1	Puck	sts
D22S540	PB14	Hudson	sts
D22S541	PH31	Hudson	sts
D22S543	PH863	Hudson	sts
D22S544	PB257	Hudson	sts
D22S546	PB1185	Hudson	sts
D22S552	PH1362	Hudson	sts
D22S553	PC39	Hudson	sts
D22S554	PH1364	Hudson \because	sts

Locus	Probe	Source	Type
D22S556	PH1367	Hudson	sts
D22S557	PH1379	Hudson	sts
D22S559	PC106	Hudson	sts
D22S560	PB216	Hudson	sts
D22S561	PB282	Hudson	sts
D22S562	PB287	Hudson	sts
D22S563	PH476	Hudson	sts
D22S564	PB379	Hudson	sts
D22S565	PB422	Hudson	sts
D22S566	PB426	Hudson	sts
D22S567	PB22	Hudson	sts
D22S568	PB606	Hudson	sts
D22S569	PB728	Hudson	sts
D22S570	PH570	Hudson	sts
D22S571	PB1024	Hudson	sts
D22S572	PB1033	Hudson	sts
D22S574	PB1045	Hudson	sts
D22S576	PB1068	Hudson	sts
D22S577	PB1069	Hudson	sts
D22S579	PB1073	Hudson	sts
D22S582	PB1130	Hudson	sts
D22S584	PB1144	Hudson	sts
D22S588	PB987	Hudson	sts
D22S589	PH138	Hudson	sts
D22S591	PB876	Hudson	sts
D22S594	PB918	Hudson	sts
D22S595	PB931	Hudson	sts
D22S596	PB552	Hudson	sts
D22S604	PH518	Hudson	sts
D22S607	PH621	Hudson	sts
D22S609	PH672	Hudson	sts
D22S611	PH176	Hudson	sts
D22S615	PH808	Hudson	sts
D22S617	PH917	Hudson	sts
D22S618	PH927	Hudson	sts
D22S620	PH937	Hudson	sts
D22S623	PH951	Hudson	sts
D22S624	PH955	Hudson	sts
D22S626	PH1006	Hudson	sts
D22S627	PH1027	Hudson	sts
D22S629	PH1051	Hudson	sts
D22S630	PH604	Hudson	sts
D22S631	PH608	Hudson	sts
D22S633	PC295	Hudson	sts
D22S635	PH831	Hudson	sts
D22S638	PH964	Hudson	sts
D22S639	PH965	Hudson	sts
D22S642	PH843	Hudson	sts
D22S644	PC273	Hudson	sts
D22S650	PH1247	Hudson	sts
D22S652	PH1104	Hudson	sts
D22S653	PH1131	Hudson	sts
D22S655	IGJ2	Dunham	sts
D22S656	PB266	Hudson	sts
D22S659	PB739	Hudson	sts
D22S663	PH710	Hudson	sts
D22S666	PH1036	Hudson	sts
D22S669	GB31	Hudson	sts
D22S715	WI-1905	Hudson	sts
D22S718	WI-2547	Hudson	sts

Locus	Probe	Source	Type
D22S739	25.4	Hudson	sts
D22S745	GBX56	Hudson	sts
D22Si46	GBX61	Hudson	sts
D22S776	LN86	Budarf	clone
D22S778	LN89-2	Bell	sts
D22ST81	LN98	Budarf	sts
D22Si89	LN44	Budarf	sts
D22S792	LN50	Budarf	clone
D22S793	LN53	Budarf	clone
D22S794	LN55	Budarf	clone
D22S795	LN63	Budarf	sts
D22Si79	LNT7	Budarf	clone
DIA1	5'DIA	Leroux	clone
	DIA1	Dunham	sts
none	EN38	Budarf	sts
none	EWS3'	Giovannini	sts
none	EWSex5	Giovannini	sts
EWSR1	EWSR1	Delattre	sts
F8VWFP	F8VWFP	Buetow	sts
FIBB	FIBB	Bell	sts
G22P1	G22P1	Dunham	sts
	G22P1	Hudson	sts
GGT	GGTX	Budarf	clone
	GGTY	Budarf	clone
	GGTZ	Budarf	clone
GGT1	GGT1/2	Dunham	sts
	GGT1	Hudson	sts
GNAZ	GNAZ	Budar!	sts
HCF2	HCF2	Dunham	sts
	HCF2	Hudson	sts
IGKVP3	IGKVP3.2	Budarf	sts
IGL@	IGLC7		sts
	IGLLbb1	Bauer	sts
IGLC2	IGLC2	Dunham	sts
	IGLC2	Naylor	sts
IL2RB	IL2RB	Buetow	sts
none	KI-1547	Bell	sts
	KI-1547-2	Bell	sts
LIF	p3.1-5'	Lowe	clone
	LIF	Denny	sts
none	MEST14	Meese	sts
none	MEST39	Meese	sts
MMP11	STROM-F2	Emanuel	sts
NAGA	GB26	Hudson	sts
	NAGA	Dunham	sts
NEFH	HW10	Lees	clone
	NEFH	Gusella	sts
OSM	OSM1	Bruce	sts
PDGFB	PDGFB	Dunham	sts
PVALB	PVALB	Berchtold	sts
	GB27	Hudson	sts
SGLT1	SGLT1	Hudson	sts
	SGLT1-2	Bell	sts
TCN2	TCN2	Quadros	clone
	TCN2	Dunham	
TIMP3	TIMP3	Budarf	sts
TOP1P2	TOP1P2	Haines	sts
YESP	GB32	Hudson	sts
	YESP	Dunham	sts
none	Z7	Taub	sts

Bin	Locus	Positive YACs
n.d.	COS7-1	361_D_9 ${ }^{1}, 744$ B_11 ${ }^{1}, 873$ C. 4^{1}, 911_B_11 ${ }^{1}$, 957_B_1 ${ }^{1}$
n.d.	D22S272	
n.d.	D22S427	884_E. 1^{1}, 908_H_9 ${ }^{1}$
n.d.	D22S543	
n.d.	D22S553	966 A. 8^{1}
n.d.	D22S559	
n.d.	D22S562	741_B_3 ${ }^{1}$, 744-F_6 ${ }^{1}$, 750-B_ 4^{1}, 763_A_3 ${ }^{1}$, 793E_-91, 856_C_ 1^{1}
n.d.	D22S618	763_A_3 ${ }^{4}$, 856_C_1 ${ }^{4}$
n.d.	D22S627	803_G_- ${ }^{1}$
n.d.	D22S656	746_B_2 ${ }^{1}$, 814_A_111, 917_G_12 ${ }^{1}$, 959A_A 7^{1}
n.d.	D22S659	798_A_14, 939-G_9 ${ }^{4}$
n.d.	- D22S663	
n.d.	D22S666	776_A.2 ${ }^{1}, 796$ C_-10 ${ }^{1}$
n.d.	D22S715	803-D_11 ${ }^{4}$, 902-E.1 ${ }^{4}$
n.d.	D22S718	882_A.6 ${ }^{4}$
1A	ATP6E	
1A	D22S9	
1A	D22S789	925_G_12 ${ }^{2}$
1A	D22S795	734_B_10 ${ }^{1}$, 781-E_3 ${ }^{1}$, 813_A_3 3^{1}, 816_A_3 ${ }^{1}$, 973_A_6 ${ }^{1}$
1A	F8VWFP	385-B_12 ${ }^{1}, 453-G _6^{1}$, l:603_H_-9 ${ }^{1}$
1A-1B	D22S24	100_G_7 ${ }^{2}$, 204_A_6 ${ }^{2}$, 204_A_ 9^{2}, 734-B_10 ${ }^{1}, 829$ D_11 ${ }^{1}, 891$ F_12 ${ }^{1}$, 925_G_12 ${ }^{2}$
1A-1B	D22S50	745_G_7 ${ }^{2}$, 776_H_2 ${ }^{2}$, 829_D_11 ${ }^{2}$
1A-1B	IGKVP3	210.E_12 ${ }^{2}$, 487.H_6 ${ }^{2}$, 891_C_8 ${ }^{1}$
1A-9	D22S556	784-C_101, 884-E_-1 ${ }^{1}$, 908_H_ 9^{1}
1A-9	D22S609	966 A_8 ${ }^{1}$
1A-9	D22S626	788_C_5 ${ }^{1}$, 908_H_9 ${ }^{1}$
1B	D22S43	765_E_21, 924_C_2 ${ }^{1}$, 925_G_12 ${ }^{1}$
2	D22S57	765.E_2 ${ }^{1}$, 803_G_9 ${ }^{1}$
2	D22S137	685_E_2 ${ }^{2}$, 749-H_6 ${ }^{1}, 803-G _9^{1}$
2	D22S420	730_H_4 ${ }^{1}$, 749_H_6 ${ }^{1}, 765$ E_ 2^{1}, 803_G_-9 ${ }^{1}, 925$-G_1 2^{1}
2	D22S111	791-F.92
6	D22S184	
6	KI-1547	
7	BCRL2	266_A.4 ${ }^{3}$
7,9,12	GGT1	
7	GGTX	266_A_4 ${ }^{3}$
8A	CRKL	859_A.4 ${ }^{2}$
8 A	D22S117	623_B_1 ${ }^{1}$
8A	D22S264	199_E_6 ${ }^{2}, 295 _$G_ ${ }^{2}$, 549-D_4 ${ }^{2}, 67$ A_- 3^{2}

Bin	Locus	Positive YACs
8A	D22S306	11-F_10 ${ }^{1}$ 27-D_1 ${ }^{1}$, 366-F_ 5^{1}, 509_G_5 ${ }^{1}$, 872_F_9 ${ }^{1}$
8A	D22S308	
8 A	HCF2	$\begin{aligned} & \text { 118_D_3 } 3^{2}, 248-E _11^{2}, 301 _G _8^{2}, 412 _D _5^{2}, ~ l: 601 _G _9^{1}, 742 _B _5^{1}, 792 \text { F_ } 9^{1}, 944 _C-4^{1}, \\ & 944 _ \text {_ } 7^{1}, 952-F-5^{1}, 966 _ \text {__ } 8^{1} \end{aligned}$
8A	MEST39	742_B_- ${ }^{1}, 792$ F_9 ${ }^{1}$, 944_C_ 4^{1}, 944_C_7 ${ }^{1}$
9	BCRL4	147_D_3 ${ }^{3}$, 188_A_5 ${ }^{3}$, 191-A_11 ${ }^{3}$
9	D22S303	267_D_31, 272_A_12 ${ }^{1}$, 417_H_7 ${ }^{1}$, 974_F_11 ${ }^{2}$
9	D22S425	884-E_-1 ${ }^{1}$, 908_H_9 ${ }^{1}$
9	D22S563	884.E.1 ${ }^{1}$
9	D22S655	
9	GGTY	147_D_3 ${ }^{3}, 188$ _A_ 5^{3}, 191_A_11 ${ }^{3}$
9	GNAZ	118_B_11 ${ }^{2}$, 361-D_9 ${ }^{2}$, 54_C_8 ${ }^{2}$, ,771-G_1 ${ }^{2}$
9	IGL@	272_A_12 ${ }^{2}$, 417 H_ $\mathbf{T}^{2}{ }^{2}$
9	IGLC2	191_A_11 ${ }^{1}, 272$ A_-12 ${ }^{2}, 784 _$C_10 ${ }^{1}, 874$ _A_4 ${ }^{1}$
9-13	D22S119	873_C-4 ${ }^{1}$
10	BCR	361-D.9 ${ }^{1}, 446$ B_ $5^{1}, 449$ E. $6^{1}, 874$-A_4 $4^{1}, 874$ C-C 4^{1}
10-11	D22S567	
11	ADORA1	
11	D22S156	765.E.3 ${ }^{1}$
11	D22S794	1:601_G_11 ${ }^{3}, 765$ E. 3^{3}, 767_B_2 ${ }^{3}$
11,12	IGLLbb1	
11	MMP11	346_H_10 ${ }^{1}, 768$ H_3 ${ }^{2}$
11-12	D22S301	131_F_4 ${ }^{1}, 131$ F_5 ${ }^{1}, 19$ H_ 3^{1}, 1:603_G_4 ${ }^{1}, 784 _$C_10 $0^{1}, 829 . G _9^{1}, 874 _$_- 4^{1}
12	BCRL3	200_C_ $3^{3}, 220-G 3^{3}, 273$ E_ 4^{3}
12	CRYBB2	
12	D22S1	119_D_6 ${ }^{2}$, 263_G_7 ${ }^{2}, 445$-H_ $8^{2}, 786$ F_ $4^{1}, 797$ A_ $2^{1}, 825$ A_ $2^{1}, 825$-A_ $9^{2}, 935$ H_ 8^{1}
12	D22S33	
12	D22S42	
12	D22S56	
12	D22S72	
12	D22S186	220_G_2 ${ }^{2}$, 786_C_11 ${ }^{1}$, 786_F_ 4^{1}, 797-A_2 ${ }^{1}$, 825_A_2 ${ }^{1}$, 923_A_11 ${ }^{1}$, 935_H_8 ${ }^{1}, 949$ E_6 ${ }^{1}$
12	D22S190	
12	D22S192	
12	D22S193	815_E_7 ${ }^{1}$, 820-H_4 ${ }^{1}$, 927-D_8 ${ }^{1}$, 949_E_6 ${ }^{1}$
12	D22S310	
12	D22S315	

Bin	Locus	Positive YACs
12	D22S351	
12	D22S419	
12	D22S431	102_H_6 ${ }^{2}$, 501-C_8 $8^{2}, 832$-A_11 ${ }^{2}, 832$ H_ 3^{2}
12	EWSex 5	418_A_2 ${ }^{\text {c }}$
12	-GGTZ	200_C_9 ${ }^{3}, 220 _$G_3 ${ }^{3}, 273$ E_ 4^{3}
12	TOP1P2	148_H_6 ${ }^{2}$, 251-F. ${ }^{2}$, 354_B_7 ${ }^{2}$, 512_B_10 ${ }^{2}$, 1:603F_8 ${ }^{1}$
12	YESP	
12-13	D22S258	129_C_10 ${ }^{2}$, 222_C_8 ${ }^{2}$, 341-E.2 ${ }^{2}$, 402_G_7 ${ }^{2}$, 777.D_1 ${ }^{1}$, 953_E_6 ${ }^{1}$, 965-E_10 ${ }^{1}$
12-13	EWSR1	210_B_7 ${ }^{2}$
12-14	D22S541	873_C_21, 961_B_24
12-14	D22S557	953_E_61, 965.E_10 ${ }^{1}$
12-14	D22S560	
12-14	D22S564	786_C_11 1^{1}, 797_A_2 ${ }^{1}$, 806_A_1 ${ }^{1}$, 887-B_8 ${ }^{1}$, 904-B_10 ${ }^{1}$, 953_D_10 ${ }^{1}$, 965_E_10 ${ }^{1}$
12-14	D22S566	
12-14	D22S568	
12-14	D22S569	
12-14	D22S570	
12-14	D22S571	
12-14	D22S572	739_B_91, 786_F_4 ${ }^{1}$, 788_B_12 ${ }^{1}$, 923_A_11 ${ }^{1}$, 935-H_8 $8^{1}, 941$ C_5 ${ }^{1}$
12-14	D22S574	786_C_11 ${ }^{1}$, 797_A_2 ${ }^{1}$, 806_A_1 ${ }^{1}$, 927-D.8 ${ }^{1}$, 938_F_9 9^{1}
12-14	D22S576	
12-14	D22S582	769_B_11 ${ }^{1}$
12-14	D22S584	750-B_4 ${ }^{1}$, 763_A_3 ${ }^{1}$, 769_B_11 ${ }^{1}$
12-14	D22S588	803_D_3 ${ }^{1}$
12-14	D22S589	739_B_9 ${ }^{1}$, 786_F_ ${ }^{1}$, 788_B_12 ${ }^{1}$, 923_A_11 ${ }^{1}$, 935_H_8 ${ }^{1}$
12-14	D22S591	788_B_12 ${ }^{1}$, 801_B_3 3^{1}, 949-E_6 ${ }^{1}$
12-14	D22S594	
12-14	D22S596	817-F_7 $\mathbf{7}^{1}$, 927-D_8 8^{1}, 938-F_9 ${ }^{1}$, 954_A_1 ${ }^{1}$
12-14	D22S604	786-F_ 4^{1}, 797_A_2 ${ }^{1}$, 825_A_2 ${ }^{1}$, 958_F_1 ${ }^{1}$
12-14	D22S615	786_C_11 ${ }^{1}, 786$ C_-12 ${ }^{1}$, 797_A $2^{1}, 825$ A_2 2^{1}, 839_G_ 4^{1}, 928_H_10 ${ }^{1}, 935$ H_- ${ }^{1}$, 949_E_6 ${ }^{1}$
12-14	D22S631	949_E_6 ${ }^{1}$
12-14	D22S635	
12-14	D22S638	
12-14	D22S642	

Bin	Locus	Positive YACs
12-14	D22S650	817-F_ ${ }^{1}$ 1, 904-B_10 ${ }^{1}$, 953-D_10 ${ }^{1}$, 965_E_10 ${ }^{1}$
12-14	D22S653	788_B_12 ${ }^{1}$, 905_H_ 8^{4}, 907_C_7 ${ }^{1}$
12-14	D22S669	
12-14	D22S745	
13	D22S268	938_F_1 ${ }^{1}$, 938_F_ 9^{1}, 954_A_1 ${ }^{1}$, A 226 _C_ 4^{e}
13	D22S300	
13	D22S447	306_E_3 ${ }^{1}, 768$-C-6 ${ }^{1}, 779$-C. $\mathbf{7}^{1}$
13	EWS3'	B84-D.4 ${ }^{\text {e }}$
13	LIF	911-F_12 ${ }^{2}$, A226_C_4 ${ }^{1}$, B125_A_9 ${ }^{1}$, D45_B_10 ${ }^{1}$
13	MEST14	504-B_10 ${ }^{2}$
13	NEFH	
13	OSM	A226_C.4 ${ }^{\text {e }}$
13	TCN2	351_D_8 ${ }^{2}$, 419_E_6 ${ }^{2}$, 1:601-F_9 ${ }^{1}, 768$ C_ $6^{1,3}$
14	D22S37	284_B_11 ${ }^{2}, 358$-G_6 ${ }^{2}, 393$ E_ 7^{2}, 1:604_B_6 $6^{3}, 769$ B_ $1^{1}, 776 _$__ $2^{1,3}$
14	D22S776	1:604_B_11 ${ }^{3}, 1: 604 _$B_6 ${ }^{3}, 776 _$A_2 ${ }^{3}$
14	EN38	740-E.10 ${ }^{1}, 778$ E_ 1^{1}, 880 E_ $10^{1}, 880$ E_ 12^{1}, 949_C. 5^{1}
15	22-5	744-E_12, 769_B_5 ${ }^{2}$
15	D22S15	315-F_10 ${ }^{2}$, 447_D_4 ${ }^{2}$, 72F_-8 ${ }^{2}$, 774_G_1 ${ }^{1}$, 880.E_10 ${ }^{1}$, 949_C_5 ${ }^{1}$, 954_A_1 ${ }^{1}$
15	D22S28	809_C_6 ${ }^{1}$, 844_H_ 7^{1}, 908_C_6 6^{1}, 912-F_5 ${ }^{1}$
15	D22S29	
15	D22S38	
15	D22S44	
15	D22S47	
15	D22S51	768_B_7 ${ }^{1}, 768$ C_- $6^{1}, 769$ A__ $9^{1}, 848-$-_ 3^{1}
15	D22S58	826_D_12 ${ }^{2}$, 891.D_12 ${ }^{2}$
15	D22S60	
15	D22S61	366_B_4 ${ }^{2}$, 488_B_7 ${ }^{2}$, 769_B_11 ${ }^{2}$
15	D22S91	981_A_1 ${ }^{2}$
15	D22S102	151_C_5 ${ }^{2}, 525 _$B_ $11^{2}, 75$-G_4 ${ }^{2}$
15	D22S273	949-E.6 ${ }^{1}$
15	D22S277	444_F_3 ${ }^{2}$, 529_A_10 ${ }^{2}$, 1:602_B_10 ${ }^{1}, 1: 602 _$- 55^{1}
15	D22S278	107-F_2 ${ }^{2}$, 114_E.5 ${ }^{2}$, 124_F 2^{2}, 506_C_6 ${ }^{2}$, 59_B_12 ${ }^{2}$
15	D22S280	754-E.4 $\mathbf{4}^{1}, 775$ E_ $7^{1}, 823$ E_-8 ${ }^{1}, 882$ _A_ 6^{1}, 882-D_2 ${ }^{1}$
15	D22S281	
15	D22S283	712_A_31, 881_G_4 ${ }^{1}$
15	D22S292E	849.E. 1^{1}, 854.E. 4^{2}
15	D22S304	157-D_4 ${ }^{1}$, 204F_8 ${ }^{1}, 366 _$__ $4^{1}, 402$ E_ $5^{1}, 488$-B_6 ${ }^{1}, 741$-B_3 ${ }^{1}, 769$-B_11 ${ }^{1}$
15	D22S412E	849,E_1 ${ }^{2}$ -
15	D22S778	897_A_10 ${ }^{2}$

Bin	Locus	Positive YACs
15	D22S792	849-E_1 ${ }^{1,3}$
15	D22S793	
15	D22S799	1:602_A_83
15	IL2RB	206-E.7 ${ }^{1}$
15	PVALB	858_H_8 ${ }^{1}$, 882_C_9 ${ }^{\text {² }}$
15	SGLT1	
15	TIMP3	233_B_10 ${ }^{1}$
15-16B	D22S540	
15-16B	D22S544	728_B_4 ${ }^{1}, 778$-G_ $9^{4}, 783$-G_11 ${ }^{1}, 882$-D 2^{4}
15-16B	D22S552	754-E_4 ${ }^{1}$, 823-E_8 ${ }^{1}$, 882_A_6 ${ }^{1}$, 882-D_ 2^{1}
15-16B	D22S554	741-B_3 $3^{1}, 744$ F_6 ${ }^{1}$, 750_B_4 ${ }^{1}$, 759E_6 6^{1}, 763_A_ $3^{1}, 793$ E_ 9^{1}, 856_C_ 1^{1}, 925_G_8 ${ }^{1}$
15-16B	D22S561	
15-16B	D22S577	741_B_3 ${ }^{1}$, 744_F_6 ${ }^{1}$, 763_A_3 ${ }^{1}$, 783_G_11 ${ }^{1}$, 793_E_9 ${ }^{1}, 853$ F_- 2^{1}, 858_H_8 ${ }^{1}$
15-16B	D22S579	741_B_3 ${ }^{1}, 744$ F-6 ${ }^{1}, 763$-A 3^{1}, 783_G_11 ${ }^{1}, 793$-E_9 ${ }^{1}, 858$-H_ ${ }^{1}$
15-16B	D22S595	856_C_ $1^{1}, 858$ _H_ $8^{1}, 880$ E_ $10^{1}, 925$-G_ 8^{1}
15-16B	D22S607	823-E_8 ${ }^{1}$, 846.D. 7^{1}, 882_A_6 6^{1}, 882.D_2 ${ }^{1}$
15-16B	D22S617	754.E_4 ${ }^{1}, 775$ E_7 ${ }^{1}$, 823EE_8 ${ }^{1}, 882$ A__ $6^{1}, 882$-D_ $2^{1}, 882$-D_ 6^{1}
15-16B	D22S620	882_G_4 ${ }^{1}$
15-16B	D22S623	715_B_2 ${ }^{1}, 763$ A_3 ${ }^{1}$, 783_G_11 ${ }^{1}, 793$ E_ 9^{1}
15-16B	D22S624	744_F_6 ${ }^{1}$, 763_A_3 ${ }^{1}$, 769_B_11 ${ }^{1}$, 776_E_10 ${ }^{1}, 856$ _C_1 ${ }^{1}$
15-16B	D22S629	744_F_6 ${ }^{1}$, 750_B_4 4^{1}, 763_A_3 ${ }^{4}$, 793_E_9 ${ }^{1}$, 856.C.1 ${ }^{1}$, 925-G_8 ${ }^{1}$, 939_D_5 ${ }^{1}$
15-16B	D22S630	803-D_31, 948-B_2 ${ }^{1}$
15-16E	D22S633	
15-16B	D22S639	
15-16B	D22S644	882_G_4 ${ }^{1}$
15-16B	D22S652	
15-16B	D22S739	
15-16B	D22S746	
16A	D22S299	
16A	D22S302	409_E_5 ${ }^{1}, 419$ E. 9^{1}, 1:603_B_2 ${ }^{1}$, 803_D_3 ${ }^{1}$, 924_C_2 ${ }^{1}$, 948_B_2 ${ }^{1}$
16A	PDGFB	207_B_1 ${ }^{2}$
16B	D22S279	
17	CYP2D8P	148_H_11 ${ }^{1}$, 151_C_6 $6^{1}, 177 _$A_8 8^{1}, 1:603-B_9 ${ }^{3}, 730-$ B. $7^{1}, 803-\mathrm{D} 3^{1,3}$
17	D22S307	61_E_6 ${ }^{1}, 755$ E-12 ${ }^{1}$, 759_E_6 $6^{1}, 803$-D_ $3^{1}, 84$-C_7 ${ }^{1}$
17	G22P1	
17	NAGA	
17-19	D22S565	774_E_5 ${ }^{1}$, 930_A_11 ${ }^{1}$, 961-D_4 ${ }^{1}$
17-22	D22S546	766 GG_6 ${ }^{4} \quad \therefore$
18	D22S417	894-F.9 ${ }^{2}$

Bin	Locus	Positive YACs
18	DIA1	391_C_6 ${ }^{1}$, 1:604_C. $\mathbf{2}^{3}, 666 _$F_ 9^{2}, 675_G_- ${ }^{2}$
19	ACR	124_C_2 ${ }^{2}$, 220_D_2 ${ }^{2}$, 508_D_4 ${ }^{2}$, 508-D_ 5^{2}, 80_B_6 ${ }^{2}, 896$ A_ 2 2, 918_E_ 8^{2}
19	D22S270	825_A.2 ${ }^{1}, 836$ E_11 ${ }^{2}$
19	D22S418	871-D_101, 930_A_11 ${ }^{1}$
20	BZRP	127_C-4 ${ }^{1}$, 243_G_1 ${ }^{1}, 273-G _10^{1}$, 1:601_B_1 ${ }^{3}, 954 _$D_7 7^{2}
20	D22S64	314_E_10 ${ }^{2}$, 316_E_10 ${ }^{2}$, 844_E_10 ${ }^{2}$
20	D22S282	736 A_3 ${ }^{1}$
20	D22S297	13_A_3 ${ }^{1}, 149$ A. $2^{1}, 16 _$_- ${ }^{1}$, 170_A_11 ${ }^{1}, 1: 603$ G_- 1^{1}
20-22	D22S611	715-C_ 1^{1}, 715-C. 2^{1}
21	D22S40	523_D_6 ${ }^{2}$, 523_G_5 ${ }^{2}$, 778-F_ $10^{2}, 778$ F_11 ${ }^{2}, 778$ F_9 ${ }^{2}$
21	D22S274	131_A_5 ${ }^{2}$, 471_C_10 ${ }^{2}, 507-C .11^{2}, 53-C _7{ }^{2}, 776$ B_9 ${ }^{2}, 895$ E_12 ${ }^{2}$
21	D22S294	120_E. 2^{2}, 253_C_12 ${ }^{2}$, 335_A_10 ${ }^{2}, 463$ _C_ 10^{2}
21	D22S781	262_F.91
21	FIBB	740_B_12 ${ }^{2}$, 891_D_12 ${ }^{2}$
21-22	27	
22	ARSA	1:603-F.3 ${ }^{1,3}$
22	CB10	370_B_6 ${ }^{2}$
22	D22S23	765_F_6 ${ }^{1}$
22	D22S45	156 -A_12 ${ }^{2}, 318$-E_10 ${ }^{2}, 318$ E-4 $4^{2}, 546$ C-12 ${ }^{2}$
22	D22S55	17-D.8 ${ }^{1}, 412$ H_3 ${ }^{1}$
22	D22S63	
22	D22S295	$\begin{aligned} & 715 _ \text {C_- } 1^{1}, ~ 715 _C _22^{1}, \\ & 930 _ \text {A_11 } \end{aligned}$

MEMO

TO: Members of the Scientific Community
FROM: NCHGR Staff
RE: \quad Summary of goals for the Whitehead Institute (Eric Lander, PI) and University of Iowa (Jeff Murray, PI) Centers grants

In response to requests from the scientific community, NCHGR is providing the attached summaries, as prepared by the grantees themselves, of the goals and organization of the centers recently established at the Whitehead Institute (Eric Lander, P.I.) and the University of Iowa (Jeff Murray, P.I.).

Consistent with their policies of releasing data to the genomics community and to facilitate a fast start and rapid integration of the maps, these two mapping groups have already discussed and identified many existing markers and resources that will be exchanged and mapped in both systems. The two centers will exchange data (which will also be publically available) to ensure that they efficiently use new markers as they are developed (for example, the low heterozygosity STRPs that the Iowa group will develop, but not map, will be placed on the physical map by the Whitehead group). The use of similar PCR conditions and consistency in the manner in which oligonucleotide primers are distributed should also facilitate the dissemination of useful reagents to each other and to the community.

The names, addresses, and telephone and fax numbers of the P.I.s are provided and we suggest that you contact them if you have specific questions. We hope you will find this information useful.

Whitehead/MIT Center for Genome Research

This report briefly summarizes the goals and organization of the Whitehead/MIT Center for Genome Research (CGR), with the aim of assisting colleagues interested in obtaining information or materials generated by the Center.

Organization. The CGR formally commenced under a grant starting on March 1, 1993. A renewal of a previous genome center grant focusing solely on the mouse genome, the new center has expanded its scope to include both the mouse and human. Laboratory space is currently under renovation with expected completion by June 1, 1993. CGR will begin fullscale operations at this time, with smaller scale efforts underway until then.

The Center involves five institutions: Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Princeton University, The Jackson Laboratory, and the Centre d'Etude de Polymorphisme Humaine.

Personnel. CGR is overseen by Eric Lander (Director), David Page (Associate Director) and Nat Goodman (Associate Director). The other members are Daniel Cohen (CEPH), Nic Dracopoli (MIT), Rudolf Jaenisch (Whitehead/MIT), Paul Matsudaira (Whitehead/MIT), Joseph Nadeau (JAX), James Orlin (MIT), and Shirley Tilghman (Princeton).

Overall Goals. CGR's principal goals are (1) to construct a genetic and physical map of the mouse genome and physical map of the human genome, and (2) to make these maps readily accessible to the scientific community.

Specific Plans: Mouse Genome. The Mouse Genome Mapping project is funded for five years and involves both genetic and physical mapping.

The five-year goal for genetic mapping is (i) to create a genetic map with 6,000 simple sequence length polymorphisms (SSLPs) based on a low resolution cross with crossovers at an average spacing of 1 cM ; (ii) to integrate our SSLP map with the gene-based map, by typing one-quarter of the SSLPs in a subset of the interspecific backcross of Copeland and Jenkins; and (iii) to carry out finer resolution mapping in cross with crossovers at an average spacing of 0.1 cM .

The five-year goal for physical mapping is (i) to produce a YAC library providing >8-fold coverage of the mouse genome in clones of average size 700 kb (our current library provides roughly 4 -fold coverage); (ii) to construct an STS content map of the mouse genome consisting of 10,000 STSs (consisting of the 6,000 SSLPs and 4,000 random STSs); and (iii) to achieve sufficient closure that the physical map consists of average contigs of approximately $10-20 \mathrm{Mb}$.

We will initially focus our attention on increasing the density of the genetic map and expanding the YAC library. These priorities are based on extensive conversations with the mouse community. (In short, for positional cloning, it is more valuable to have a closer genetic marker that has not yet been screened against the YAC library than a more distant genetic marker that has been screened.)

We have set the following tentative goals:

Year	Genetic Goal	Physical Goal
Year 1	2800 SLLPs total	0 STS total
Year 2	4600 SLLPs total	1500 STS total
Year 3	6000 SLLPs total	4500 STS total
Year 4	integration/	8500 STS total
	fine structure	10,000 STS total/
Year 5	integration/ fine structure	closure

Thus, we will initially serve the mouse community by disseminating genetic markers and YAC libraries. We will start to screen SSLPs in the YAC library in year 2 and should be able to provide the corresponding addresses beginning in the middle of year 2 . We will integrate and disseminate this information through the public databases (e.g., the Jackson Lab databases). If there is community interest, we are also prepared to set up an on-line local database as well as to serve as a clearinghouse for other information about STS-YACcontig data.

Specific Plans: Human Genome. The Human Genome Mapping project is funded for three years and involves physical mapping.

The three-year goal for physical mapping is to construct an STS content map of the human genome consisting of at least 8500 STSs. These STSs will consist of some 4250 SSLP genetic markers (from among those being developed by Jean Weissenback's group at Genethon, Jeff Murray's Genome Center, and the general community) and some 4250 random STSs (which we are generating and assigning to chromosomes by means of somatic cell hybrids). The STSs will be initially typed in the CEPH megabase YAC library. (In addition, we are currently attempting to develop a large-insert YAC library with significantly reduced chimerism. If we are successful, we expect to screen this library as well.)

We have set the following tentative goals:

Year	Physical Goal
Year 1	1500 STS total
Year 2	4500 STS total
Year 3	8500 STS total

If the project is successful, we hope to continue for an additional two years to achieve essentially complete closure.

We will initially serve the community by screening known SSLPs and random STSs against the YAC library and providing addresses. We will clearly not have large contigs based on STS content mapping until a high density of STSs are screened (certainly not before the middle of year (2). In addition, we will have no information about subchromosomal localization of the random STSs until then.

Because the same YAC library has been fingerprinted by Daniel Cohen's group at Genethon, however, it should be possible to use the SSLPs as anchors for fingerprint-based contigs. Together with Cohen, we will integrate and disseminate this information through the public databases (e.g., GDB). If there is community interest, we are also prepared to set up an on-line local database as well as to serve as a clearinghouse of other information about STS-YAC-contig data. Discussions are currently underway concerning setting up such a database. We would hope to have it available by the end of summer 1993.

Data Release. CGR is committed to prompt release of map data. Data will be released in batches as soon as it has been confirmed. We expect to make data releases for the end of each calendar quarter--with the first release being June 30, 1993. We invite suggestions about how to make data release and distribution most useful to the community.

Access to Materials. We will continue to devise arrangements to ensure accessibility of materials to the community. All STSs (including SSLPs) are made available under an arrangement with Research Genetics, Inc. designed to ensure inexpensive access to PCR primer pairs. We have also arranged for distribution of our mouse YAC library and the CEPH mega-YAC to interested companies willing to provide any of the following services: library replication; sale of DNA pools for PCR screening; and contract screening services. To date, several companies have expressed interest. In addition, Shirley Tilghman's lab at Princeton maintains a core facility providing DNA pools for PCR screening of the mouse YAC library.

Commercialization Policy. CGR has adopted a strict policy governing the commercialization of the genomic maps (including all clones, genetic markers, primers and sequences) developed under its auspices. The policy states that: (a) The maps will be made promptly available to the scientific community, will be placed in the public domain, and will not be patented; and (b) No advance access to the maps will be granted to any commercial entity in advance of public access.

Commercial arrangements to ensure distribution of STSs and YACs are entered into on a non-exclusive basis and involve no license fee or other financial compensation to CGR or its personnel.

For Additional Information: Please write to: Eric Lander, Center for Genome Research, Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142. Fax: (617) 258-6505. Phone: (617) 258-5192.

COOPERATIVE HUMAN LINKAGE CENTER
 CHLC REPORT

VOLUME I. NUMBER I, MAY, 1993

INTRODUCTION

Jeffrey C. Murray; M.D.
 Principal Investigator

This newslenter represents the first report from the Cooperative Human Linkage Center (CHLC) established by the NCHGR in Fall. 1992. We have included shor descriptions of each of the invoived projects. which are located at The University of Iowa. Fox Chase Cancer Center, Marshfield Medical Research Foundation and Harvard Medical School. In addition to short project descriptions, we have included the first round of genetic maps developed by the center.

The long-range goal of the center is to develop high heterozygosity genetic maps that are greatly enriched for the presence of easy-to-use PCR-formatred microsatellite markers. with a particular emphasis on tri- and tetranucleotide repeats that are easy to genotype. The grant will synthesize published genotypic data developed on the CEPH families by outside investigators, as well as genotypic information generated from marker development in CHLC core laboraotires. The center is also open to assisting outside investigators who would like incorporation of their own genotypic information into these maps. as well.

The maps presented here are a preliminary synthesis of publiciy available genotypic information existing in the

CEPH database and are seeded with the first sets of markers developed through our own efforts. We provide information for online access to a CHLC database of these markers and maps which will be revised collectively at approximately six month intervals. In addition, information and access to markers will be provided. both as an online service and through direct reagent access facilitated through primer availability at Research Genetics.

We will continue to work with others to bring genetic maps to a high degreee of resolution and to facilitate disease gene mapping using a variety of strategies that benefit from the availability of highly polymorphic markers. Such strategies include not only linkage analysis, but also studies of non-raditional inheritance such as imprinting, locus expansion, and loss of heterozygosity studies. In addition, the markers developed in this center will also provide STSs for physical mapping efforts currendy underway. All markers developed will be assigned chromosomal localizations, and although only those markers with heterozygosities above 0.7 will initially be genotyped and entered into the linkage maps, all markers with chromosomal assignments will be made available for efforts by other laboratorties for geneic or physical mapping.

We weicome comments and suggestions pertaining to the newsletter and our plans and these can be communicated directly by e-mail, phone or fax to any of the relevant co-investigators or contacts listed at right.

Jeffrey C. Murrey, M.D.
Assigans Professor of Pedistrics
The University of lowa
Iowa City, LA 52242
TEL: (319) 356-3508
FAX: (319) 335-6970
E-mili: jeff-murtay@umaxc.weeg.viowaedu
Geoffrey M. Duyt, M. D., Ph.D.
Deparment of Genetics. EQRF Room 447
Harvard Medical School. 200 Longwood Ave.
Boston. MA 02115
TEL: (617) 432-6072
FAX: (617) 432-7663
E-muil: duyk@rascal.med.harvard.edu
Val C. Sheffield M.D. Ph.D.
Assistant Professor of Pedianrics
The University of lowa
lowa City, IA 52242
(319) 356-2674

FAX: (319) 356-3347.
E-minil: sheffield Ovaraweeg.uiownedu
James L. Weber, Ph.D.
Senior Scientist Human Geneties
Marshfield Medical Research Foundation
Marshfield. W1 54449
T바: (715) $387-9179$
FAX: (715) 389.3808
emuil: weberj Odgabby.mfidclin.edu
Kempeth HL Buetow, Ph.D.
Fox Chase Cancer Center
7701 Burbolme Avenue
Philadelphia PA 19111
TEI: (215) 728-3152
FAX: (215) 728-3574
E-mil: kh_buetow ©fece.edu
Robent F. Wetr, Pb.D.
Professor of Pediatrics
University of lowa
Lowe City, LA 52242
TEL: (319) 335-6705
FAX: (319) 335-8318
Nanc Newkirk
CHLC Administration
The University of Iowa
Tㅌ.. (319) 335-6899
FAX: (319) 335-6970

PROJECT 1

Geoff Duyk. M.D., Ph.D.

Our marker selection approach has been to develop technology which enables us to rapidly accumulate small insert clones from all classes of trinucleotide and tetranucleotide STRs. The basic strategy, termed marker selection, requires the construction of high complexity, small insert libraries essentially free of chimeras or clones without inserts.

This choice reflects the prior existence of large efforts to develop dinucleotide repeat markers, the general perception that these classes of markers result in more readable amplification products and the possibility that the availability of STRPs from multiple repeat classes will permit hybridization- based multiplex genotyping. In addition. with the increasing recognition that trinucleotide repeat expansion may be an important mechanism underlying human genetic disease, the availability of a large number of trinucleotide STRPs may provide an important resource for disease gene identification.

Other activities of Project 1 include studies devoted to increasing genotyping throughput as well as the development of efficient methods for recovery of STRs from large insert clones. Such methods will be essential for gap filling. As the project matures, the availability of a . large set of STRPs will permit the investigation of the basis for repeat variability and explosion, help establish a set of cDNAs maintaining STRP sequences and further exploration of the role of repeat expansion in mutation. Investigators interested in additional information, detailed protocols, vectors or bacterial strains should contact:

Geoffrey M. Duyk, M.D., Ph.D. Deparment of Genetics
East Quad Research Facility, Room 447
Harvard Medical School
200 Longwood Avenue
Boston. MA 02115
TEL: (617) 432-6072
FAX: (617) 432.7663
E-mail: Duyk@rascalmed.harvard.edu

PROJECT 2

Val C. Sheffield, M.D., Ph.D.
Project 2 of the Cooperative Human Linkage Center has as its primary goal the development of a minimum of 2.000 new, highly polymorphic (>0.70 heterozygosity) short tandem repeat poly. morphisms (STRPs) with an emphasis on developing tri- and tetranucleotide repeat markers. The strategy for marker development consists of sequencing marker-selected clones obtained from Dr. Duyk's laboratory (Project 1), selecting PCR primers flanking the repeat and testing the PCR product for polymorphic information content. All markers are assigned to a specific chromosome using monochromosomal somatic cell hybrids, and all highly polymorphic markers are sent to Dr. Jeffrey Murray's (Project 3) and Dr. James Weber's (Project 4) laboratories for high resolution genetic mapping.

In the past few months. Project 2 has developed over 300 tetranucleotide markers. These markers are highly polymorphic, assayable using a standardized PCR condition, and have readily interpretable alleles. In addition to the goal of developing new STRPs. SSCP and DGGE are being used to identify polymorphisms in the 3° untranslated region of cDNA sequence. The identification of polymoprphisms in cDNA sequence allows placement of cDNAs on the genetic map.

Another goal of Project 2 is to develop a set of approximately 200-300 uniformily distributed STRPs which can be used for primary disease linkage studies. To this end, a primary linkage set of approximately 200 markers was developed, which were assayabie using a single PCR condition. These markers, most of which are dinucleotide repeats, have proven extremely useful for disease linkage studies. For example, in collaboration with others, Project 2 has used the primary linkage set of markers to identify five hereditary eye disease loci. In order to improve the efficiency of primary linkage studies, the dinucieotide repeat markers are gradually being
replaced with tetranucleotide repeat markers.

An underlying theme of the CHLC is the distribution of its resources to the user community. To this end, the CHLC will distribute STRP primers through Research Genetics and other interested companies. In addition, arrangements can be made for investigators working on disease families to bring their family resources to the University of Iowa to perform linkage studies on a collaborative basis.

Val C. Sheffield, M.D., Ph.D.
Assistant Professor of Pediarrics
University of lowa
Iowa City, LA 52242
(319) 356-2674

FAX: (319) 356-3347
email: sheffield@vaxa weeg.uiowa.edu

PROJECT 3

Jeffrey C. Murray, M.D.
The primary goal of Project 3 is to generate genotypes for the STRPs developed through Projects 1 and 2. These genotypes are then fed to Project 4 for incorporation into the developing linkage maps. Project 3 focuses around generating high quality, reliable genotypes using a variety of robotic assists, on a subset of the 60 CEPH families. Genotypes are currently generated by bodylabeiling PCR products using ${ }^{35} \mathrm{~S}$, and analysis of fragments on sequencing gels.

Genotypes are set up from formatted 96 weil titre plates that include vacant wells at intervals to allow for controls and gel alignment. Multipiexing is currently done at the level of gel loading. Genotypes are scored and entered by hand in duplicate. with a subset of those generated also typed in duplicate through Project 4 to allow for data validity checks.

The project also has a limited ability to assist outside investigators in their own genotyping efforts. This would include hosting two-day to two-month visits for investigators who wish to carry out
genotyping on their own samples, genotyping of newly-generated anonymous markers or shotgun linkage searches in familial disorders.

Jeffrey C. Murray, M.D.
Cooperative Human Linkage Center
The University of Iowa. \#440 EMRB
Iowa City, IA 52242
TEL: (319) 356.3508
FAX: (310 335-6970
E-mail: jeff-murray@umaxc.weeg.uiowa.edu

PROJECT 4

James L. Weber, Ph.D.
The major goals of Project 4 are to type newly developed STRPs through the CEPH families. to improve STRP genotyping technology, to collaboratively map disease genes, and to analyze several human meiotic parameters such as interference and sexual differences in recombination.

Typing of new STRPs will initially involve use of about 210 individuals from 14 of the largest CEPH families. Emphasis will be placed upon reduction of typing errors through the use of standard arrays of DNA templates within microtiter plates and 12 channel pipetting devices. Alleles will be assigned consistently among different families leading to useful estimates of allele frequencies.

Improving STRP genotyping technology will initially involve effors to maximize the numbers of genotypes obrained per sequencing gel. Routinely three to six markers will be amplified simultaneously and electrophoresed together on 144 lane gels. In this way, up to 850 genotypes will be obtained per gel. Image analysis software specifically designed for STRPs will be used to speed the scoring of the markers and to avoid inconsistencies in allele assignment among families. Hardware and software for flu-oresence-based sizing of alleles will gradually be developed to decrease the amount of labor required for genotyping.

Collaborative disease gene mapping
efforts which have already resulted in the localization of a dozen genes will be continued through the CHLC. Visitors will come to Marshfield for periods of up to two months to engage in concentrated genotyping efforts. Because of limited amounts of available equipment, generally only one visitor will be accepted at one time. Visitors are responsible for all travel costs and living expenses in Marshfield, but all supplies will be provided by the CHLC. Interested individuals should contact Jim Weber at the address below. Groups working on disorders prevalent in minority groups or disorders that primarily affect women are especially encouraged to apply.

As many as 10^{6} new genotypes will be determined by the CHIC over the next few years. These data represent an enormous new resource of human meiotic information. Distributions of crossovers along the chromosomes, crossover interference, sex-specificity in recombination rates, recombination hotspors, and relationships between genetic and physical distances are among the meiouic parameters that will be analyzed.

James L. Weber, Ph.D.

Senior Scientisc Human Genetics
Marshfield Medical Research Foundation
Marshfield, WI 54449
TEL: (715) 387-9179
FAX: (715) 389-3808
email: weberj@dgabby.mfidclin.edu

PROJECT 5

Kenneth H. Buetow, Ph.D.
It is the primary goal of this project to use the marker and genotype data generated in Projects $1-4$ to construct a high integrity, fine structure, meiotic map of each human chromosome. Map construction will be conducted in a twotiered manner. First, a high heterozygosity 10 cM resolution index map of PCRdetectable markers will be constructed. Next, likelihood and crossover minimization techniques will be used to integrate additional points to achieve a 2.5 cM resolution index map. These techniques will also be applied to obtain
likely locations for previous RFLP typing from the CEPH panel and lower heterozygosity gene loci. It is recognized the map construction here will parallel efforts in progress in other gene mapping laboratories. The centralized effort conducted in this investigation will be complementary to these investigations.

As the first step toward accomplishing the above goals, a collection of maps have been generated that combine publicly available data with new genorype data generated by CHLC investigators. These maps integrate the genetic maps generated by the NCHGR Index Map Consortium and Genethon. They are augmented by data on additional markers provided by CHLC and CEPH investigators. The datasets are available through anonymous FIP (see below).

To generate the maps, the CHLC is using a new, semi-automated, map construction algorithm. The mapping algorithm is a stepwise construction procedure that utilizes the program CRMMAP as its analytic engine. The dataset is intially diagnosed for pairwise observations that show heterogeneity in pairwise recombination estimates by family. Such loci are excluded from primary construction. Loci are initially added to the map in order of information content. As each locus is added. support for the map and map expansion is re-evaluated. Loci that expand the map and/or are not supported by lod 3 criteria are removed. Loci demonstrating map expansion are moved to the end of the list for consideration in locus placement. The process is repeated until no loci can be added to the map at tod 3 support. The maps built by this alogrithm are somewhat more sparse than maps built by more traditional mapping algorithms (average marker density is 6.7 cM). However, they have very high confidence, and low error rates. These maps, called skeletal maps, and their corresponding error profiles are available through anonymous FIP.

The CHLC group has also generated a more highly annotated collection of maps. These maps were constructed using the STRP-based skeletal maps as starting points and expanded using the

CRIMAP-BUILD procedure with framework selection criteria for locus inclusion. These framework maps, their diagnostics, and likely locations for points that do not meet framework criteria. are also available through anonymous FTP. The sex-averaged version of these framework maps is included with this newsletter.

The map construction in this project will proceed simultaneously with development of statistical tools that allow the assessment of map quality and integrity. The primary focus of these efforts will be the development of statistical diagnostic methods for the evaluation of mapping outcomes. It is the goal of such diagnostics to identify error typings and biologically interesting observations.

Two concurrent approaches to the development of these tools will be taken. The first will use computational methods to assess the relative conaributions to the final outcome of individual observations. These tests will be conducted at the level of individual typing, gamete. locus and family levels. As these methods are computer intensive, paralle/distributed algorithms for analysis/re-analysis of multipoint data are under development. In addition to these methods. explicit tests which are extensions of the statistical methods used in regression diagnostics will be explored.

Finally, means of applying goodness-offit tests will be evaluated. These will include the contrast of outcomes based on pairwise analysis (multiple pairwise likelihood analysis and seriacion) as well as the use of empirical Bayes methods for assessing fit. The efficacy of using empinical Bayes methods to update linkage maps will also be examined.

Kenneth H. Buetow, Ph.D.
Fox Chase Cancer Center
Division of Population Science
7701 Burholme Ave.
Philadelphia. PA 19111
TEL: (215) 728-3152
FAX: (215) 728-3574
E-mail: kh_buetow $@$ fccc.edu

INFORMATICS Core

Robert K. Stodola

Kenneth H. Buetow, Ph.D
The objective of the Informatics Core is provision of computer based tools that facilitate scientific aims of the Center. Its responsiblities include the storage, retrieval, and interpretation of the map reagents and data generated in the proposed research. The Informatics Core is charged with the management of Centergenerated mapping reagents (sequence information. primers. genotypes, etc.), distribution and storage of protocols, and management and distribution of mapping outcomes (chromosome maps, meiotic breakpoint locations, etc.).

The primary purpose of this core is to generate and maintain a "production." database. This database will provide access to common resources and information within the Center. As CHLC efforts are proceeding at four geographically disparate locations (Harvard, University of Iowa. Marshfield, and Fox Chase) the current strategy is to build cli-ent-server based applications using the internet as a medium of communication between the four sites. Work is currently proceeding in the areas of database construction. distributed applications. and Graphical User Interface (GU) tools.

The preliminary database has been constructed and a number of graphical interfaces to the database have been developed. We have selected Sybase as the database system and are currently using it with DECStation 5000 series computers. Several DEC AXP systems running OSF/l have been purchased, and we plan to port the database when Sybase becomes available on this platform. To avoid dependence on Sybase, we have isolated the applications from the database with a database-independent interface, and used code generation techniques to reduce the complexity of building this interface library.

We have created several interesting distributed applications. One such is a distributed Primer PipeLine. Marker generation is currently underway at Harvard and the University of lowa. Raw
sequences are produced using ABI sequencers with Macintosh interfaces. The raw sequence files are copied directly onto a CHLC DECStation at these sites, and transferred to Fox Chase for processing. The PipeLine then assembles, strips cloning vector, identifies repeat regions, selects primers using PRIMER. verifies uniqueness, applies user selection criteria. and generates primer synthesis orders. At each stage data and user selections are stored in the production database for further information and use.

We are also developing a distributed linkage analysis program. Using the DCE (Distributed Computing Environment) component of OSF/I, we are partitioning the linkage analysis into a number of pieces which can be submitted to any available processor in the project. We anticipate making use of spare CPU cycles on all of the CHIC computer systems, including those at the remote sites by running linkage servers as a background process.

The CHLC Informatics Core is also responsible for the development and maintenance of a public access information system. This system will provide tools that facilitate the communication of the Center's mapping resourses to the outside genetics communities. Primary assistance in gaining access to information or services beyond those described here can be requested via electronic mail at help@chlc.org. It is anticipated that the CHLC public access database server will not become operational until FalV Winter of 1993. In the interim, CHLC data will be available via anonymous FIP to ftp.chle.org and through a CHLC Gopher Server addressed gopher.chlc.org. Described below is the information currently available.

README

A file describing the current contents. Each of the folders below also may include a README file describing the contents

chle/newsletters

The CHLC newsletters in plain text and posiscript

chlc/genotypes/tables

Tabular descriptions of marker systems in the chromosome specific datasets

chlc/genotypes/typing

Chromosome-specific genotype sets in CRIMAP file format chic/maps/framework

chle/maps/framework

Framework maps of all markers currently mapped by CHLC (including markers from other sources)

chlc/maps/skeletal

Maps generated using the stringent map build algorithm described above

Each maps folder concains three folders:

. /diagnoscies	Disgosuc dutn on mups.
.figmes	Postseript figures.
Habler	Map information in text form.

chlc/markers/chlc

CHIC-produced marker data

chlc/markers/marshfield

Marshfield- produced marker data

A collection of public analytic services will also be supported by the Informatics Core. These services will be a subset of the analysis and evaluation tools used within the project which do not require exceptional computational resources. - This will be provided free of charge and without any implied commitment to any level or service, accuracy or usefulness.

These servers will be provided via automated electronic mail servers, and we can take no responsibility for the privacy or confidentiality of these channels. The services provided will often include procedures developed by people outside the CHILC group. When these tave not beed placed in the public domain, we have asked permission to use these programs and procedures and kindily thank these indivduals and groups for their use. In all cases, each automated response will include atribution supplied by the author for his or her wort. Instructions for each automated service can be found
by sending any electronic mail message to the server address.

An information server has been placed in service that provides descriptive information about the CHILC project and data. It can be reached by sending e-mail to:

info-server@chle.org

Mail to servers other than the info-server will reply with instructions on how to correctly structure messages to receive service and describe the services provided. It is anticipated that as of June 1 . 1993 a server to perform linkage mapping will be in place. Initially, this server will take an individual marker system's genotype data and return markers from the CHIC data sets that show linkage. This information will include recombination fraction and lod scores. Later versions will provide map position information. To check the status of the linkage server send e-mail to:

linkage-server@chlc.org

Questions about CHIC services may be directed to help@chle.arg. Since there are people on the other end of this address, please be parient. There aren't a lot of people on the other end, and all have lots to do!

In order to make it convenient to have CHLC anoouncements delivered via either USENET News or via electronic mail, and to avoid adding to the confusion of how to subscribe to yet another mail service, all CHILC postings will be presented via an appropriate BIOSCI newngroup (currentiy, via BIOSCV GENEIIC-LNKKAGE). If you have access to USENET news, this is the newsgroup:

blometmolbio.gent-linkage

If you don't have access to USENET new or prefer to subscribe via electronical mail, the following instructions taken from Dave Kristofferson's "BIOSCI/bionet Frequently Asked Questions" posted to bionetannounce on May 1. 1993):
"For those who need e-mail subscriptions or who want to cancel current email subscriprions, please send a request to one of the following addresses. Please choose the site that serves your location. Simply pick the newsgroup(s) from the list above that you wish to subscribe to and request thar your address be added to the chosen mailing lists. Please use plain English; no special message syntar is required in your subscripsion or cancellation request.

Address	Serving
bioweionctbiance	The Americas and Pacific Rim
biosciodmaburs.ac.	Europe, Africa. and Central Asia

If you are chnnging e-mail addresses, please be sure to send a message to your request that your subscriptions be changed or canceled!!"

Dave also strongly recommends that all participants subscribe to the BIOSCV ANNOUNCE group (USENET bionet. announce).

Robert K. Stodola
Kenneth H. Buetow

Fox Chase Cancer Center
7701 Burholme Ave.
Philadelphia, PA 19111
TEL: (215) 728-3660
FAX: (215) 728-2513
E-mail: rk_stodola@fcec.edu

ELSI Core

Robert F. Weir, Ph.D.
James W. Hansom M.D.
The ELSI (ethical. legal, and social implications) core is funded to carry out two projects: an IRB-type committee on genetics research and a postrocroral fellowaip program. The ELSI Commituee Chair and Core Director. Dr. Robert Weir is the Director of the Program in Biomedical Ethics at the University of lowa. Current committee members are listed below.

ELSLCOMMIUUEEMEMBERS

Robert Weir, Ph.D.	ELSI Core Chair Biomedical Ethicist
Jeff Murray, M.D.	P.I. CHLC
James Hanson. M.D.	Medical Genericist
Kathy Mathews, M.D.	Pediatnc Neurologist Genencs Researcher
Susan Johnson M.D.	OB-Gynecologst U of IIRB Chair
Laura Hart, R.N., Ph.D.	College of Nursing IRB Member
Stanely Grant R.N.	OB-GYN Prenatal Diagnosis

Still to be added to the committee are a consumer of genetics services and a health-law attomey.

The ELSI committee has undertaken an analysis of the consent documents currently being used in genetics research. A written request for examples of these documents has been mailed to 150 genetics researchers nationwide. who were selected at random from the American Society of Human Genetics (ASHG) membership directory. Part of the committee's long-range plan is to develop one or more consent form models for genetics research that will prove helpful to both scientific investigators and to persons who participate as subjects in genetics-related research. The ELSI committee also plans to provide educational materials to be used by IRBs when they consider proposals for genetics research. We will coordinate our work with some of the work aiready done by the ASHG, the Alliance of Genetic Sup-
port Groups, and the Poynter Center at Indiana University.

The ELSI Core's postdoctoral fellowship program will be advertised nationally in the near future. This program will be directed at professionals outside the biological sciences who teach courses, give presentations, publish articles or books. or do other work pertaining to the ethical and legal issues of modern genetics. Such individuals would include persons in the fields of philosophy, history, law. journalism or religion. They will be at the University of Iowa for 2-4 months. During that time they will have a variety of work-related experiences in a molecular genetics lab. one or more other genetics labs, and several clinical genetics settings. On completion of this fellow. ship program. participants will have achieved a broader understanding of the challenges, technical vocabulary and problems regularly confronted by persons who work in molecular genetics and/or clinical genetics settings.

Robert F. Weir, Ph.D.

Professor of Pediatrics
University of Iowa
lowa City, IA 52242
TEL: (319) 335.6705
FAX: (319) 335-8318

James W. Hanson, M.D.
Professor of Pediatrics
University of Iowa
Lowa City, IA 52242
(319) 356-2674

FAX: (319) 356-3347

ADMINISTRATIVE Core

Jeffrey C. Murrav, M.D.
The Administrative Core serves as a focus for the overall center activities and also includes witnin it an educational component designed to estalbish outreach to the lay puolic.

Secondary Schooi Educational Outreach

The Administrative Core is currently exploring several mechanisms to improve the knowledge base of secondary school students in relationship to theHuman Genome Project. Funding is available for mini-sabbaticals by secondary school teachers to spend $1-2$ months in the laboratory in a combination of didactic involvement related to human genetics and hands-on laboratory experience in genetic linkage analysis. In addition. collaborations are being developed with a number of external organizations. both in the development of textural materials related to teaching of secondary school students about the Human Genome Project in both its scientific and ethical implications. and also in direct outreach to such schools. The CHLC also participates in programs to have high school and undergraduate college students spend time in the laboratory. as well, again in a combination of didactic and hands-on laboratory experiences.

Jeflrey C. Murray, M.D. Cooperative Human Linkage Center The University of Iowa

If you would like to receive fubure issues of the CHLC Report in hard cops, please complete and send in the following form:
On completion. retum to: CHIC Administration, "440 EMRB, The University of Iowa, Iowa City, IA 52242

Name

Instiaution

Deparment

StreetBuilding

City, State, Zip (COUNTRY)

VS3000 ${ }^{\text {TM }}$

High Throughput Vacuum Blotter

\square Uses Eight Microplate-Sized Membranes with 384 Dots per Membrane, Total of 3072 Dots
\square Uses 96-Tipped SPI_XTT $\boldsymbol{T}^{T M}$ Pipetter for Fast, Accurate Blotting for pipetting 0.8 to 50μ liters Per Dot
\square High Throughput Without Expensive Robotic Systems
SPLITTTITM ${ }^{T M}$ Pipeter Also Available from IAS Products, Inc.

IAS Products, Inc.

142 Rogers Street, Cambridge, MA 02142
Phone: 617-354-3830 Fax: 617-547-9727

Pesfile forder

SPIATTTTM
 Simultaneous Plate Loading And Transfer Tool

Patent Pending

SPIAETMT ${ }^{T M}$ is a high precision 96-tip pipetter SPIATTMT ${ }^{T M}$ means high throughput without expensive robotic hardware
SPMATTM $\boldsymbol{T}^{T M}$ pipettes to and from any combination of 96,192 , and 384 -well microplates or a vacuum blotter

IAS Products, Inc.

142 Rogers Street, Cambridge, MA 02142
Phone: 617-354-3830 Fax: 617-547-9727

SPIAKTMTM
 Simultaneous Plate Loading And Transfer Tool System Specifications

Example EPEAKTMTMAssisted Tasks

EPPKAKTMTMFeatures

- 96 washable pipette tips - no expensive disposables
- Interchangeable, autoclavable tip cartridges
- Precision greater than 2% at all volumes
- Pipetting volumes from 0.8 to 50μ l per tip

EHPEAZMTMOperation

The patent pending EPLAETMN ${ }^{n}$ design allows all 96 samples to be transferred without the need for physical tip touch-off to the plate. A high fluid velocity combined with an abrupt deceleration of the plungers within the tips "flings" even the smallest drops from the tips into the wells of the microplate below.

- Fill multiple plates from a master
- Copy a library of plates
- Transfer samples from four 96 -well plates to one 384 -well or 192 -well plate
- Transfer oil to the top of all samples in a plate
- Add enzyme to hot plates in a thermal cycler
- Blot samples to a membrane using IAS Product's VC3000 Vacuum Blotting System

EPPIERTMM Specifications

Air/Gas Supply	60-80 psi (4-5.5 Bar) (Optlonal External Pump Avallable) 2 lbs . $(0.9 \mathrm{Kg})$ 7.5H X 6.5L X 3.6W inches (190H X 165L X 92W mm)
Weight	
Dimensions	

SPL_ATMTrM Plate Tray Options

पान6 ntimber	$\frac{\text { Mramples }}{\text { ingas }}$	Elamion Sbacemand
PT-010	96 Well	ES-010
PT-020	192 Well	ES-020
PT-040	384 Well	ES-040

SPRAATMTMCartridge Options

Trimb	$\frac{\text { yolume }}{2: 7 n t e}$	$\frac{\text { Dha.omter }}{\text { Diatumin }}$	$\frac{\text { ITPLCIM }}{\text { (mim) }}$
SC-020	0.8-2 $\mu \mathrm{l}$	0.6	22
SC-050	2-5 $\mathrm{H}^{\text {l }}$	0.8	22
SC-100	4-10رl	1	22
SC-250	10-25 μ	1.3	22
SC-500	20-50 H	1.8	22

- Automated process development
- Custom instrumentation design
- Laboratory robotic systems
- Machine vision system development

Intelligent Automation Systems, Inc. is a group of MIT-trained engineers committed to helping scientists and manufacturers develop advanced instrumentation.

TC 1600 THERMOCYCLER*

High-speed thermal cycling for large numbers of biological and chemical samples

- Uses 16 standard PVC or polycarbonate microtitration plates (96 or 192 wells)
\square Runs four quadrants (4 plates each) with different heating and cooling profiles
- Stores and recalls predefined profiles
- Allows up to ten set point temperatures from $30^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ with looping and pausing
- Records \log file of actual temperature profiles
\square Requires 208, 220 or 240 volts single phase at 70 amps 60 or 50 Hz and cold water hookud
- Specifications:

Heating Rate: $1.3^{\circ} \mathrm{C} / \mathrm{sec} \quad$ Uniformity: $+/-.5^{\circ} \mathrm{C}$ at $60^{\circ} \mathrm{C}$
Cooling Rate: $3.7^{\circ} \mathrm{C} / \mathrm{sec} \quad+/-1^{\circ} \mathrm{C}$ at $95^{\circ} \mathrm{C}$

* Patent Pending

IAS Products, Inc.

CH	Locus	ASSAY	HEI	P1C	MIN	Max	REFERENCE
01	ACTN2	CA4	0.50	0.47	91	107	GDB
01	AMY2B	NA	0.70	0.63	76	86	DRACOPOLI,N.\& MEISLER,M.(1990) GENOMICS7,97-102.
01	ANGIOTEN	NA	0.75		113	133	KOTELEVTSEV,Y.V. ET AL.(1991) NAR19,6978.
01	APOA2	MFD 3	0.74	0.65	131	145	GENOMICS 15:251-258, 1993
01	AT3	NA	0.78		277	316	PERRY,D.J. (1993) HMG 2,618.
01	ATP1A2	NA	0.72		397	405	LIM,L.\& GILL,M.(1993) HMG 2,616.
01	C4BPAB	NA	0.74		130	142	VELASCO.E. ET AL.(1992) HMG 1,552.
01	CLN1	HY-TM1	0.87		140	209	GDB
01	CRP	MFD 57	0.60	0.53	127	145	GLATT,K. ET AL.(1992) HMG 1,348.
01	CRTM	NA	0.67		102	110	GDB
01	D1S102	MFD 52	0.63	0.50	186	204	GLATT, K. ET AL.(1992) HMG 1,348.
01	D1S103	MFD 64	0.88	0.78	82	102	GLATT,K. ET AL.(1992) HMG 1,348.
01	D1S104	MFD 67	0.76	0.66	152	168	GLATT,K. ET AL.(1992) HMG 1,348.
01	D1S116	NA	0.00	0.62	89	101	SHARMA,V. ET AL(1991) NAR 19,1169.
01	D1S1167	N1B1152	0.86		163	187	GDB
01	D1S117	NA	0.77	0.77	100	132	SHARMA V.\& LITT M. (1991) NAR19,1168.
01	D15158	NA	0.89	0.88	137	163	OVERBECK,LD.ET AL(1992)HMG 1,141.
01	D1S1586	ACT1B03	0.56		91	118	GDB
01	D1S1587	ATA1D01	0.44		144	168	GDB
01	D1S1588	ATA2E04	0.63		118	139	GDB
01	D1S1589	ATA4E02	0.73		199	220	GDB
01	D1S159	MIT-MX4	0.67		147	147	HUDSON.T. ET AL.(1992) GENOMICS 13,622-29.
01	D151590	ATA5E03	0.67		148	169	GDB
01	D1S1591	GAAT2B03	0.73		86	86	GDB
01	D151592	GAAT4D10	0.67		232	244	GDB
01	D1S1593	GATA13G07	0.87		209	209	GDB
01	D151594	GATA22D12	0.60		104	128	GDB
01	N/A	GATA25	0.57		N/A	N/A	GDB
01	D1S1595	GATA25B02	0.77		265	297	GDB
01	D1S1596	GATA26G09	0.73		105	125	GDB
01	D1S1597	GATA27E01	0.70		155	179	GDB
01	D1S1598	GATA27F07	0.56		111	139	GDB
01	D1S1599	GATA31H02	0.79		230	230	GDB
01	D1S160	MIT-MS48	0.72		150	150	HUMAN GENET 87:401, 1991
01	D1S1600	GATA3B11	0.81		148	164	GDB
01	D1S1601	GATA3D01	0.75		220	220	GDB
01	D1S1602	GATA42A04	0.73		295	295	GDB
01	D1S1603	GATA42F05	0.77		196	196	GDB
01	D1S1604	GATA43D10	0.82		203	203	GDB
01	D1S1605	GATA45A06	0.67		390	390	GDB
01	D1S1606	GATA46C02	0.92		287	287	GDB
01	D1S1607	GATA48C11	0.69		269	269	GDB
01	D151608	GATA49A06	0.83		269	269	GDB
01	D151609	GATA50F11	0.91		196	196	GDB
01	D15161	MIT-E112	0.84		159	159	HUMAN GENET 87:401, 1991
01	D1S1610	GATA50H07	0.50		169	169	GDB
01	D1S1611	GGAA10G11	0.81		217	217	GDB
01	D151612	GgAA3A07	0.50		121	121	GDB
01	D151613	GGAA7C04	0.80		304	304	GDB
01	D1S1614	GGAA8F12	0.56		210	$246{ }^{-}$	GDB
01	D1S1615	GGAT3G04	0.63		265	265	GDB
01	D1S1616	GGAT4C11	0.44		137	145	GDB
01	D1S162	MIT-MS154	0.91		134	134	HUMAN GENET 87:401, 1991
01	D1S163	MIT-MS217	0.68		200	200	HUMAN GENET 87:401, 1991
01	D1S164	MIT-MS165	0.83		229	229	HUMAN GENET 87:401, 1991
01	D1S165	MIT-A115	0.71		156	177	GENOMICS 8:400 . 1990
01	D1S167	NA	0.74		159	183	BOWCOCK,A. ET AL.(1992) HMG 1,138.
01	D1S170	COS370	0.79		217	217	GDB
01	D1S175	MFD 96	0.80		145	165	GENOMICS 8:400- , 1990
01	D1S176	MFD197			107	107	GLATT,K. ET AL.(1992) HMG 1,348.
01	D1S177	MFD160	0.55		92	92	GENOMICS 8:400-, 1990
01	D1S178	MFD 89	0.50		142	148	GLATT, K. ET AL.(1992) HMG 1,348.
01	D1S179	MFD174	0.70		163	193	GLATT,K. ET AL.(1992) HMG 1,348.
01	D1S180	MFD126	0.90		163	189	GLATT, K. ET AL.(1992) HMG 1,348.
01	D1S184	MFD211	0.53	0.47	71	85	GLATT, K. ET AL.(1992) HMG 1,348.
01	D1S185	MFD215	0.50	0.47	114	136	GLATT, K. ET AL.(1992) HMG 1,348.
01	D1S186	MFD217	0.84	0.82	82	106	GLATT,K. ET AL.(1992) HMG 1,348.
01	D1S187	MFD227	0.71	0.68	83	103	GLATT,K. ET AL.(1992) HMG 1,348.
01	D1S188	MFD246	0.86	0.85	149	173	GLATT,K. ET AL.(1992) HMG 1,348.
01	D1S189	AFM036xe5	0.78		124	136	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801

LOCL D1S1 D1S191 D1S193 D1S194 D1S195 D1S196 D1S198 D1S199 D1S200 D1S201 D1S202 D1S203 D1S204 D1S206 D1S207 D1S208 D1S209 D1S210 D15211 D1S212 D1S213 D1S214 D1S215 D1S216 D1S217 D1S218 D1S219 D1S220 D1S221 D1S222
D1S223 D1S224 D1S225 D1S226 D1S227 D1S228 D1S229 D1S230 D1S231 D1S232 D1S233 D1S234 D1S235 D1S236 D1S237 D1S238 D1S239 D1S240 D1S241 D1S242 D1S243 D1S244 D1S245 D1S246 D1S247 D1S248 D1S249 D1S250 D1S251 D1S252 D1S253 D1S254 D1S255 D1S303 015304 D1S319

AFM046xc11

AFMO4×h10
AFM051xh8
AFM057×4
AFM057×88 AFM063xb6 AFM063xg9 AFM074za5 AFM078yg 5 AFM093x ${ }^{\text {AFM }}$ AFM095ta5 AFM095wc9 AFM102xe3
AFM113×6 AFM116xb2 AFM120xd4
AFM122xa3
AFM122xe1
AFM147×88 AFM147y AFM154xc7 AFM156xg 7 AFM157xe7
AFM161xb2 AFM162xg 3
AFM164xe1
AFM164yg1
AFM179yg 3 AFM184xa9 AFM184xe11 AFM184yt6 AFM196xh4 AFM197×66 AFM198wa3 AFM198ye9 AFM199zd2 AFM200yf12 AFM203yg 9 AFM205xd8 AFM205xg1 AFM205yg 3 AFM207vh8 AFM212×610 AFM214yg7 AFM220y4 AFM224xc1 AFM225zg7 AFM234tb6 AFM234vb4 AFM234wf6 AFM240yg1 AFM248ya5 AFM249zg9 AFM254w 9 AFM260x1 AFM260zg 5 AFM081zc5 AFM116x8 MFD252

HEI	
0.94	
0.75	
0.67	
0.78	
0.67	
0.31	
0.74	
0.81	
0.84	
0.80	
0.73	
0.77	
0.64	
0.46	
0.82	
0.85	
0.78	
0.81	
0.64	
0.86	
0.80	
0.87	
0.79	
0.73	
0.90	
0.66	
0.84	
0.83	
0.83	
0.63	
0.72	
0.77	
0.66	
0.80	
0.84	
0.68	
0.78	
0.78	
0.79	
0.85	
0.53	
0.85	
0.83	
0.69	
0.80	
0.77	
0.87	
0.70	
0.63	
0.52	
0.85	
0.87	
0.82	
0.83	
0.72	
0.87	
0.82	
0.88	
0.78	
0.83	
0.83	
0.48	
0.66	
0.77	
0.53	
0.61	
0.83	
0.62	
0.74	
0.70	

MIN	MAX
293	33
153	169
203	21
94	106
233	239
183	189
267	27
308	32
94	11
154	17
186	20
77	91
123	129
248	25
206	218
142	170
134	152
69	169
117	12
172	19
105	12
104	12
120	14
189	20
228	260
130	14
266	286
154	176
231	25
215	225
258	276
252	26
120	130
111	13
90	106
111	125
117	129
191	207
177	189
158	168
184	202
102	132
226	23
175	19
190	21
172	192
272	302
242	25
236	242
218	226
213	227
142	170
285	296
235	25
200	22
243	263
191	21
155	185
133	147
249	27
99	119
164	172
198	208
74	88
181	191
168	174
156	176
261	281
154	18

REFERENGE

WEISSENBACH,J ET AL(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH, J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH J: NATURE GENETIC, JUNE 1994 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH.J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH.J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH J: NATURE GENETIC, JUNE 1994 WEISSENBACH ${ }^{\text {J }}$ ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL(1992) NATURE 359:794-801 WEISSENBACH,J ET AL(1992) NATURE 359:794-801 WEISSENBACH J: NATURE GENETIC, JUNE 1994 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH.J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH, J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359;794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 GLATT,K. ET AL.(1992) HMG 1,348. GLATT,K. ET AL.(1992) HMG 1,348.
LOCUS

ASSAY	HET	PIC
MFD255	0.70	0.65
MFD 60	0.70	
MFD275	0.84	0.82
MFD293	0.55	0.49

SIZ
MIN
MAX

D1S320	MFD255	0.70	0.65
D1S322	MFD 60	0.70	
D1S333	MFD275	0.84	0.82
D1S334	MFD293	0.55	0.49

.
ocus

ASSAY	HET	PIC
AFM294wg1	0.58	
AFM294zd1	0.69	
AFM296zc9	0.71	
AFM297wh9	0.47	
AFM297x9	0.82	
AFM2972g1	0.71	
AFM298vc5	0.81	
AFM299ze9	0.52	
AFM309ve9	0.76	
AFM309yd 1	-. 0.71	
AFM310vb1	0.85	
AFM310xh9	0.76	
AFM311ve1	0.61	
AFM319zh9	0.69	
AFM323ya5	0.96	
AFM329xd5	0.77	
AFM331vb1	0.71	
AFM336x1	0.74	
AFM338wb5	0.49	
AFM343v9	0.77	
AFM359tb5	0.83	
AFM361td9	0.66	
AFMa123ya9	0.74	
AFMa123yf1	0.73	
AFMa127wbs	0.58	
AFMa127wh9	0.72	
AFMa1272c9	0.81	
AFMa128ye9	0.56	
AFMa 132wa	0.47	
AFMa132yc9	0.79	
AFMa133x-5	0.81	
AFMa134vb1	0.60	
AFMa134x9	0.84	
AFMa151za5	0.74	
AFMa152yg9	0.63	
GATA7C01	0.88	
GATA2B02	0.71	
GATA5A06	0.57	
wg2cs	0.83	
pL673	0.91	
GAAT1D9	0.50	
GATA10C02	0.86	
GATA12A07	0.94	
GATA2H05	0.56	
GATA4H05	0.17	
GATA4A09	0.68	
GATA4H04	0.76	
GATA4H09	0.82	
GATA5G07	0.82	
GATA6A05	0.73	
GGAT2A07	0.81	
NA	0.83	
NA	0.65	
NA		0.63
NA	0.70	
NA	0.82	
PCR1	0.58	
NA	0.89	
HYTM1	0.87	0.87
NA	0.72	
NA	0.81	0.77
GZ9/10	0.66	
NA	0.71	0.66
NA	0.69	0.61
NA	0.92	0.91
MIT-MH105	0.52	
MFD115	0.58	0.59
MFD128	0.85	0.86
MFD145	0.82	0.77
MFD149	0.72	0.57

SIZE RANGE	
MIN	MAX
235	255
177	189
222	228
136	142
157	181
214	222
260	266
181	205
141	153
195	217
171	183
94	98
132	144
177	187
138	164
213	239
250	276
183	205
194	206
167	181
172	178
252	286
203	213
124	138
145	167
123	141
183	203
73	85
69	77
173	195
218	230
102	124
179	197
145	157
198	222
191	223
123	453
172	172
187	247
171	201
117	133
193	225
205	207
174	174
140	156
282	308
148	172
157	193
169	189
166	186
244	256
109	139
169	185
135	143
143	165
150	172
281	372
134	150
140	209
316	331
128	146
143	152
138	170
117	126
92	130
143	143
86	100
138	162
109	125
114	132

BEFERENCE

WEISSENBACH J: NATURE GENETIC, JUNE 1994 GDB
GDB
GDB
ARMOUR, J. ET AL. (1994) HMG 3, 599-605.
NISHIMURA,D. ET AL.(1992) NAR 20.1167.
GDB
WESTON, M. ET AL. (1994) HMG 3, 1211. NISHIMURA,D.\& MURRAY,J.(1992) NAR 20,1167. PATEL,M. ET AL.(1992)HMG 1,65. BRINI,A. ET AL.(1993) HMG 2,619.
GDB
GDB
GDB
GDB
GDB
GDB
POLYMEROPOULOS,M. ET AL(1991) NAR 19,1718. POLYMEROPOULOS,M. ET AL.(1991) NAR 19,4571. POLYMEROPOULOS,M. ET AL.(1991) NAR 19,4307. HUMAN GENET 87:401, 1991
JONES,M. ET AL.(1992) HMG 1,131-33. JONES,M. ET AL.(1992) HMG 1,131-33. JONES,M. ET AL.(1992) HMG 1,131-33. HAUGE,X. ET AL.(1991) NAR 19,4308.

ASSAY	HET	PIC
AFM211yd6	0.86	
AFM212ze9	0.76	
AFM217xh8	0.67	
AFM218zg3	0.77	
AFM220ze3	0.79	
AFM224zf4	0.61	
AFM225zg5	0.75	
AFM234was	0.80	
AFM234xb8	0.84	
AFM234ya9	0.86	\cdots
AFM234zh2	0.58	
AFM240v6	0.83	
AFM240vh12	0.57	
AFM240y88	0.89	
AFM242yd8	0.87	
AFM248wc5	0.94	
AFM249wg9	0.70	
AFM254vc9	0.80	
AFM260xe5	0.60	
AFM262x55	0.70	
AFM267zc9	0.85	
AFM240yc3	0.56	
AFM259yc9	0.81	
AFM263zh9	0.72	
NA	0.83	
MFD270	0.53	0.43
MFD291	0.57	0.50
MFD292	0.79	0.76
MFD294	0.58	0.51
MFD301	0.77	0.75
MFD307	0.74	0.71
MFD266	0.64	0.58
MA	0.83	

MapPairs ${ }^{\text {Ti }}$ List		
SIZE	ANGE	
MIN	MAX	REFERENCE
168	198	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
104	122	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
266	278	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
165	177	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
204	218	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
220	232	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
120	144	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
213	231	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
265	303	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
81	111	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
236	246	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
196	216	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
194	202	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
203	225	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
253	281	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
258	296	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
117	125	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
203	221	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
133	145	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
240	250	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
276	302	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
148	166	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
123	151	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
144	156	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
126	140	BARBER,T. ET AL.(1993) HMG 2,88.
267	277	GENOMICS 8:400. 1990
146	154	GENOMICS 8:400 , 1990
157	177	GENOMICS 8:400-1990
190	200	GENOMICS 8:400-1990
118	138	GENOMICS 8:400 . 1990
233	253	GENOMICS 8:400 . 1990
165	185	GENOMICS 8:400- 1990
146	160	BYERLEY,W. ET AL.(1993) HMG 2,1329.
133	143	WEISSENBACH J: NATURE GENETIC, JUNE 1994
243	255	WEISSENBACH J: NATURE GENETIC, JUNE 1994
200	212	WEISSENBACH J: NATURE GENETIC, JUNE 1994
244	294	WEISSENBACH J: NATURE GENETIC, JUNE 1994
228	244	WEISSENBACH J: NATURE GENETIC, JUNE 1994
189	211	WEISSENBACH J: NATURE GENETIC, JUNE 1994
134	150	WEISSENBACH J: NATURE GENETIC, JUNE 1994
353	367	WEISSENBACH J: NATURE GENETIC, JUNE 1994
276	284	WEISSENBACH J: NATURE GENETIC, JUNE 1994
183	195	WEISSENBACH J: NATURE GENETIC, JUNE 1994
197	223	WEISSENBACH J: NATURE GENETIC, JUNE 1994
180	202	WEISSENBACH J: NATURE GENETIC, JUNE 1994
180	192	WEISSENBACH J: NATURE GENETIC, JUNE 1994
165	191	WEISSENBACH J: NATURE GENETIC, JUNE 1994
184	216	WEISSENBACH J: NATURE GENETIC, JUNE 1994
203	213	WEISSENBACH J: NATURE GENETIC, JUNE 1994
156	170	WEISSENBACH J: NATURE GENETIC, JUNE 1994
98	112	WEISSENBACH J: NATURE GENETIC, JUNE 1994
133	147	WEISSENBACH J: NATURE GENETIC, JUNE 1994
196	204	WEISSENBACH J: NATURE GENETIC, JUNE 1994
86	90	WEISSENBACH J: NATURE GENETIC, JUNE 1994
224	240	WEISSENBACH J: NATURE GENETIC, JUNE 1994
96	102	WEISSENBACH J: NATURE GENETIC, JUNE 1994
132	144	WEISSENBACH J: NATURE GENETIC, JUNE 1994
177	189	WEISSENBACH J: NATURE GENETIC, JUNE 1994
269	283	WEISSENBACH J: NATURE GENETIC, JUNE 1994
219	243	WEISSENBACH J: NATURE GENETIC, JUNE 1994
205	221	WEISSENBACH J: NATURE GENETIC. JUNE 1994
228	234	WEISSENBACH J: NATURE GENETIC, JUNE 1994
176	204	WEISSENBACH J: NATURE GENETIC, JUNE 1994
139	145	WEISSENBACH J: NATURE GENETIC, JUNE 1994
185	207	- WEISSENBACH J: NATURE GENETIC, JUNE 1994
234	240	WEISSENBACH J: NATURE GENETIC, JUNE 1994
149	155	WEISSENBACH J: NATURE GENETIC, JUNE 1994
255	271	WEISSENBACH J: NATURE GENETIC, JUNE 1994
114	130	WEISSENBACH J: NATURE GENETIC, JUNE 1994
140	154	WEISSENBACH J: NATURE GENETIC. JUNE 1994

CH	Locus	ASSAY	HET
02	D2S317	AFM094x+11	0.53
02	D2S318	AFM105x=1	0.80
02	D2S319	AFM108xh8	0.77
02	D2S320	AFM137xg11	0.80
02	D2S321	AFM144yf	0.73
02	D2S322	AFM262x日 5	0.53
02	D2S323	AFM263wb5	0.45
02	D2S324	AFM263xe1	0.68
02	D2S325	AFM266vc5	0.86
02	D2S326	AFM266ve1	0.43
02	D2S327	AFM267ve9	0.76
02	D2S328	AFM268va5	0.70
02	D2S329	AFM268x95	0.65
02	D2S330	AFM269xd9	0.60
02	D2S331	AFM269yd9	0.69
02	D2S332	AFM270xh9	0.51
02	D2S333	AFM270z69	0.65
02	D2S334	AFM273vas	0.57
02	D2S335	AFM275yd5	0.81
02	D2S336	AFM275y5	0.46
02	D2S337	AFM275za9	0.71
02	D2S338	AFM276zf	0.78
02	D2S339	AFM277vb9	0.66
02	D2S340	AFM1277wcs	0.73
02	D2S342	AFM1280wd5	0.76
02	D2S343	AFM281yd5	0.76
02	D2S344	AFM284vd9	0.43
02	D2S345	AFM288vb1	0.76
02	D2S346	AFM289vf5	0.76
02	D2S347	AFM289×b1	0.58
02	D2S348	AFM289xd9	0.60
02	D2S349	AFM290ye9	0.67
02	D2S350	AFM292wd1	0.78
02	D2S351	AFM294y5	0.73
02	D2S352	AFM290vg9	0.54
02	D2S353	AFM290vh9	0.82
02	D2S354	AFM296xa5	0.74
02	D2S355	AFM296xb9	0.52
02	D2S356	AFM297wc1	0.79
02	D2S357	AFM297wel	0.60
02	D2S358	AFM297xh5	0.54
02	D2S359	AFM298x69	0.84
02	D2S360	AFM301wg1	0.62
02	D2S361	AFM301za5	0.68
02	D2S352	AFM302vh9	0.79
02	D2S363	AFM303we5	0.59
02	D2S364	AFM303ya9	0.86
02	D2S365	AFM303yc1	0.64
02	D2S367	AFM303ze1	0.88
02	D2S368	AFM304ta 9	0.81
02	D2S369	AFM304tb5	0.63
02	D2S370	AFM310x5	0.53
02	D2S371	AFM311vg9	0.71
02	D2S372	AFM312v1	0.61
02	D2S373	AFM316tg5	0.41
02	D2S374	AFM318wf1	0.64
02	D2S375	AFM318za9	0.86
02	D2S376	AFM319xg1	0.80
02	D2S377	AFM31929	0.42
02	D2S378	AFM320yb9	0.65
02	D2S379	AFM320yd9	0.79
02	D2S380	AFM321xd9	0.73
02	D2S381	AFM321yg5	0.82
02	D2S382	AFM32129	0.69
02	D2S383	AFM323wc5	0.76
02	D2S384	AFM3232d5	0.47
02	D2S385	AFM326y19	0.17
02	D2S386	AFM326zh9	0.84
02	D2S387	AFM331zg5	0.78
02	D2S388	AFM333vh5	0.38

CH	Locus	ASSAY	HET	PIC	MIN	MAX	REFERENCE
02	D2S389	AFM333wf	0.73		189	219	WEISSENBACH J: NATURE GENETIC, JUNE 1994
02	D2S390	AFM33749	0.79		179	193	WEISSENBACH J: NATURE GENETIC, JUNE 1994
02	D2S391	AFM337yh5	0.62		142	152	WEISSENBACH J: NATURE GENETIC, JUNE 1994
02	D2S392	AFM347ya	0.76		218	224	WEISSENBACH J: NATURE GENETIC, JUNE 1994
02	D2S393	AFM348ti 1	0.56		84	103	WEISSENBACH J: NATURE GENETIC, JUNE 1994
02	D2S394	AFM350td1	0.57		119	141	WEISSENBACH J: NATURE GENETIC, JUNE 1994
02	D2S395	AFM356te5	0.70		144	166	WEISSENBACH J: NATURE GENETIC, JUNE 1994
02	D2S396	AFM361ta 5	0.89		230	244	WEISSENBACH J: NATURE GENETIC, JUNE 1994
02	D2S397	AFM362td9	0.46		198	210	WEISSENBACH J: NATURE GENETIC, JUNE 1994
02	D2S398	AFMa127xb9	0.50		113	139	WEISSENBACH J: NATURE GENETIC, JUNE 1994
02	D2S399	AFMa131wbs	0.86		205	225	WEISSENBACH J: NATURE GENETIC, JUNE 1994
02	D2S400	AFMa132zc9	0.73		186	194	WEISSENBACH J: NATURE GENETIC, JUNE 1994
02	D2S401	AFMa140yg 9	0.71		105	121	WEISSENBACH J: NATURE GENETIC, JUNE 1994
02	D2S402	AD17A	0.75	0.72	131	147	GDB
02	D2S405	GATABF07	0.64		240	256	GDB
02	D2S407	GATA5H02	0.73		194	194	GDB
02	D2S408	GATA2E04	0.64		287	291	GDB
02	D2S410	GATA4E11	0.81		163	163	GDB
02	D2S414	MFD325	0.77	0.73	206	222	GENOMICS 8:400-. 1990
02	D2S415	MFD328	0.21	0.21	198	204	GENOMICS 8:400-. 1990
02	D2S416	MFD330	0.59	0.55	135	143	GENOMICS 8:400- . 1990
02	D2S417	MFD337	0.76	0.73	191	211	GENOMICS 8:400-, 1990
02	D2S418	MFD350	0.52	0.48	216	226	GENOMICS 8:400- . 1990
02	D2S422	ATC3E01	0.44		145	154	GDB
02	D2S423	gattias	0.62		111	131	GDB
02	D2S424	GAAT1C10	0.62		158	194	GDB
02	D2S425	GATA11H04	0.56		294	306	GDB
02	D2S426	GATA12305	0.50		152	164	GDB
02	D2S427	GATA12H10	0.56		244	254	GDB
02	D2S428	GATA14B12	0.94		145	159	GDB
02	D2S430	GGAT2F11	N/A		340	340	GDB
02	D2S433	GATA3F05	0.77		179	199	GDB
02	D2S434	GATA4G12	0.82		262	286	GDB
02	D2S435	GATA5B07	0.80		192	212	GDB
02	D2S436	GATA5G02	0.90		179	202	GDB
02	D2S437	GATA6A03	0.81		185	221	GDB
02	D2S438	GATA6C12	0.67		147	159	GDB
02	D2S439	GATA6E08	0.50		165	193	GDB
02	D2S440	GATA6F08	0.60		187	207	GDB
02	D2S441	GATA8F03	0.75		127	159	GDB
02	D2S442	GATABH05	0.81		196	208	GDB
02	D2S443	GGAA4D07	0.81		223	255	GDB
02	D2S444	GGAT4C08	0.56		110	126	GDB
02	D2571	MFD 19	0.59		138	154	NAR 18(8):2203, 1990
02	D2S72	MFD 36	0.83	0.71	159	173	NAR 18(8):2200, 1990
02	D2S73	MFD 54	0.70	0.52	140	150	JONES,M. ET AL.(1992) HMG 1,131-33.
02	D2S93	MIT-G105	0.83		146	146	HUMAN GENET 87:401, 1991
02	D2S94	MIT-MS153	0.75		150	150	HUMAN GENET 87:401, 1991
02	D2S95	MiT-A119	0.85		146	146	HUMAN GENET 87:401, 1991
02	D2S96	MIT-N118	0.78		178	178	HUMAN GENET 87:401, 1991
02	D2S97	MIT-MS211	0.81		105	105	HUMAN GENET 87:401, 1991
02	D2S98	MIT-MS222	0.71		131	131	HUMAN GENET 87:401, 1991
02	D2S99	MIT-F6	0.73		192	192	HUMAN GENET 87:401, 1991
02	GCG	NA	0.82		125	125	WU,S. ET AL.(1991) NAR 19,1163.
02	HOX4E	NA	0.88		104	130	ROSEN,D.\& BROWN,JR.,R.(1993) HMG 2,617.
02	IL1A	MFD 68	0.75	0.67	131	145	JONES,M. ET AL.(1992) HMG 1,131-33.
02	PAX3	NA		0.89	310	336	WOOD,S.\&SCHERTZER,M.(1992)GENOMICS13,232.
02	TPO	NA	0.67	0.61	106	130	GENOMICS 8:400- . 1990
03	ACPP	NA	0.69	0.65	260	280	POLYMEROPOULOS,M. ET AL(1991) NAR 19,4792.
03	AGTR1	ATCA	0.73		140	146	DAVIES, E. ET AL. (1994) HMG 3, 838.
03	D3F122S1E	CTG-33	0.70		116	116	GDB
03	D3S1007	NA	0.70		81	81	JORDAN,S.A.ET AL.(1991)NAR 19,1171.
03	D3S1029	Cl3-917	0.62		168	168	JONES,M. ET AL.(1992) HMG 1,131-33.
03	D3S1038	NA	0.80		115	115	JORDAN,S.A.ET AL.(1991)NAR 19,1171.
03	D3S1067	NA	0.86		95	95	JORDAN,S.A.ET AL.(1991)NAR 19,1171.
03	D3S1076	C113-1126	0.59		119	119	JONES,M. ET AL.(1992) HMG 1,131-33.
03	D3S1100	3 GTABB	0.82		154	170	GDB
03	D3S1110	C13-1169	0.67		66	66	JONES,M. ET AL.(1992) HMM 1, 131-33.
03	D3S1209	MIT-MS24	0.75		156	156	HUMAN GENET 87:401, 1991
03	D3S1210	MIT-MS140	0.71		157	157	HUMAN GENET 87:401, 1991

ASSAY	HEIC	
AFM225yd6	0.78	
AFM234tf4	0.81	
AFM234tg3	0.74	
AFM234wa1	0.74	
AFM238wb12	0.81	
AFM240ve1	0.70	
AFM240ya11	0.75	
AFM242xh2	0.68	
AFM254va1	0.84	
AFM256ya9	0.77	
AFM259zg5	0.69	
AFM260yb1	0.87	
AFM263zc9	0.55	
AFM268vc9	0.71	
NA	0.68	
LIB 45-17	0.70	
LIB 23-42	0.89	
NA	0.79	
NA	0.70	
NA	0.76	
NA	0.78	
NA	0.89	
GTO1	0.65	
GTO6	0.84	
NA	0.67	
NA	0.75	
NA	0.79	
MFD303	0.55	0.51
NA	0.77	
NA	0.64	

03 D3S1303
03 D3S1304
03 D3S1305 03 D3S1306 03 03 03
03 03

S
Min

REFERENCE

WEISSENBACH,J ET AL.(1992) NATURE 359:794801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL(1992) NATURE 359:794-801 WEISSENBACH, J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH, J ET AL.(1992) NATURE 359:794-801 WEISSENBACH, J ET AL.(1992) NATURE 359:794-801

- WEISSENBACH,J ET AL:(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL(1992) NATURE 359:794-801 LIM,L\& GILL,M. (1993) HMG 2,616. SCHMIDT, L. ET AL. (1993) HMG 2, 817-818. SCHMIDT, L ET AL (1993) HMG 2, 817-818. GDB
GDB
LINARES-RUIZ,A. (1993) HMG 2,1508. LINARES-RUIZ,A.(1993) HMG 2,1508. LI,H. ET AL.(1993) HMG 2,1327. THISELTON,D. ET AL(1993)HMG 2,613. TALBOT,C. ET AL.(1993) HMG 2,1325. LI, H. ET AL (1994) HMG 3, 837. LI, H. ET AL. (1994) HMG 3, 837. LI,H. ET AL.(1993) HMG 2,1326. GENOMICS 8:400- , 1990 GDB
GDB
GDB
GDB
GDB
GDB
LI, H. ET AL (1994) HMG 3, 837. LI, H. ET AL. (1994) HMG 3, 837. LI, H. ET AL. (1994) HMG 3. 837. LI, H. ET AL. (1994) HMG 3, 837. WEISSENBACH J: NATURE GENETIC, JUNE 1994 WEISSENBACH J: NATURE GENETIC, JUNE 1994

CH	LOCUS	ASSAY	HET	P1C	MIN	MAX	REFERENCE
03	D3S1577	AFM26729	0.69		221	235	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1578	AFM268wg 9	0.60		140	166	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1579	AFM270yc5	0.76		151	159	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1580	AFM270zg9	0.69		139	155	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1581	AFM273ve9	0.80		78	102	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1582	AFM274yd5	0.58		154	178	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D351583	AFM276ve9	0.64		149	173	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1584	AFM277wis	0.70		148	162	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1585	AFM283vb5	0.63		126	144	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1586	AFM284×9	0.70	,	291	-309	- WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1587	AFM284ze5	0.73		215	227	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1588	AFM287yd9	0.80		212	236	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1589	AFM290zil	0.56		159	169	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1591	AFM292xg	0.66		241	251	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D351592	AFM292xh1	0.63		281	287	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1593	AFM292ye5	0.74		137	153	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1594	AFM292ze1	0.46		266	334	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1595	AFM294249	0.72		295	317	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1597	AFM295yc9	0.67		162	180	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1598	AFM296vd5	0.83		290	316	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1599	AFM301ze9	0.77		134	140	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1600	AFM308xc9	0.61		182	198	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1601	AFM308yf1	0.63		184	214	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1602	AFM308zh9	0.81		275	297	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1603	AFM311vh1	0.58		159	177	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1604	AFM316ve1	0.73		247	255	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1605	AFM317xe1	0.68		141	163	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1606	AFM318we5	0.66		236	252	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1607	AFM319yb1	0.71		230	244	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1608	AFM319zf1	0.70		184	206	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1609	AFM320wc9	0.76		253	269	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1610	AFM321x 5	0.81		171	189	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1611	AFM338xe5	0.79		252	268	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1612	AFM339xh1	0.83		206	226	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1613	AFM340x11	0.49		225	253	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1614	AFM345th5	0.74		143	157	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1615	AFM347yg 1	0.60		170	186	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1616	AFM348te9	0.83		101	107	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1617	AFM349xc5	0.80		250	254	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1618	AFM350te5	0.75		150	158	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1619	AFM3504f1	0.74		161	171	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1620	AFM351wci	0.66		239	255	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1621	AFMa133wh1	0.74		97	139	WEISSENBACH J: NATURE GENETIC, JUNE 1994
03	D3S1744	GATA3C02 .	0.80		131	167	GDB
03	D3S1745	GATA8A06	0.58		213	213	GDB
03	D3S1746	GATA8F01	0.76		248	284	GDB
03	D3S1752	ATC3D09	0.81		181	208	GDB
03	D3S1753	GATA11 F06	0.50		300	300	GDB
03	D3S1754	GATA14G12	1.00		187	187	GDB
03	D3S1759	GGAT2A01	0.68		280	280	GDB
03	D3S1763	GATA3H01	0.50		260	280	GDB
03	D3S1764	GATAAA10	0.69		225	253	GDB
03	D3S1765	GATA4G01	0.82		192	212	GDB
03	D3S1766	GATA6F06	0.86		208	232	GDB
03	D3S1767	GATA7A01	0.68		244	264	GDB
03	D3S1768	GATA8B05	0.75		186	206	GDB
03	D3S1769	GATA8D02	0.71		249	277	GDB
03	D3S1776	F127F91	0.75		205	217	TODD, S. ET AL (1994) 3, 841.
03	D3S192	LIB 49-63	0.86		96	118	SCHMIDT, L. ET AL. (1993) HMG 2, 817-818.
03	D3S196	MFD 17	0.67	0.68	86	98	NAR 18(15):4635, 1990
03	D352384	ATA4D09	0.80		115	133	GDB
03	D3S2385	GAAT3E04	0.57		142	154	GDB
03	D3S2386	GATA13H08	0.88		274	310	GDB
03	D3S2387	GATA22G12	0.83		177	213	GDB
03	D3S2388	GATA24E11	0.63		101	125	GDB
03	D3S2389	GATA29C03	0.69		268	268	GDB
03	D3S2390	GATA31E08	0.83		247	247	GDB
03	D352391	GATA31G11	0.64		186	186	GDB
03	D3S2392	GATA41H09	0.75		132	132	GDB
03	D3S2393	GATA43D03	0.67		398	398	GDB

CH	LOCUS	ASSAY	HEI	PLC	SIRE MIN	$\begin{aligned} & \text { ANGE } \\ & \text { MAX } \end{aligned}$		REFERENCE
03	D3S2394	GATA43D09	0.50		257	257		GDB
03	D3S2395	GATA49D12	1.00		196	196		GDB
03	D3S2396	GATA4F11	0.87		183	183		GDB
03	D3S2397	GATA51A05	0.62		200	200		GDB
03	D3S2398	GATA6G12	0.83		266	298		GDB
03	D3S2399	GCT3C11	0.18		183	183		GDB
03	D35240	MFD 30	0.28	0.30	83	99		NAR 18(8):2203, 1990
03	D352400	GCT4B10	0.46		209	209		GDB
03	D3S2401	GCT5E11	1.00		254	254		GDB
03	D3S2402	GGAA13D09	0.73		250	250		GDB
03	D3S2403	GGAA4B09	0.75		248	292		GDB
03	D352404	GGAA6B07	0.81		106	158		GDB
03	D3S2405	GGAT2A11	0.85		109	109		GDB
03	D3S2406	GGAT2G03	0.88		306	350		GDB
03	D35587	NA	0.77		125	143		LIM,L. \& GILL,M.(1993) HMG 2,616.
03	D35621	NA	0.79		208	212		GDB
03	D3S643	NA	0.77		113	113		JONES,M. ET AL.(1992) HMG 1,131-33.
03	D3S647	NA	0.73		102	102		JORDAN,S.A.ET AL.(1991)NAR 19,1171.
03	D3S656	Cl3-326	0.57		96	96		JONES,M. ET AL.(1992) HMG 1,131-33.
03	D3S659	NA	0.73		113	113		JORDAN,S.A.ET AL.(1991)NAR 19,1171.
03	D3S663	NA	0.73		92	92		JORDAN,S.A.ET AL.(1991)NAR 19,1171.
03	D35688	NA	0.73		110	110		JORDAN,S.A.ET AL.(1991)NAR 19,1171.
03	D35769	LIB44-36ca	0.84		158	174		SCHMIDT,L. ET AL.(1993) HMG 2,89.
03	D35966	NA	0.77		147	147		JORDAN,S.A.ET AL.(1991)NAR 19,1171.
03	GLUT2	NA	0.75		116	124		PATEL,P. ET AL.(1991) NAR 19,4017.
03	HRG	NA	0.82		233	267		HENNIS,B. ET AL.(1992) HMG 1,781.
03	IL5RA	NA	0.78		90	104		GDB
03	RHO	MFD 2	0.34	0.31	118	124		AM J HUM GEN 44:388-396, 1989
03	SST	MFD 4	0.51	0.46	163	175		AM J HUMAN GENET, 1993, IN PRESS
03	THRB	NA	0.50		197	209		SAKURA,A.ET AL.(1991) NAR 19,6661.
03	THRE-5	THRB-5	0.66		189	201		GDB
04	ADRA2C	NA	0.73		179	193	193	RIESS,O. ET AL.(1992) HMG 1,452.
04	N/A	GATA29	0.71		N/A	N/A		GDB
04	D4S1089	MFD268	0.69	0.65	117	133		GENOMICS 8:400-. 1990
04	D4S1090	MFD258	0.85	0.84	192	216		GENOMICS 8:400-. 1990
04	D4S1091	MFD281	0.53	0.47	127	137		GENOMICS 8:400- 1990
04	D4S126	C102	0.81		155	177		GDB
04	D4S127	NA	0.71	0.70	143	159		GUSELLA,J.F. ET AL.(1992)NAR 1,142.
04	D4S1534	AFM155xe11	0.51		146	158		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1535	AFM165-48	0.65		177	191		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1536	AFM168xa5	0.79		262	272		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1537	AFM031yc7	0.70		121	133		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1538	AFM036x9	0.67		149	161		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1539	AFM185xe1	0.45		221	229		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1540	AFM185x ${ }^{\text {P }}$	0.56		185	193		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1541	AFM036yb2	0.48		151	159		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1542	AFM189ye3	0.80		215	219		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1543	AFM191xh2	0.65		144	170		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1544	AFM197ya5	0.81		243	251		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1545	AFM198×10	0.83		199	209		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1546	AFM200wel1	0.78		146	160		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1547	AFM200yc7	0.62		224	238		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1548	AFM200zh12	0.77		245	271		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1549	AFM045xc1	0.58		203	217		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1550	AFM203yd4	0.72		206	212		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1551	AFM207wel1	0.81		172	186		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1552	AFM210wd2	0.74		171	199		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1553	AFM210wh8	0.70		202	206		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1554	AFM218yb4	0.70		184	208		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1555	AFM220za3	0.61		275	283		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1556	AFM225zb2	0.70		157	171		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1557	AFM077yt11	0.59		140	148		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1558	AFM238xf6	0.69		274	292		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1559	AFM238z10	0.86		259	269		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1560	AFM242xd8	0.55		250	270		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1561	AFM242ye9	0.63		294	306		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1562	AFM248td5	0.73		102	114		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1564	AFM248zg9	0.70		220	242		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1565	AFM261zg5	0.81		134	146		WEISSENBACH J: NATURE GENETIC, JUNE 1994
04	D4S1566	AFM025xdz	0.60		197	209		WEISSENBACH J: NATURE GENETIC, JUNE 1994

ASSAY

CH	LOCUS	ASSAY	HET	PIC
O4	D4S1653	GATA5B09	0.88	
04	D4S1654	GATA6F07	0.59	
04	D4S171	MFD 22	0.75	0.67
04	D4S174	MFD 59	0.92	0.86
04	D4S175	MFD 38	0.82	0.82
04	D4S179	MFD 83	0.23	0.20
04	D4S188	MFD 71	0.07	0.11
04	D4S189	MFD 74	0.78	0.69
04	D4S190	MFD106	0.55	0.55
04	D4S191	MFD138	-0.67	-0.57
04	D4S192	MFD140	0.80	0.73
04	D4S193	MFD142	0.69	0.71
04	D4S194	MFD146	0.66	0.78
04	D4S230	MFD194	0.84	0.83
04	D4S231	NA	0.71	

SIZE ANG

Locus

ASSAY		HEI
		PIC
MFD 88	0.69	0.73
MFDD116	0.71	0.67
MFD122	0.75	0.75
MFD154	0.72	0.69
NA	0.77	0.00
NA	0.74	0.69
NA	0.00	0.68
NA	0.00	0.66
NA	0.76	0.78
NA	0.83	.
MIT-A127	0.81	
MIT-MS131	0.61	
MIT-1105	0.75	
MIT-MS158	0.96	
MIT-MH98	0.83	
MIT-MH96	0.76	
MIT-MH91	0.67	
NA	0.90	0.89
MFD151	0.64	0.71
2C7	0.76	
NA	0.70	
MFD234	0.63	0.57
MA		0.78

D5S208 D5S209 D5S210 D5S211 D5S253 D5S260 D5S268 D5S299 D5S318 D5S346 D5S349 D5S350 D5S351 D5S352 D5S353 D5S354 D5S355 D5S356 D5S357 D5S365 D5S373 D5S385 D5S39 D5S392 D5S393 D5S394 D5S395 D5S396 D5S397 D5S398 D5S399 D5S400 D5S401 D5S402 D5S403 D5S404 D5S405 D5S406 D5S407 D5S408 D5S409 D5S410 D5S411 D5S412 D5S413 D5S414 D5S415 D5S416 D5S417 D5S418 D5S419 D5S420 D5S421 D5S422 D5S423 D5S424 D5S425 D5S426 D5S427 D5S428 D5S429 D5S430 D5S431 D5S432 D5S433 D5S434 D5S436 D5S455 D5S456 D5\$458
路

CH	LOCUS	ASSAY	HET	PIC	$\begin{gathered} \text { SIZE } \\ \text { MIN } \end{gathered}$	$\begin{aligned} & \text { ANGE } \\ & \text { MAX } \end{aligned}$	REFERENCE
05	D5S460	AFM072-7	0.62		129	147	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S462	AFM102xc1	0.73		135	143	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S466	AFM122xe5	0.71		175	187	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S467	AFM127xd10	0.76		155	163	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S469	AFM137xf	0.81		142	146	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S470	AFM144zh4	0.62		236	254	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S471	AFM151xe7	0.68		236	248	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S474	AFM164yg 5	0.76		87	97	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S476	AFM176xa 7	0.76		167	181	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S477	AFM177xb4	0.70		167	185	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S478	AFM179xd10	0.78		257	273	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S479	AFM196xc7	0.72		130	150	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S484	AFM203va3	0.78		261	281	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S486	AFM206zc1	0.61		163	191	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S487	AFM210vg 3	0.80		253	267	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S488	AFM2119h6	0.73		221	243	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S489	AFM212yb8	0.55		184	192	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S490	AFM214yg1	0.58		92	114	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S491	AFM218812	0.74		161	169	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S492	AFM220xg9	0.74		248	260	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S494	AFM220yg 5	0.56		112	134	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S495	AFM234vel	0.66		219	241	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S496	AFM234wh	0.50		188	194	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S497	AFM234yt8	0.67		193	223	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S498	AFM238xe11	0.64		171	189	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S500	AFM240xg 3	0.71		188	214	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S501	AFM242x-5	0.71		208	214	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S502	AFM242yc1	0.46		282	296	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S504	AFM265vg 5	0.74		167	183	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S505	AFM268vb1	0.75		117	137	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S519	1690-3	0.82		99	113	DIXON,M. ET AL.(1993) AM.J.HUM.GENET.52,907-914.
05	D5S524	COS2	0.76		174	186	GDB
05	D5S529	MFD269	0.74	0.71	188	208	GENOMICS 8:400- . 1990
05	D5S530	MFD264	0.24	0.23	173	181	GENOMICS 8:400- , 1990
05	D5S556	NA	0.72		119	149	BURLET,P. ET AL.(1993) HMG 2, 1328.
05	D5S560	MS62	0.86		151	169	GDB
05	D5S616	AFM164zc5	0.68		197	229	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S617	AFM190xc11	0.85		171	203	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	05S618	AFM198wg9	0.53		165	185	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S619	AFM200w 6	0.58		250	262	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	05S620	AFM200wa5	0.69		191	197	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S621	AFM200zal1	0.74		211	217	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S622	AFM205zd4	0.70		187	197	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S623	AFM207yg11	0.78		143	159	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S624	AFM2079h2	0.90		146	166	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S625	AFM210vil2	0.48		224	238	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S626	AFM214xe9	0.77		192	206	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S627	AFM217ye1	0.61		253	259	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S628	AFM254W11	0.65		103	127	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	05S629	AFM265w ${ }^{\text {a }}$	0.62		233	253	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	05S630	AFM2682d9	0.81		229	333	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S631	AFM270va 9	0.63		193	213	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	05S634	AFM270bb1	0.39		178	192	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S635	AFM276yb9	0.79		160	170	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S636	AFM27745	0.76		130	152	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S637	AFM2819h9	0.34		246	254	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S638	AFM282wd5	0.67		133	145	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S639	AFM283v69	0.79		124	136	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S640	AFM283wb5	0.64		85	105	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S641	AFM284vd1	0.51		251	281	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S642	AFM286x9 9	0.59		183	201	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S643	AFM287we9	0.45		134	168	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	05S644	AFM288va9	0.70		81	101	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S645	AFM289w9	0.86		170	184	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S646	AFM290w5	0.86		271	293	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S647	AFM292ve1	0.80		126	156	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S648	AFM292yg 5	0.86		116	132	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D55649	AFM292ze9	0.74		171	185	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S650	AFM294wd1	0.81		204	221	WEISSENBACH J: NATURE GENETIC, JUNE 1994
05	D5S651	AFM302wd5	0.75		177	195	WEISSENBACH J: NATURE GENETIC, JUNE 1994

CH	Locus	ASSAY	HEI
05	D5S652	AFM302yg 5	0.67
05	D5S653	AFM304xd5	0.47
05	D5S654	AFM3042b5	0.87
05	D5S655	AFM308V19	0.75
05	D5S656	AFM308wa9	0.74
05	D5S657	AFM308)d	0.85
05	D5S658	AFM308za9	0.66
05	D5S659	AFM309vd5	0.59
05	D5S660	AFM309vd9	0.60
05	D5S661	AFM311vb9	0.62
05	D5S662	AFM311v9	0.74
05	D5S663	AFM311wh9	0.73
05	D5S664	AFM311yd1	0.54
05	D5S666	AFM317x5	0.69
05	D5S667	AFM318zh5	0.66
05	D5S668	AFM319yc1	0.66
05	D5S669	AFM321yb5	0.57
05	D5S670	AFM323wal	0.84
05	D5S671	AFM324td5	0.64
05	D5S672	AFM324wh1	0.85
05	D5S673	AFM32945	0.67
05	D5S674	AFM331ze9	0.86
05	D5S675	AFM336tc1	0.82
05	D5S676	AFM347yg9	0.67
05	D5S677	AFM350xh1	0.46
05	D5S678	AFMa139ya9	0.71
05	D5S683	JS1	0.91
05	D5576	NA	0.77
05	D5S804	GATA5G04	0.81
05	D5S805	GATA5D11	0.73
05	D5S806	GATA5E10	0.67
05	D5S807	GATA3A04	0.76
05	D5S808	MFD213	0.74
05	D5S809	MFD247	0.52
05	D5S810	MFD317	0.64
05	D5S811	MFD343	0.79
05	D5S812	GAAT1D8	0.62
05	D5S813	GATA11G08	0.84
05	D5S814	GATA12A08	0.75
05	D5S815	GATA12G02	0.94
05	D5S816	GATA2H09	0.95
05	D5S817	GATA3E10	0.62
05	D5S818	GATA3F03	0.75
05	D5S819	GATA5C10	0.93
05	D5S82	NA	0.76
05	D5S820	GATAGE0S	0.73
05	D5S821	GGAT3H04	0.50
05	D5S822	AFM224zh2	0.80
05	FBN2	NA	0.87
05	FGFA	NA	0.88
05	GABRA1	NA	0.76
05	IG22	NA	0.79
05	IL9	NA	0.80
05	IRF1	NA	0.74
05	MCC	MBD	0.55
05	SPARC	SPARC	0.80
05	TCOF1	IG52	0.89
06	ACTBP2	NA	0.93
06	ARG1	MFD 91	0.50
06	COL9A1	509-8B2	0.95
06	D1S1649	GATA30	0.71
06	D6S 1003	ATA1F08	0.83
06	D6S 1004	ATA1F12	0.56
06	D6S1005	ATA2C11	0.54
06	D6S1006	ATC4D09	0.56
06	D6S1007	GATA22G09	0.60
06	D6S1008	GATA31F06	0.77
06	D6S1009	GATA32B03	0.69
06	D6S1010	GATA41E03	0.75
06	D6S1011	GATA46H02	0.93

CH	LOCUS	ASSAY	HEI	PlC	SZE MIN	ANGE MAX	REFERENCE
06	D6S1012	GATA49A10	0.57		311	311	GDB
06	D6S1013	GATA52B08	0.60		167	167	GDB
06	D6S1014	GCT4B05	0.64		139	139	GDB
06	D6S1015	GCT5E07	0.48		179	179	GDB
06	D6S1016	GGAA10G12	0.67		232	256	GDB
06	D6S1017	GGAT3H10	0.69		151	171	GDB
06	D651018	GGAT4C01	0.45		148	156	GDB
06	D6S1019	GTAT1H06	0.70		212	234	GDB
06	D6S105	MFD 61	0.87	0.77	116	138	NAR 19:(4):968, 1991
06	D6S109	NA	0.78	0.78	169 -	193	- RANUM L.P.W. ET AL.(1991)NAR 19,1171.
06	D6S202	NA	0.68		130	154	LE BORGNE-DEMARQUOY F.ET AL.(1991)NAR 19,6060.
06	D6S220	MIT-G119	0.68		175	175	HUMAN GENET 87:401, 1991
06	D6S223	NA	0.79		185	201	BOWCOCK,A. ET AL (1992) HMG 1,66.
06	D6S224	MIT-MS135	0.59		245	245	HUMAN GENET 87:401, 1991
06	D6S225	MIT-E116	0.79		132	132	HUMAN GENET 87:401, 1991
06	D6S226	MIT-MS236	0.70		206	206	HUMAN GENET 87:401, 1991
-06	D6S238	NA	0.64		388	404	GDB
06	D6S239	NA	0.78		162	176	GDB
06	D6S243	NA	0.53		170	250	GDB
06	D6S244	NA	0.74		362	368	GDB
06	D6S246	NA	0.68		220	230	GDB
06	D6S248	NA	0.80		269	287	GDB
06	D6S249	MFD 97	0.50		146	164	WILKJE,P. ET AL.(1993) GENOMICS 15,225-227.
06	D6S250	MFD118	0.80		150	174	GENOMICS 1993, SUBMITTED
06	D6S251	MFD131	0.86		144	162	GENOMICS 1993, SUBMITTED
06	D6S252	MFD171	0.70	0.64	142	168	GENOMICS 1993, SUBMITTED
06	D6S253	MFD181	0.70	0.55	267	291	GENOMICS 15:225-227, 1993
06	D65254	MFD183	0.70		250	276	GENOMICS 1993, SUBMITTED
06	D6S255	MFD226	0.74	0.71	163	175	GENOMICS 1993, SUBMITTED
06	D6S257	AFM025te5	0.88		164	186	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S258	AFM031yh12	0.81		189	207	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S259	AFM035wc1	0.74		267	285	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S260	AFM056xe1	0.85		155	189	WEISSENBACH.J ET AL.(1992) NATURE 359:794-801
06	D6S261	AFM059xh8	0.83		101	129	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S262	AFM059yd6	0.84		167	183	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S263	AFM066x7	0.82		90	114	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S264	AFM079zb7	0.71		108	122	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S265	AFM101xal	0.79		122	138	WEISSENBACH,J ET AL.(1992) NATURE 359;794-801
06	D6S266	AFM102×12	0.64		268	284	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S267	AFM114xd12	0.76		235	245	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S268	AFM115xh2	0.75		86	100	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S269	AFM123xe1	0.00		178	192	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S270	AFM127xb2	0.77		141	157	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S271	AFM136yt8	0.87		166	208	WEISSENBACH,J ET AL.(1992) NATURE 359;794-801
06	D6S272	AFM142xe7	0.73		180	196	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S273	AFM142xh6	0.77		130	140	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S274	AFM144yt2	0.00		171	193	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S275	AFM158ya11	0.74		207	219	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S276	AFM158ye9	0.84		198	226	WEISSENBACH,J ET AL_(1992) NATURE 359:794-801
06	D6S277	AFM158yh2	0.80		98	120	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S278	AFM162xe3	0.66		125	139	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S279	AFM163xal	0.81		279	307	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D65280	AFM168xh10	0.69		150	164	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S281	AFM176xh8	0.68		203	219	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S282	AFM184xal1	0.88		108	126	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S283	AFM190yf10	0.85		255	291	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S284	AFM191xa3	0.73		233	251	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D65285	AFM192yt2	0.77		207	221	WEISSENBACH,J ET AL(1992) NATURE 359:794-801
06	D6S286	AFM198yc11	0.79		206	232	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S287	AFM198ze1	0.86		143	171	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S288	AFM199ye5	0.64		232	239	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S289	AFM200wes	0.80		215	227	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S290	AFM200yb6	0.71		253	263	WEISSENBACH,J ET AL(1992) NATURE 359:794-801
06	D6S291	AFM203yg7	0.73		198	210	WEISSENBACH, J ET AL.(1992) NATURE 359:794-801
06	D65292	AFM203za9	0.83		141	161	- WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D65294	AFM205yc7	0.83		86	108	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S295	AFM206xc11	0.74		93	107	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S296	AFM207xh2	0.79		260	300	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D6S297	AFM212yf6	0.67		210	224	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
06	D65299	AFM217xg7	0.00		206	226	WEISSENBACH,J ET AL_(1992) NATURE 359:794-801

CH	LOCUS	ASSAY	HEI
06	D6S300	AFM218xg 1	0.77
06	D6S301	AFM2202f6	0.77
06	D6S302	AFM224yb4	0.72
06	D6S303	AFM225ya11	0.70
06	D6S304	AFM2382d4	0.77
06	D65305	AFM242zg 5	0.84
06	D6S306	AFM248xh1	0.65
06	D6S308	AFM262xe9	0.75
06	D6S309	AFM2652h9	0.85
06	D6S310	AFM267zg5	0.80
06	D6S311	AFM276x1	0.92
06	D6S313	AFM191xd6	0.68
06	D6S314	AFM254xh1	0.81
06	D6S334	NA	0.89
06	D6S344	AFM092×67	0.74
06	D6S348	MK6A	0.75
06	D6S355	NA	0.65
06	D6S357	NA	0.80
06	D6S359	NA	0.78
06	D6S361	MFD284	0.00
06	D6S362	MFD312	0.72
06	D6S363	MFD314	0.63
06	D6S366	NA	0.82
06	D6S402	AFM190yo 1	0.77
06	D6S403	AFM190yg	0.74
06	D6S404	AFM190yg 5	0.79
06	D6S405	AFM036ye 1	0.74
06	D6S406	AFM038xc3	0.22
06	D6S407	AFM198wg11	0.80
06	D6S408	AFM199zh10	0.46
06	D6S409	AFM200wel1	0.78
06	D6S410	AFM203xe11	0.72
06	D6S411	AFM207wal	0.78
06	D6S412	AFM207x66	0.74
06	D6S413	AFM210v8	0.71
06	D6S414	AFM211xa11	0.64
06	D6S415	AFM211yb10	0.66
06	D6S416	AFM211ze5	0.77
06	D6S417	AFM2122i10	0.33
06	D6S418	AFM067x+3	0.67
06	D6S419	AFM218x66	0.72
06	D6S420	AFM220yc9	0.85
06	D6S421	AFM2202d2	0.65
06	D6S422	AFM234xa3	0.67
06	D6S423	AFM234xd8	0.58
06	D6S424	AFM234ya7	0.66
06	D6S425	AFM238yh10	0.55
06	D6S426	AFM238zi4	0.58
06	D6S427	AFM079xa5	0.70
06	D6S428	AFM240yd6	0.48
06	D6S429	AFM242za5	0.72
06	D6S430	AFM254vb1	0.82
06	D6S433	AFM2602b5	0.70
06	D6S434	AFM123ya7	0.84
06	D6S435	AFM135xh2	0.55
06	D6S436	AFM029yd4	0.77
06	D6S437	AFM266yb5	0.74
06	D6S438	AFM268wa 9	0.88
06	D6S439	AFM268xe1	0.74
06	D6S440	AFM268yt5	0.90
06	D6S441	AFM269zel	0.69
06	D6S442	AFM277vil	0.78
06	D6S443	AFM277wb5	0.71
06	D6S444	AFM278yd1	0.75
06	D6S445	AFM286za5	0.62
06	D6S446	AFM290xf5	0.79
06	D6S447	AFM290zd9	0.68
06	D6S448	AFM292yd5	0.77
06	D6S449	AFM296ze5	0.80
06	D6S450	AFM2972d5	0.42

CH	LOCUS	ASSAY	HET
07	D7S1802	GATA41G07	0.73
07	D7S1803	GATA42A01	0.88
07	D751804	GATA43C11	0.86
07	D7S1805	GATA4H10	0.92
07	D7S1806	GGAA11C11	0.40
07	D7S1807	GGAA2B12	0.78
07	D7S1808	GGAA3F06	0.81
07	D7S1809	GGAA9C07	0.76
07	D7S1810	GGAT2B11	0.56
07	D7S1830	GATA4E04	0.82
07	D7S1843	GTAT1A10	0.00
07	D7S23	NA	0.82
07	D7S435	MFD 20	0.59
07	D7S440	MFD 50	0.75
07	D7S460	MIT-MH26	0.95
07	D7S461	MIT-MS97	0.87
07	D7S462	MIT-MS262	0.52
07	D7S463	MIT-G111	0.70
07	D7S466	MIT-COS43	0.83
07	D7S471	MFD123	0.80
07	D7S472	MFD172	0.70
07	D7S473	MFD148	0.85
07	D7S474	MFD107	0.80
07	D7S476	NA	0.79
07	D7S477	AFM030xb4	0.71
07	D7S478	AFM032xa1	0.70
07	D7S479	AFM036xg	0.84
07	D75480	AFM0423n10	0.87
07	D7S481	AFM049xe3	0.85
07	D7S482	AFM070yci	0.74
07	D7S483	AFM074x95	0.83
07	D7S484	AFM087yd11	0.75
07	D7S485	AFM095xe9	0.79
07	D7S486	AFM098xp9	0.81
07	D7S487	AFM107yb6	0.75
07	D7S488	AFM113xc11	0.85
07	D7S489	AFM136xe3	0.38
07	D7S490	AFM150yg7	0.79
07	D7S491	AFM151×10	0.75
07	D7S492	AFM158xa1	0.78
07	D7S493	AFM162xa7	0.89
07	D7S494	AFM165z4	0.79
07	D7S495	AFM168xc3	0.82
07	D7S496	AFM172xal	0.76
07	D7S497	AFM177810	0.53
07	D7S498	AFM183ya3	0.63
07	D75499	AFM191xh6	0.84
07	D75500	AFM198zh8	0.88
07	D7S501	AFM199vb2	0.82
07	D75502	AFM199vi8	0.85
07	D75503	AFM199xc3	0.88
07	D7S504	AFM199x+12	0.80
07	D7S505	AFM199zd4	0.70
07	D75506	AFM200wc7	0.88
07	D7S507	AFM200wa7	0.90
07	D7S509	AFM203wg1	0.73
07	D75510	AFM207wb2	0.80
07	D7S511	AFM210xe7	0.80
07	D75512	AFM214yt2	0.72
07	D75513	AFM217yc5	0.84
07	D7S514	AFM218xd10	0.72
07	D7S515	AFM220xc11	0.82
07	D7S516	AFM224xg 5	0.76
07	D7S517	AFM225xal	0.84
07	D7S518	AFM225x99	0.88
07	D75519	AFM238vb12	0.82
07	D7S520	AFM240ve9	0.70
07	D7S521	AFM240yh4	0.71
07	D7S522	AFM242yc3	0.67
07	D7S523	AFM242ye3	0.81

PlC	MIN	MAX	REFERENCE
	187	187	GDB
	381	381	GDB
	258	258	GDB
	198	223	GDB
	195	195	GDB
	286	286	GDB
	252	276	GDB
	200	228	GDB
	226	226	GDB
	200	224	GDB
			GDB
	109	127	RICHARDS,B. ET AL.(1991) NAR 19,5798.
0.53	122	134	NAR 18(13):4039, 1990
0.70	169	191	NAR 18(15):4636, 1990
	180	196	HUMAN GENET 87:401, 1991
	177	177	HUMAN GENET 87:401, 1991
	150	150	HUMAN GENET 87:401, 1991
	159	159	HUMAN GENET 87:401, 1991
	244	244	HUMAN GENET 87:401, 1991
	181	199	HAUGE,X. ET AL.(1991) NAR 19,4308.
	114	129	HAUGE,X. ET AL.(1991) NAR 19,4303.
	126	148	H DONIS-KELLER ET AL, J. WEBER
	120	144	GDB
	186	210	XIAO,H. ET AL.(1992) HMG 1,549.
	175	185	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	118	130	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	105	135	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	189	206	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	186	204	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	166	198	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	166	188	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	99	113	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	244	256	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	133	146	WEISSENBACH,J ET AL.(1992) NATURE 359;794-801
	174	188	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	136	156	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	140	144	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	92	106	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	115	131	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	145	155	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	194	224	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	173	191	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	150	168	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	129	141	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	101	111	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	137	153	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	236	252	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	188	210	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	163	179	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	273	291	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	148	180	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	145	159	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	262	278	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	117	143	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	148	168	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	203	225	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	252	264	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	207	225	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	160	190	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	173	201	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	147	157	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	128	190	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	254	266	WEISSENBACH,J ET AL.(1992) NATURE 359;794-801
	239	257	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	179	201	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	256	268	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	79	97	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	285	303	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	217	229	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	224	240	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801

CH	LOCUS	ASSAY	HET	P1C	MIN	MAX	REFERENCE
07	D75524	AFM248ta5	0.75		234	246	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
07	D75525	AFM248tc5	0.66		219	235	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75526	AFM248vc9	0.72		125	135	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
07	D7S527	AFM248vd9	0.76		273	297	WEISSENBACH,J ET AL (1992) NATURE 359:794-801
07	D75528	AFM248ve5	0.73		108	116	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
07	D75529	AFM248zd	0.70		218	226	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
07	D75530	AFM249x9	0.79		106	255	WEISSENBACH,J ET AL_(1992) NATURE 359:794-801
07	D75531	AFM254yc9	0.77		225	255	WEISSENBACH,J ET AL_(1992) NATURE 359:794-801
07	D7S547	NA	0.94		117	135	GREGG,R.\& PARKER,M.(1992)HMG 1,659.
07	D7S550	AFM224xh4	-0.83		177	200	-WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
07	D7S555	MFD253	0.80	0.77	110	134	GENOMICS 8:400-1990
07	D75558	MFD267	0.58	0.50	95	119	GENOMICS 8:400-1990
07	D7S559	MFD265	0.81	0.78	196	216	GENOMICS 8:400 . 1990
07	D7S594	SAVH-6	0.84	0.82	217	235	HING,A. ET AL(1993) AM.J.HUM.GENET. 53,509-517.
07	D75629	AFM165xb10	0.76		249	263	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S630	AFM165yh12	0.77		198	222	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75631	AFM183xal1	0.89		108	124	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S632	AFM198205	0.65		209	221	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75634	AFM203vb6	0.73		136	148	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S635	AFM200xc1	0.56		216	234	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S636	AFM207za9	0.61		130	168	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75637	AFM211x ${ }^{\text {a }}$	0.85		222	232	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S638	AFM217yb6	0.76		194	208	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S639	AFM220ya3	0.88		260	275	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S640	AFM220yg 1	0.69		114	144	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S641	AFM224yb6	0.69		84	100	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75642	AFM074wc12	0.54		191	207	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75644	AFM234xc7	0.64		194	206	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S645	AFM238zc9	0.68		197	215	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S646	AFM240ve3	0.33		179	201	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S647	AFM240vh4	0.43		143	175	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S648	AFM078zel	0.65		194	204	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S649	AFM240xe9	0.84		275	281	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S650	AFM240zh10	0.57		265	289	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75651	AFM249za5	0.88		173	191	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75652	AFM254xd5	0.92		269	281	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S653	AFM259ze1	0.51		201	229	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S654	AFM102×g7	0.63		207	227	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S655	AFM263wg9	0.76		251	269	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S656	AFM263xe9	0.58		243	275	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S657	AFM263yd9	0.61		246	264	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S658	AFM269zg1	0.88		264	272	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S659	AFM276yg	0.69		191	215	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75660	AFM277vd5	0.79		189	197	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S661	AFM2772f5	0.77		252	282	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S662	AFM280vh9	0.76		204	234	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S663	AFM280zc5	0.71		153	173	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S664	AFM281ve9	0.76		203	215	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75665	AFM283xc5	0.66		204	224	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S666	AFM283za9	0.80		155	169	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S667	AFM284xg 5	0.79		116	144	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S668	AFM284<19	0.82		257	275	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75669	AFM286x9	0.70		123	139	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75670	AFM288vb5	0.77		100	110	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S671	AFM288yg9	0.67		136	158	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75672	AFM289ve9	0.55		132	160	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S673	AFM290vg9	0.80		118	148	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S674	AFM294wf1	0.86		139	155	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S675	AFM295yg9	0.78		201	209	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S676	AFM302za5	0.63		148	166	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75677	AFM303vh9	0.69		275	295	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S678	AFM308wc5	0.78		166	180	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75679	AFM308zg1	0.77		140	164	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S680	AFM309yf1	0.80		119	131	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75681	AFM310yt9	0.71		249	261	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75682	AFM311x 5	0.73		271	283	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75683	AFM311ze5	0.60		258	264	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75684	AFM312w65	0.67		169	187	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D75685	AFM317ye5	0.73		178	192	WEISSENBACH J: NATURE GENETIC, JUNE 1994
07	D7S686	AFM323wd5	0.45		254	266	WEISSENBACH J: NATURE GENETIC, JUNE 1994

Comprehensive Human
MapPairs ${ }^{\text {MM }}$ List

SIZE ANGE

CH	LOCUS	ASSAY	HEI
07	D7S687	AFM323yg5	0.69
07	D7S688	AFM3242f9	0.61
07	D75689	AFM333wf5	0.86
07	D7S690	AFM338wht	0.71
07	D7S691	AFM350va9	0.73
07	D7S692	AFM357te1	0.64
07	D7S793	GATA3B01	0.86
07	D7S794	GATA2C04	0.79
07	D7S795	GATA4B03	0.67
07	D7S796	GATA4E02	0.91
07	D7S798	AFM205va3	0.55
07	D75799	MFD225	0.87
07	D75800	MFD327	0.52
07	D7S801	MFD329	0.82
07	D7S802	MFD340	0.82
07	D7S803	MFD358	0.85
07	D7S804	PY5-18	0.78
07	D7S808	wg1a2	0.79
07	D7S809	wg1g9	0.86
07	D7S813	MS8-170	0.73
07	D7S814	ATC6	0.54
07	D7S815	GATA2G04	0.50
07	D7S817	GATA13G11	0.72
07	D7S818	GATA6G06	0.00
07	D7S820	GATA3F01	0.86
07	D7S821	GATA5D08	0.62
07	D7S822	wgie12	0.82
07	EGFR	NA	0.72
07	ELN	NA	0.00
07	TCRB	V86.7	0.83
08	CRH	NA	0.72
08	D6S502	GATA7G07	0.82
08	D8S1098	ATA1G10	0.67
08	D8S1099	ATA3AO2	0.59
08	D8S1100	ATC2D12	0.56
08	D8S1101	ATC2F06	0.40
08	D8S1102	GAAT1C11	0.60
08	D8S1103	GAAT2AO2	0.31
08	D8S1104	GAAT2F03	0.80
08	D8S1105	GATA23C09	0.63
08	D8S1106	GATA23D06	0.80
08	D8S1107	GATA29D08	0.69
08	D8S1108	GATA50D10	0.71
08	D8S1109	GATA52F11	0.92
08	D8S1110	GATA8G10	0.85
08	D8S1111	GGAA2H06	0.00
08	D8S1112	GGAABAO4	0.62
08	D8S1113	GGAA8G07	0.77
08	D8S133	c24E10	0.77
08	D8S136	NA	0.88
08	D8S137	NA	0.67
08	D8S161	NA	0.75
08	D8S164	MFD104	0.86
08	D8S165	MFD117	0.54
08	D8S166	MFD159	0.88
08	D8S167	MFD185	0.84
08	D8S198	MFD169	0.83
08	D8S199	MFD177	0.83
08	D85200	MFD196	0.76
08	D8S201	MFD199	0.92
08	D8S205	MIT-MS45	0.78
08	D85206	MIT-MS61	0.67
08	D8S207	MIT-MS142	0.74
08	D8S208	MIT-MS91	0.75
08	D8S251	MFD229	0.83
08	D8S254	MFD210	0.58
08	D8S255	AFM023xc1	0.74
08	D8S256	AFM073yb7	0.84
08	D8S257	AFM077ya	0.73
08	D85258	AFM107x66	

PIC
SIZE ANG

MIN	MAX	
238	244	WEISS
147	161	WEISS
125	135	WEISS
264	274	WEIS
128	146	WEISS
161	171	WEISS
146	154	GDB
168	168	GDB
230	230	GDB
162	198	GDB
200	218	WEISS

WEISSENBACH J: NATURE GENETIC, JUNE 1994
GDB
GDB
GDB
GDB
WEISSENBACH J: NATURE GENETIC, JUNE 1994
GENOMICS 8:400- . 1990
GENOMICS 8:400-. 1990
GENOMICS 8:400-, 1990
GENOMICS 8:400-,1990
GENOMICS 8:400-. 1990
GDB
ARMOUR, J. ET AL. (1994) HMG 3, 599-605.
ARMOUR, J. ET AL. (1994) HMG 3, 599-605.
GDB
GDB
GDB
GDB
GDB
GDB
GDB
ARMOUR, J. ET AL. (1994) HMG 3, 599-605.
CHI, D. ET AL.(1992) HMG 1.135.
GDB
GDB
GU,J. ET AL.(1993) HMG 2,85.
GDB
WOOD,S.8SCHERTZER,M.(1992)GENOMICS13,232.
GDB
WOOD,S.\& SCHERTZER,M.(1991)NAR19,6664.
COUCH,F. ET AL.(1991) NAR 19,5093.
GENOMICS 14:144-152, 1992
GENOMICS 15:225-227, 1993
HUMAN GENET 87:401, 1991
HUMAN GENET 87:401, 1991
HUMAN GENET 87:401, 1991
HUMAN GENET 87:401, 1991

- GENOMICS 8:400-. 1990

GENOMICS 8:400-, 1990
WEISSENBACH,J ET AL.(1992) NATURE 359:794-801

ASSAY	HET	PIC
AFM107yb2	0.60	
AFM114xe7	0.83	
AFM123xg 5	0.78	
AFM127xh2	0.72	
AFM141xa5	0.76	
AFM143xd8	0.85	
AFM144z62	0.79	
AFM151ye3	0.53	
AFM156xa3	0.61	
AFM150xc3	0.49	
AFM165xh4	0.80	
AFM165yb10	0.78	
AFM175xb4	0.82	
AFM179yf6	0.81	
AFM182xa3	0.78	
AFM185xe9	0.76	
AFM192xc5	0.68	
AFM198wd2	0.74	
AFM200ye1	0.65	
AFM203we1	0.88	
AFM205w-5	0.54	
AFM205yh4	0.65	
AFM234v4	0.73	
AFM238yh12	0.80	
AFM248td9	0.84	
AFM255yb9	0.79	
AFM268ve9	0.82	
FB1287	0.81	
AFM234yh10	0.70	
KW97	0.78	
NA	0.80	
KW328	0.73	
KW205	0.84	
KW218	0.76	
WT251	0.30	
KW371	0.75	
KW400	0.63	
KW426	0.79	
MFD287	0.45	0.36
MFD295	0.84	0.82
UT721	0.80	
MFD280	0.84	0.82

Comprehensive Human
MapPairs ${ }^{\text {m }}$ List
SZE ANGE
MIN MAX

WEISSENBACH J: NATURE GENETIC, JUNE 1994 -WEISSENBACH J: NATURE GENETIC, JUNE 1994 WEISSENBACH J: NATURE GENETIC, JUNE 1994 GDB
GDB
GDB
GDB
GENOMICS 8:400- , 1990
GENOMICS 8:400-, 1990
GENOMICS 8:400-, 1990
ARMOUR, J. ET AL. (1994) HMG 3, 599-605.
GDB
GDB
GDB
GDB
GDB
GDB
GDB
GDB
WEISSENBACH J: NATURE GENETIC, JUNE 1994
GDB
NELSON, L. ET AL. (1994) HMG 3, 1209.
LU, J. ET AL. (1994) HMG 3, 839.
GENOMICS 15:225-227, 1993
GENOMICS 15:225-227, 1993
GENOMICS 15:225-227, 1993
GENOMICS 15:225-227, 1993
YU, C. ET AL. (1994) HMG 3, 212.
TOMFOHRDE,J. ET AL.(1992) GENOMICS14,144-152.
ZULIANI,G.\& HOBBS,H.(1990)NAR 18,4958.
POLYMEROPOULOS,M. ET AL.(1992) HMG 1,65 .
ROGAEV,E. ET AL.(1992) HMG 1,781.
NAR 14:144-152, 1992
DAIGER,SP.ET AL.(1991)NAR 19,6058.
W. THOMAS \& D. DRAYNA (1992) HMG 1, 138.

- KWIATKOWSKI,D.J.(1991) NAR 19,967

GDB
YUILLE,M.A.R. ET AL.(1990)NAR 18,7472.
GENOMICS 14:144-152, 1992
GENOMICS 14:144-152, 1992
GENOMICS 14:144-152, 1992

CH	LOCUS
09	D9S106
09	D9S109
09	D9S112
09	D9S113
09	D9S114
09	D9S115
09	D9S116
09	D9S117
09	D9S118
09	D9S119
09	D9S12
09	D9S120
09	D9S121
09	D9S122
09	D9S123
09	D9S125
09	D9S126
09	D9S127
09	D9S129
09	D9S121I
09	D9S130
09	D9S131
09	D9S132
09	D9S133
09	D9S135
09	D9S143
09	D9S144
09	D9S146
09	D9S147E
09	D9S148
09	D9S149
09	D9S15
09	D9S150
09	D9S151
09	D9S152
09	D9S153
09	D9S154
09	D9S155
09	D9S156
09	D9S157
09	D9S158
09	D9S159
09	D9S160
09	D9S161
09	D9S162
09	D9S163
09	D9S164
09	D9S165
09	D9S166
09	D9S167
09	D9S168
09	D9S169
09	D9S170
09	D9S171
09	D9S172
09	D9S173
09	D9S174
09	D9S175
09	D9S176
09	D9S177
09	D9S178
09	D9S179
09	D9S180
09	D9S195
09	D9S196
09	D9S197
09	D9S199
09	D9S200
09	D9S205
09	D9S256

ASSAY	HET	PIC
MFD189	0.74	0.75
NA	0.70	
NA	0.85	
581	0.82	
5811	0.79	
NA	0.78	
NA	0.85	
NA	0.78	
NA	0.83	
NA	0.52	
PCR2	0.92	
NA	0.76	
NA	0.79	
$10 \mathrm{G11}$	0.78	
NA	0.55	
3 AB12	0.85	
NA	0.68	
NA	0.72	
MIT-MS47	0.67	
2635	0.83	
MIT-E117	0.58	
MIT-MS202	0.83	
MIT-G115	0.75	
MIT-MS67	0.63	
MIT-MS93	0.63	
$9 C M P 3$	0.54	
NA	0.72	
NA	0.74	
NA	0.78	
C10	0.61	
D3	0.88	
NA	0.74	
B1	0.72	
NA	0.75	
AFM015ya5	0.84	
AFM025yb2	0.77	
AFM028ye5	0.85	
AFM042xh4	0.74	
AFM051xd6	0.80	
AFM067xd3	0.85	
AFM073ybit	0.70	
AFM077xa9	0.78	
AFM079ze1	0.64	
AFM087yd3	0.78	
AFM115yb4	0.75	
AFM120x6	0.71	
AFM122064	0.80	
AFM136xc5	0.76	
AFM144zg7	0.82	
AFM157xb12	0.00	
AFM158xf12	0.76	
AFM164xg7	0.84	,
AFM164yal1	0.75	.
AFM186xc3	0.80	
AFM199xd10	0.53	
AFM200vd6	0.51	
AFM207xa1	0.67	
AFM224zh10	0.86	
AFM225xf10	0.82	
AFM234ye5	0.87	
AFM242xh6	0.68	
AFM248wit	0.77	
AFM168xb6	0.64	
AFM193yg5	0.75	
AFM212yb4	0.65	
AFM238va7	0.68	
NA	0.75	
NA	0.83	
MFD271	0.47	0.43
AFM161xd6	0.67	

ZE	ANGE	
MIN	MAX	REFERENCE
99	111	GENOMICS 14:144-152, 1992
219	229	FURLONG,R. ET AL.(1992) NAR 20,925.
115	135	KWIATKOWSKI,D.\&GUSELLA,J.(1992) NAR20,932.
118	132	GDB
93	111	GDB
115	141	KWIATKOWSK,D.\&GUSELLA,J.(1992) NAR20,930.
88	112	KWIATKOWSKJ,D.\&GUSELLA,J.(1992) NAR20,931.
106	120	KWIATKOWSKI,D.\&GUSELLA,J.(1992) NAR20,933.
69	93	KWIATKOWSKI,D.\&GUSELLA,J.(1992) NAR20,932.
130	138	KWIATKOWSK,D.\&GUSELLA,J.(1992) NAR20,934.
126	129	YUILLE,M. ET AL.(1992) HMG 1,351.
141	155	KWIATKOWSKI,D.\&GUSELLA,J.(1992) NAR20,933.
126	142	KWIATKOWSKI,D.ET AL.(1992) GENOMICS 12,229-240.
146	160	GDB
74	92	KWIATKOWSKI,D.\&GUSELLA,J.(1992) NAR20,934.
113	155	GDB
238	248	GDB
149	159	LYALL,J. ET AL.(1992)NAR 20,925.
135	135	HUMAN GENET 87:401, 1991
67	91	KWIATKOWSKI,T. ET AL.(1991) GENOMICS10,921-26.
184	184	HUMAN GENET 87:401, 1991
100	100	HUMAN GENET 87:401, 1991
156	156	HUMAN GENET 87:401, 1991
150	150	HUMAN GENET 87:401, 1991
99	99	HUMAN GENET 87:401, 1991
111	123	GDB
137	155	FURLONG,R. ET AL.(1992) HMG 1,447.
80	104	FUTREAL,P.A.ET AL(1992) HMG 1,66.
189	201	POLYMEROPOULOS,M. ET AL.(1992) HMG 1.549.
99	123	GDB
146	176	GDB
197	205	KWIATKOWSKI,D. ET AL.(1992)GENOMICS12,229-240.
87	99	GDB
293	442	GDB
120	136	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
143	155	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
139	171	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
120	129	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
133	155	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
133	149	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
213	231	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
293	309	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
136	146	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
119	135	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
172	196	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
271	279	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
187	199	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
202	226	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
233	261	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
260	286	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
227	275	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
259	275	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
108	126	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
159	177	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
291	305	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
242	250	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
147	159	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
200	230	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
129	147	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
211	237	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
93	99	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
231	251	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
220	230	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
204	240	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
254	260	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
199	215	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
144	164	GRIMSBY,J. ET AL.(1992)NAR 20,924.
107	127	GRAW,S.\& KWIATKOWSKI,D.(1993) HMG2,614.
199	207	GENOMICS 8:400-1990
166	178	WEISSENBACH J: NATURE GENETIC, JUNE 1994

CH LOCUS
09

ASSAY	HET
AFM183× 10	0.33
AFM185xe3	0.64
AFM186xc7	0.54
AFM206za9	0.75
AFM210ze7	0.73
AFM211wco	0.63
AFM212yg1	0.55
AFM218xh10	0.79
AFM2202d4	0.68
AFM225yh2	0.53
AFM248wco	0.72
AFM259ya	0.82
AFM261zh9	0.61
AFM123xd10	0.86
AFM2632f1	0.72
AFM276yal	0.79
AFM280th5	0.73
AFM282zh9	0.71
AFM286yc5	0.71
AFM287xd1	0.74
AFM291x-5	0.85
AFM295ye1	0.76
AFM297wb1	0.64
AFM304td9	0.66
AFM304th1	0.68
AFM308vb1	0.68
AFM318xc9	0.63
AFM331yt5	0.78
AFM339xd9	0.69
AFM344yc9	0.86
AFM34725	0.74
AFMa123xg1	0.66
AFMa131yc1	0.77
AFMa131yg9	0.29
GATA27	0.70
GATA7D12	0.73
GATA7D12	0.75
GATA4D10	0.89
GATA3D04	0.86
GATA5E06	0.85
MFD220	0.87
MFD308	0.65
GATA11A07	0.50
GATA12C06	0.88
GGAT2B03	0.38
GATABE06	0.75
220	0.84
MFD 14	0.83
MFD 85	0.47
MFD 94	0.84
MFD110	0.59
MFD135	0.87
MFD141	0.54
NA	0.00
NA	0.83
NA	0.86
NA	0.80
NA	0.80
2BH10	0.85
NA	0.80
NA	0.93
NA	0.71
NA	0.87
NA	0.72
MFD361	0.79
$9 C M P 9$	0.86
ATA2G03	0.07
ATA3H11	0.40
GAATIC06	0.36
GATA46C09	0.64

REFERENCE

WEISSENBACH J: NATURE GENETIC, JUNE 1994 WEISSENBACH J: NATURE GENETIC, JUNE 1994
WEISSENBACH J: NATURE GENETIC, JUNE 1994 WEISSENBACH J: NATURE GENETIC, JUNE 1994
GDB
GDB
GDB
GDB
GDB
GENOMICS 8:400-. 1990
GENOMICS 8:400- , 1990
GDB
GDB
GDB
GDB
GDB
NAR 18:():6465, 1990
GENOMICS 12:607-609, 1992
GENOMICS 14:144-152, 1992
GENOMICS 14:144-152, 1992
GENOMICS 14:144-152, 1992
GENOMICS 14:144-152, 1992
SHARMA,V. ET AL.(1992) NAR 19,1722.
KWIATKOWSKI,D.\&GUSELLA,J.(1992) NAR20,930.
KWIATKOWSKI,D.\&GUSELLA,J.(1992) NAR20,930.
KWIATKOWSKI,D.\&GUSELLA,J.(1992) NAR20,930.
KWIATKOWSKI,D.\&GUSELLA, (1992) NAR20,930.
GDB
KWIATKOWSKI,D.\&GUSELLA,J.(1992) NAR20,930. KWIATKOWSKI,D.\&GUSELLA,J.(1992) NAR20,930. KWIATKOWSKI,T. ET AL.(1991) GENOMICS10,921-26. KWIATKOWSKI,D.ET AL.(1992) GENOMICS 12,229-240. KWIATKOWSKI,D.\&GUSELLA,J.(1992) NAR20,930.
WEBER, J. PERSONAL COMMUNICATION
GDB
GDB
GDB
GDB
GDB

LOCUS	ASSAY	HET	PIC
D10S222	AFM249we5	0.72	
D10S223	AFM254wd9	0.67	
D10S224	AFM254xb1	0.67	
D10S225	AFM256y9	0.72	
D10S226	AFM260zc5	0.54	
D10S245	MFD248	0.76	0.72
D10S246	MFD228	0.44	0.42
D10S247E	FB7F11	0.85	
D10S249	AFM207wd12	0.75	
D10S254	MFD249	0.73	0.75
D10S4121	8472/3	0.95	
D10S412II	8986/7	0.86	
D10S463	SE3	0.65	
D10S464	MFD274	0.78	0.75
D10S465	MFD277	0.61	0.54
D10S466	MFD289	0.78	0.75
D10S467	MFD296	0.56	0.51
D10S468	MFD298	0.69	0.65

MIN MAX231131278
141122
197197
134
114114$117 \quad 141$129102
146118
14096
146
146128148
148WEISSENBACH,J ET AL.(1992) NATURE 359:794-801WEISSENBACH,J ET AL(1992) NATURE 359:794-801WEISSENBACH,J ET AL(1992) NATURE 359:794-801WEISSENBACH.J ET AL.(1992) NATURE 359:794-801WEISSENBACH,J ET AL(1992) NATURE 359:794-801GENOMICS 8:400-1990
GENOMICS 8:400-, 1990
KHAN, A. ET AL. (1992) NATURE GENETICS 2, 180-185.
WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
GENOMICS 8:400-, 1990
GDB
GDB
GDB
GENOMICS 8:400- , 1990
GENOMICS 8:400-, 1990
GENOMICS 8:400-, 1990
GENOMICS 8:400 , 1990
GENOMICS 8:400 . 1990
GDB
GDB
GDB
GDB
GDB
GDB
GDB
GDB
WEISSENBACH J: NATURE GENETIC, JUNE 1994

CH	LOcus	ASSAY	HET
10	D10S574	AFM269zd9	0.86
10	D10S575	AFM270xb1	0.77
10	D10S576	AFM275yg9	0.88
10	D10S577	AFM276x55	0.83
10	D10S578	AFM282ya9	0.59
10	D105579	AFM282yci	0.86
10	D105580	AFM284v5	0.75
10	D10S581	AFM287y 9	0.55
10	D105582	AFM289zd1	0.84
10	D105583	AFM285zh5	0.74
10	D10S584	AFM294wh9	0.62
10	D10S585	AFM294zd9	0.74
10	D10S586	AFM295th1	0.59
10	D105587	AFM296zg9	0.78
10	D105588	AFM29825	0.75
10	D10S589	AFM302w65	0.42
10	D105590	AFM304wh1	0.74
10	D10S591	AFM309yd9	0.72
10	D105593	AFM311yb1	0.84
10	D105594	AFM3172d9	0.77
10	D105595	AFM324xc1	0.81
10	D10S596	AFM329xa9	0.82
10	D10S597	AFM33ixa9	0.64
10	D10S599	AFM337ya5	0.78
10	D105600	AFM338ta5	0.85
10	D105601	AFM342xe9	0.73
10	D10S602	AFM343vd9	0.63
10	D10S603	AFM350wa5	0.58
10	D10S604	AFM362tb1	0.62
10	D105605	AFMa120xc5	0.63
10	D10S606	AFMa131yc5	0.82
10	D10S607	AFMa133zg5	0.64
10	D105608	C10-GT02	0.80
10	D105609	GATA2G08	0.68
10	D10S610	GATA5A02	0.46
10	D10S611	GATA3G07	0.79
10	D10S611	GATA3G07	0.80
10	D10S674	GATA6E06	0.73
10	D10S675	GATA6H05	0.62
10	D10S676	GATA7B01	0.77
10	D10S677	GGAA2F11	0.86
10	D10S681	JY4069-9	0.85
10	D10588	MFD 7	0.54
10	D10S89	MFD 28	0.80
10	D10591	MFD 29	0.67
10	D1S537	ATC3	0.62
10	GLUDP2	PCR1	0.78
10	GLUDP5	C10-GT01	0.71
10	RBP3	NA	0.79
10	RBP3-2	sJRH-1	0.90
10	RET	STCL	0.71
10	TCF8	NA	0.73
10	ZNF22	NA	0.84
11	CD3D	MFD 69	0.74
11	D11S1240	ms73	0.82
11	D11S1242	ms65	0.71
11	D11S1244	ms61	0.68
11	D11S1245	ms60	0.73
11	D11S1246	ms58	0.77
11	D11S1247	ms52	0.69
11	D11S1249	ms44	0.68
11	D11S1250	ms42	0.70
11	D11S1251	ms39	0.80
11	D11S1253	ms31	0.78
11	D11S1256	nrms1	0.91
11	D11S1257	nrms2	0.72
11	D11S1258	nrms4	0.70
11	D11S1259	nrms7	0.70
11	D11S1263	c4	0.81
11	D11S1264	rms7	0.68

PIC	MIN	MAX	REFERENCE
	124	135	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	251	269	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	172	174	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	199	213	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	160	184	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	260	276	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	91	105	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	129	155	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	114	138	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	201	219	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	182	190	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	233	249	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	124	132	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	172	186	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	136	142	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	173	193	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	241	255	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	212	232	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	126	144	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	100	108	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	185	207	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	262	274	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	206	222	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	209	215	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	175	193	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	216	232	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	233	255	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	232	256	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	177	187	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	90	110	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	216	240	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	166	178	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	166	190	GDB
	240	242	GDB
	268	272	GDB
	N/A	N/A	GDB
	151	151	GDB
	218	254	GDB
	102	122	GDB
	175	199	GDB
	197	225	GDB
	157	183	GDB
0.51	205	217	GENOMICS 13:532-536, 1992
0.71	142	156	GENOMICS 13:532-536, 1992
0.60	115	125	GENOMICS 13:532-536, 1992
	158	158	GDB
	191	203	GDB
	286	340	GOULIELMOS,G. ET AL.(1993) HMG 2,1328.
	355	387	PAPI,L. ET AL.(1992) HMG 1.450.
	274	308	HOWE, J. AM. J. HUM. GENET. 51, 1430-1442.
	N/A	N/A	GDB
	135	149	GDB
	151	175	GDB
0.69	85	99	NAR 18(13):4036, 1990
	160	160	IIZUKA, M. ET AL. (1994) GENOMICS 19, 581-584.
	170	170	IIZUKA, M. ET AL. (1994) GENOMICS 19, 581-584.
	270	270	IIZUKA, M. ET AL. (1994) GENOMICS 19, 581-584.
	180	180	IIZUKA, M. ET AL. (1994) GENOMICS 19, 581-584.
	190	190	IIZUKA, M. ET AL. (1994) GENOMICS 19, 581-584.
	200	200	IIZUKA, M. ET AL (1994) GENOMICS 19, 581-584.
	190	190	IIZUKA, M. ET AL (1994) GENOMICS 19, 581-584.
	200	200	IIZUKA, M. ET AL. (1994) GENOMICS 19, 581-584.
	150	150	IIZUKA, M. ET AL. (1994) GENOMICS 19, 581-584.
	160	160	IIZUKA, M. ET AL. (1994) GENOMICS 19, 581-584.
	200	200	IIZUKA, M. ET AL (1994) GENOMICS 19, 581-584.
	150	150	IIZUKA, M. ET AL (1994) GENOMICS 19, 581-584.
	220	220	IIZUKA, M. ET AL. (1994) GENOMICS 19, 581-584.
	270	270	IIZUKA, M. ET AL. (1994) GENOMICS 19, 581-584.
	200	200	IIZUKA, M. ET AL. (1994) GENOMICS 19, 581-584.
	500	500	IIZUKA, M. ET AL. (1994) GENOMICS 19, 581-584.

CH	LOCUS	ASSAY	HET	Ple	$\begin{aligned} & \text { SIZE } \\ & \text { MIN } \end{aligned}$	ANGE MAX	REFERENCE
11	D11S1294	UT928	0.83				VANGAITE, L. ET AL. (1994) GENOMICS 22, 231-233.
11	D11S1300	UT1004	0.75				VANGATTE, L. ET AL. (1994) GENOMICS 22, 231-233.
11	D11S1307	AFM166zel	0.63		120	138	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1308	AFM189xc1	0.50		233	239	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1309	AFM200vg 5	0.59		237	249	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1310	AFM200zf10	0.79		222	228	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1311	AFM203ve1	0.70		127	147	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1312	AFM045x2	0.35		197	233	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1313	AFM211x01	0.81		184	204	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1314	AFM212x03	0.79		209	227	-WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1315	AFM212yf12	0.57		158	162	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1316	AFM214xg7	0.81		200	208	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1317	AFM214xh6	0.63		214	228	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1318	AFM218x91	0.67		123	145	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1319	AFM234wd2	0.51		182	198	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1320	AFM234ytio	0.61		225	233	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1321	AFM238xe7	0.62		197	215	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1322	AFM248ig9	0.81		224	230	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1323	AFM248x9	0.83		201	207	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1324	AFM079zd3	0.58		110	128	WEISSENBACH J: NATURE GENETIC. JUNE 1994
11	D11S1325	AFM254zd5	0.50		80	84	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1326	AFM2552g1	0.84		247	255	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1327	AFM256vc1	0.51		248	254	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1328	AFM265was	0.83		151	165	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1329	AFM269za5	0.73		257	269	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1330	AFM270vb1	0.83		156	160	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1331	AFM277wgi	0.72		191	205	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1332	AFM281w	0.47		182	204	WEISSENBACH J: NATURE GENETIC. JUNE 1994
11	D11S1333	AFM282we5	0.84		254	274	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1334	AFM283wg1	0.79		134	150	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1335	AFM284xd9	0.65		172	183	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1336	AFM286x5	0.80		232	252	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1337	AFM289ya	0.72		279	295	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1338	AFM289yc5	0.75		255	265	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1339	AFM291yh1	0.71		120	144	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1340	AFM295xg 5	0.78		188	200	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1341	AFM295yd5	0.83		167	181	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1342	AFM296xg9	0.56		257	267	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1343	AFM296yd9	0.87		226	252	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1344	AFM298vc9	0.76		273	293	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1345	AFM302x69	0.71		232	240	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1346	AFM319was	0.64		263	281	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1347	AFM320xh1	0.81		177	203	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1348	AFM323ve1	0.46		172	175	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1349	AFM323wf	0.75		260	280	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1350	AFM323ye1	0.61		201	219	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1351	AFM3242h9	0.72		252	270	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1352	AFM329wb5	0.61		231	249	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1353	AFM331yc5	0.54		196	209	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1354	AFM338xe1	0.66		167	179	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1355	AFM344tb9	0.88		141	147	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1356	AFM344zc1	0.87		193	213	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1357	AFM344zg1	0.83		134	140	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1358	AFM345zd1	0.66		138	146	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1359	AFM347te5	0.68		210	234	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1360	AFM362tbs	0.75		103	117	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1361	AFMa131xd5	0.75		206	220	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1362	AFMa132xh9	0.56		187	207	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1363	AFMa134wh5	0.86		242	252	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1364	AFMa139yg 1	0.63		134	144	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1365	AFMa141xd1	0.79		98	124	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D11S1366	GATA3B05	0.71		241	241	GDB
11	D11S1367	GATA7A03	1.00		220	244	GDB
11	D11S1368	GATABA08	0.67		178	198	GDB
11	D11S1369	GATA5C04	0.86		179	179	GDB
11	D11S1377	MFD316	0.78	0.76	128	146	GENOMICS 8:400-1990
11	D11S1378	MFD322	0.68	0.65	149	160	GENOMICS 8:400-1990
11	D11S1383	26BH1	0.70		88	98	GDB
11	D11S1384	GATA11A02	0.76		288	300	GDB
. 11	D11S1385	GATA2A01	0.77		197	217	GDB

CH	LOCUS	ASSAY	HEI	PIC	$\begin{aligned} & \text { SIZE } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \text { ANGE } \\ & \text { MAX } \end{aligned}$	REFERENCE
11	D11S1386	ATC3C12	0.00		166	166	GDB
11	D11S1390	GATA4B05	0.64		145	165	GDB
11	D11S1391	GATA4E01	0.86		158	178	GDB
11	D11S1392	GATA6B09	0.80		200	220	GDB
11	D11S1393	GATAGC04	0.64		198	210	GDB
11	D11S1394	GATAGC11	0.81		222	238	GDB
11	D11S1395	GATA6G03	0.70		220	232	GDB
11	D11S1396	GGAA2C10	0.73		136	176	GDB
11	D11S1397	GGAT1C7	0.68		142	150	GDB
11	D11S1974	ACT2E05	0.25		116	125	GDB
11	D11S1975	GAAT1B01	0.47		104	112	GDB
11	D11S1976	GAAT2C05	0.57		172	172	GDB
11	D11S1977	GAAT2008	0.90		110	110	GDB
11	D11S1978	GATA22005	0.77		250	298	GDB
11	D11S1979	GATA45H10	0.85		246	246	GDB
11	D11S1980	GATA47F03	0.79		197	197	GDB
11	D11S1981	GATA48E02	0.83		160	160	GDB
11	D11S1982	GATA49B02	0.60		133	133	GDB
11	D11S1983	GATA5G01	0.90		208	255	GDB
11	D11S1984	GGAA17G05	0.77		166	206	GDB
11	D11S1985	GGAA5C04	0.73		234	286	GDB
11	D11S1986	GGAA7G08	0.79		176	252	GDB
11	D11S1987	GTAT1D06	0.57		185	209	GDB
11	D11S29	NA	0.83	0.77	143	163	GDB
11	D11S35	NA	0.88	0.79	152	162	LITT,M. ET AL (1990) NAR 18,5921.
11	D11S387	1H2	0.85		168	196	GDB
11	D115419	MFD 58	0.49	0.43	112	118	NAR 18(13):4039, 1990
11	D11S420	NA		0.66	188	208	LUO,X.Y. ET AL.(1990) NAR 18,5920.
11	D11S436	NA	0.68		176	188	GUO,Z. ET AL (1991) NAR 19,6981.
11	D115439	NA	0.80		160	188	HAUGE,X. ET AL.(1992) HMG 1,548.
11	D11S480	MF	0.60		189	201	GDB
11	D11S488	NA	0.87		243	295	BROWNE,D. ET AL.(1993) HMG 2,89.
11	D11S490	NA		0.72	147	167	LUO,X.Y. ET AL.(1990) NAR 18,7470.
11	D115527	NA		0.88	142	166	BROWNE,D. ET AL.(1991) NAR 19,4790.
11	D11S528	NA		0.60	73	91	HAUGE,X.Y. ET AL(1991) NAR 19,1964.
11	D115534	NA		0.74	228	244	HAUGE,X. ET AL(1991) NAR 19,4308.
11	D115554	38811	0.84		174	254	GDB
11	D115569	434	0.84		139	158	GDB
11	D115614	8 D 11	0.85		160	178	GDB
11	D115787	NA	0.79		164	182	OVERBECK,L., ET AL.(1993)HMG 2,611.
11	D115809	C43	0.91		200	232	GDB
11	D115836	MFD108	0.70	0.62	66	80	J. WEBER, PERS. COMM.
11	D115860	BS48	0.80		154	196	MCNODE, L ET AL.(1992) NAR 20,1161.
11	D115861	MIT-A136	0.70		154	154	HUMAN GENET 87:401, 1991
11	D11S862	MIT-MS7	0.83		152	152	HUMAN GENET 87:401, 1991
11	D11S863	MIT-MS20	0.65		133	133	HUMAN GENET 87:401, 1991
11	D11S865	MIT-E137	0.81		170	170	HUMAN GENET 87:401, 1991
11	D115870	MFD 90	0.60		154	160	GENOMICS 8:400- . 1990
11	D115871	MFD132	0.77	0.65	188	194	GENOMICS 8:400- . 1990
11	D11S872	MFD105	0.50		158	166	GENOMICS 8:400- . 1990
11	D11S873	MFD127	0.90		176	204	JONES,M. ET AL.(1992) HMG 1,131-33.
11	D115874	MFD161	0.75		158	170	JONES,M. ET AL(1992) HMG 1,131-33.
11	D11S875	MFD166	0.90		103	125	GENOMICS 8:400- , 1990
11	D115876	MFD212	0.89	0.88	216	242	JONES,M. ET AL(1992) HMG 1,131-33.
11	D115896	MFD216	0.74	0.70	169	183	GENOMICS 8:400- . 1990
11	D115897	MFD231	0.84	0.83	98	120	GENOMICS 8:400-, 1990
11	D115898	AFM022tel	0.38		140	156	WEISSENBACH J: NATURE GENETIC, JUNE 1994
11	D115899	AFM022th2	0.69		87	111	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
11	D115900	AFM059yc5	0.79		91	109	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
11	D11S901	AFM063yg 1	0.83		160	176	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
11	D11S902	AFM072yd3	0.81		145	163	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
11	D11S903	AFM077xe1	0.75		99	109	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
11	D11S904	AFM081za5	0.83		185	201	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
11	D115905	AFM105xb10	0.75		208	228	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
11	D115906	AFM107xc7	0.75		291	303	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
11	D115907	AFM109ya 1	0.74		163	173	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
11	D115908	AFM120xe9	0.77		141	151	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
11	D115909	AFM154x66	0.62		113	125	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
11	D115910	AFM154yh2	0.73		249	261	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
11	D115911	AFM155xh10	0.86		159	203	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801

CH	LOCUS	ASSAY	HEI
11	D11S912	AFM157xh6	0.82
11	D115913	AFM164zf12	0.00
11	D115914	AFM165yf10	0.73
11	D11S915	AFM178xf12	0.82
11	D11S916	AFM185ya1	0.74
11	D11S917	AFM198yb4	0.81
11	D11S918	AFM203vg1	0.63
11	D115919	AFM203vg7	0.81
11	D115920	AFM2072e3	0.64
11	D11S921	AFM212ma11	0.71
11	D11S922	AFM217yb10	0.94
11	D11S923	AFM218ya7	0.72
11	D11S924	AFM220xh6	0.73
11	D11S925	AFM220yb6	0.85
11	D11S926	AFM224zc7	0.74
11	D11S927	AFM225yb4	0.85
11	D11S928	AFM234wh 12	0.71
11	D115929	AFM234xc3	0.88
11	D115930	AFM238x05	0.68
11	D115931	AFM238xh10	0.74
11	D11S932	AFM240wh2	0.64
11	D11S933	AFM240ye1	0.80
11	D11S934	AFM248wf5	0.85
11	D115935	AFM254z69	0.75
11	D11S936	AFM256za	0.42
11	D11S937	AFM256zb5	0.88
11	D11S938	AFM259yc1	0.50
11	D115939	AFM267yh5	0.69
11	D115940	AFM268vd5	0.74
11	D115956	SMSH3	0.88
11	D115969	AFM205v10	0.76
11	D11S975	MFD251	0.75
11	D11S976	MFD254	0.83
11	D11S982E	NA	0.77
11	D115986	AFM255ye1	0.68
11	D115987	AFMa131ye5	0.83
11	D115988	MFD257	0.83
11	D115989	MFD282	0.00
11	D115990	MFD290	0.79
11	D11S991	MFD309	0.61
11	D11S992	MFD263	0.60
11	D11S995	591/1	0.79
11	DRD2	NA	0.00
11	FCERIB	NA	0.69
11	FGR3	PCR1.	0.82
11	GSTP1	PCR1	0.79
11	HBB	NA	0.72
11	HBE1	NA	0.75
11	HRAS1	NA	0.52
11	INT-2	NA	0.85
11	NCAM	16-F	0.89
11	PYGM(AT)	NA	0.71
11	PYGM(CA)	NA	0.89
11	TH	NA	0.78
11	THO1	NA	0.79
11	TYR	PCR6	0.58
12	CACNL1A1	NA	0.75
12	CD4	PCR1	0.79
12	D12S100	AFM220zc7	0.73
12	D12S101	AFM234tg11	0.81
12	D12S102	AFM238yb10	0.78
12	D12S1022	GAAT1D02	0.40
12	D12S1023	GATA27G11	0.67
12	D12S1024	GATA30D01	0.54
12	D12S1025	GATA31D06	0.83
12	D12S1026	GATA31D11	0.79
12	D12S1027	GATA31F05	0.79
12	D12S1028	GATA32A08	1.00
12	D12S1029	GATA47G02	0.60
12	D12S103	AFM249v9	0.37

P1C	MIN	MAX	REFERENCE
	101	123	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	221	227	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	275	285	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	254	274	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	135	153	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	143	157	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	181	199	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	245	261	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	243	253	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	243	255	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	88	138	WEISSENBACH,J ET AL(1992) NATURE 359:794-801
	201	225	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	245	253	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	173	199	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	135	145	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	129	149	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	277	289	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	218	240	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	225	237	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	251	267	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	150	164	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	247	263	WEISSENBACH,J ET AL(1992) NATURE 359:794-801
	180	206	WEISSENBACH,J ET AL(1992) NATURE 359:794-801
	196	208	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	250	256	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	230	264	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	207	219	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	240	248	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	163	185	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	247	303	GDB
	141	149	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
0.72	216	242	GENOMICS 8:400-. 1990
0.81	117	139	GENOMICS 8:400-1990
	112	128	XAIO, H. ET AL. (1993) HMG 2, 1081.
	137	169	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	82	118	WEISSENBACH J: NATURE GENETIC, JUNE 1994
0.81	112	138	GENOMICS 8:400- , 1990
	144	156	GENOMICS 8:400- 1990
0.76	73	89	GENOMICS 8:400-1990
0.58	192	206	GENOMICS 8:400-1990
0.57	159	175	GENOMICS 8:400-, 1990
	123	139	BROWNE, D. ET AL.(1993) HMG 2,1332.
0.76	80	86	HAUGE,X.Y. ET AL(1991) GENOMICS 27,527-30.
	112	128	GDB
	161	177	POLYMEROPOULOS (1990) NAR 18, 7468.
	190	235	HARADA, S. (1994) HUM. GENET. 93, 223-224.
	141	149	HAUGE,X.Y. ET AL.(1991) NAR 19,1964.
	136	144	ROGAEV,E. ET AL.(1992) HMG 1,285.
	106	118	TANCI,P. ET AL.(1992)NAR 20,1157.
	161	177	POLYMEROPOULOS,M. ET AL.(1990) NAR 18,7468.
	94	138	TELATAR, M. ET AL. (1994) HMG 3, 842.
0.71	367	615	IN PREPARATION
0.89	162	188	IWASAKI,H. ET AL.(1992) GENOMICS13,7-15.
0.75	244	260	POLYMEROPOULOS,M. ET AL.(1991) NAR 19,3753.
	183	207	FEENER,ET AL.(1991) AM.J.HUM.GENET. 48,621-627.
0.52	286	298	GDB
0.73	210	214	POWERS,P. ET AL(1992) GENOMICS 14,206-207.
	85	115	GDB
	137	153	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	194	231	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	241	259	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	169	193	GDB
	153	169	GDB
	147	147	GDB
	186	186	GDB
	217	217	GDB
	244	244	GDB
	140	140	GDB
	134	134	GDB
	267	273	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801

CH	LOCUS	ASSAY	HEI
12	D12S1030	GATA6H09	0.57
12	D12S104	AFM259zco	0.52
12	D12S105	AFM262xb9	0.72
12	D12S106	AFM262zd9	0.43
12	D12S1074	GGAA2G02	0.32
12	D12S1075	GGAT1A12	0.45
12	D12S129	NA	1.00
12	D12S137	NA	0.76
12	D12S161	NA	0.90
12	D12S172	NA	0.85
12	D12S183	NA	0.80
12	D12S188	NA	0.70
12	D12S191	NA	0.80
12	D125218	NA	0.80
12	D12S221	NA	0.82
12	D12S234	NA	0.85
12	D12S262	NA	0.76
12	D125269	MFD259	0.80
12	D12S270	MFD305	0.71
12	D12S271	GT22	0.65
12	D125305	AFM184y2	0.58
12	D125306	AFM198wc3	0.87
12	D12S308	AFM198yf6	0.78
12	D12S309	AFM199wb10	0.75
12	D12S310	AFM205xg 3	0.61
12	D12S311	AFM206yct	0.72
12	D12S312	AFM207va9	0.64
12	D12S313	AFM207x 2	0.80
12	D12S314	AFM207x8	0.78
12	D12S316	AFM210ycs	0.84
12	D12S318	AFM214xc9	0.82
12	D12S319	AFM217xd10	0.82
12	D12S320	AFM073wh7	0.72
12	D12S321	AFM220z44	0.57
12	D12S322	AFM224×12	0.39
12	D12S323	AFM224yf10	0.70
12	D12S324	AFM234tb10	0.84
12	D12S325	AFM234tf12	0.37
12	D12S326	AFM238wa1	0.47
12.	D12S327	AFM248tg1	0.73
12	D12S328	AFM248xc5	0.46
12	D12S329	AFM249xh9	0.72
12	D12S330	AFM086xd7	0.69
12	D12S331	AFM092wd11	0.68
12	D12S332	AFM263zd1	0.65
12	D12S333	AFM265zb1	0.62
12	D12S334	AFM269ye1	0.66
12	D12S335	AFM273vg9	0.64
12	D12S336	AFM2732c9	0.45
12	D12S337	AFM283wf9	0.80
12	D12S338	AFM291wd9	0.89
12	D12S339	AFM294wc5	0.69
12	D12S340	AFM294xg1	0.80
12	D12S341	AFM294yd9	0.52
12	D12S342	AFM294ze9	0.83
12	D12S343	AFM295ye9	0.73
12	D12S344	AFM296xd9	0.73
12	D12S345	AFM290yg 5	0.42
12	D12S346	AFM298xe5	0.62
12	D12S347	AFM298zb1	0.51
12	D12S348	AFM299ze5	0.77
12	D12S349	AFM299zd5	0.76
12	D12S350	AFM302wb9	0.76
12	D12S351	AFM302wd9	0.67
12	D12S352	AFM303xd9	0.67
12	D12S353	AFM304wg 5	0.65
12	D12S354	AFM304wh5	0.50
12	D12S355	AFM309xh1	0.65
12	D12S356	AFM309z19	0.77
12	D12S357	AFM310vd5	0.67

ASSAY	HEI	PlC
AFM320xb5	0.79	
AFM329zh9	0.82	
AFM330yd5	0.79	
AFM331th	0.80	
AFM336y9	0.33	
AFM3372g5	0.84	
AFM345wel	0.57	
AFM345ze5	0.72	
AFM351tb9	0.61	
AFMa123xal	0.65	
AFMa128yd5	0.67	
AFMa142z-5	0.65	
AL4	0.84	
GATA4H03	0.69	
GATA6C01	0.82	
GATA7F09	0.91	
GATA3F02	0.91	
GATA5F06	0.75	
GATA4A06	0.93	
GATA5H03	0.68	
GATA4B09	0.70	
MFD331	0.82	0.79
MFD353	0.73	0.68
M758B6-1	0.70	
M758B6-21	0.80	
GATA11B02	0.82	
GATA11H08	0.88	
GATA13D05	0.75	
GATA15A03	0.69	
GATA4H01	0.59	
GATA6G11	0.00	
GATABAO9	0.93	
GGAT2G06	0.62	
MFD 84	0.72	0.71
MFD 73	0.61	0.70
MFD75	0.81	0.71
MFD109	0.77	0.75
MFD114	0.76	0.69
MFD129	0.92	0.82
MFD133	0.72	0.66
MFD155	0.64	0.60
MIT-G117	0.50	
MIT-MS6	0.56	
MIT-MS54	0.72	
MIT-MS159	0.78	
MIT-MS263	0.83	

SIZE ANGE

12
12
2
D12S359 D12S360 D12S361 D12S362 D12S363 D12S364 D12S365 D12S366 D12S367 D12S368 D12S369 D12S371 D12S372 D12S373 D12S374 D12S375 D12S376 D12S377 D12S378 D12S379 D12S385 D12S386 D12S388 D12S389 D12S390 D12S391 D12S392 D12S393 D12S395 D12S396 D12S397 D12S398 D12S43 D12S58 D12S59 D12S60 D12S61 D12S62 D12S63 D12S64 D12S68 D12S69 D12S70 D12S71 D12S72 D12S75 D12S755E D12S76 D12S77 D12S78 D12S79 D12S80 D12S81 D12S82 D12S83 D12S84 D12S85 D12S86 D12S87 D12S88 D12S89 D12S90 D12S91 D12S92 D12S93 D12S94 D12S95 D12S96 D12S97
2
(2)
SIZE ANG
PIC
IGF1
PAHPLA2

ASSAY	HET	PIC
AFM211wb6	0.61	
AFM217xa7	0.84	
MFD 92	0.75	0.71
NA	0.67	
MFD 1	0.54	0.53
NA	0.67	
PCR9	0.80	
NA	0.73	
NA	0.77	
NA	0.73	0.78
pY21/1	0.83	
MIT-MS34	0.82	
Utsw 1312	0.73	0.67
Utsw 1310	0.72	0.74
Utsw 1353	0.81	0.76
Utsw 1305	0.73	0.74
Utsw 1334	0.87	0.80
MFD179	0.50	
Utsw 1334	0.72	0.67
Utsw1303	0.63	
1341	0.61	
NA	0.90	
NA	0.88	
NA	0.85	
NA	0.71	
NA	0.84	
ca006	0.83	
NA.	0.82	
NA	0.82	
NA	0.80	
ca010	0.72	
ca011	0.69	
cal2	0.68	
NA	0.59	
CU13	0.60	
NA	0.52	
Utsw1348	0.72	0.76
NA	0.90	

SIZE	ANGE	
MIN	MAX	REFERENCE
228	238	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
208	232	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
115	129	J. WEBER, ET AL, GENOMICS, IN PRESS
122	134	LINARES-RUIZ,A.(1993) HMG 2,1508.
176	196	AM J HUMAN GENET, 44:388-396, 1989
139	151	GDB
229	257	GDB
122	143	POLYMEROPOULOS,M. ET AL(1991) NAR 19,1718.
176	190	GDB
138	162	- KIMPTON,C. ET AL.(1992) HMG 1,287.
193	217	BROWNE, D. \& LITT, M. (1994) HMG 3, 842
169	169	HUMAN GENET 87:401, 1991
187	201	BOWCOCKA. ET AL.(1993) GENOMICS 15,376-386.
124	140	BOWCOCK,A. ET AL.(1993) GENOMICS 15,376-386.
112	136	BOWCOCK,A. ET AL.(1993) GENOMICS 15,376-386.
160	178	BOWCOCK,A. ET AL.(1993) GENOMICS 15,376-386.
85	111	BOWCOCK,A. ET AL(1993) GENOMICS 15,376-386.
184	192	GENOMICS 8:400-1990
129	155	BOWCOCKA. ET AL.(1993) GENOMICS 15,376-386.
100	112	BOWCOCK. ${ }^{\text {a }}$. AL AL.(1993) GENOMICS 15,376-386.
130	142	GD8
144	178	GENOMICS 8:400- 1990
414	434	GENOMICS 8:400- 1990
165	189	PHILLIPS,H. ET AL(1991)NAR 19,6664.
156	180	PETRUKHIN,K. ET AL. (1993) GENOMICS15,76-85.
141	163	GENOMICS 8:400-1990
130	187	PHILLIPS,H. ET AL(1991)NAR 19,6664.
168	188	GENOMICS 8:400-1990
168	184	GENOMICS 8:400 , 1990
124	152	GENOMICS 8:400-1990
113	135	PHILLIPS,H. ET AL(1991)NAR 19,6664.
102	110	PHILLIPS,H. ET AL(1991)NAR 19,6664.
127	143	PHILLIPS,H. ET AL(1991)NAR 19,6664.
120	138	GENOMICS 8:400-1990
115	131	GDB
163	171	PHILLIPS,H. ET AL(1991)NAR 19,6664.
183	199	BOWCOCK,A. ET AL.(1993) GENOMICS 15,376-386.
93	107	GENOMICS 8:400-1990
123	139	GENOMICS 8:400-1990
133	143	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
212	236	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
243	277	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
204	218	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
272	286	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
250	264	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
99	113	WEISSENBACH,J ET AL.(1992) NATURE 359;794-801
169	203	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
229	241	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
88	100	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
182	202	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
198	204	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
208	219	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
183	195	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
115	125	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
184	192	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
173	197	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
183	189	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
113	137	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
227	241	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
131	141	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
166	178	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
175	199	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
101	113	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
211	227	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
88	124	HONG,H. ET AL.(1993) HMG 2,86.
129	149	HUDSON,T. ET AL(1992) GENOMICS 13,622-29.
97	142	HONG,H. ET AL.(1993) HMG 2,337.
160	174	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
187	195	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
117	127	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801

PIC	SIZE	ANGE	REFERENCE
	MIN	MAX	
	191	203	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	223	243	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
0.77	150	168	GENOMICS 8:400-, 1990
	208	224	SAKSOVA, L. ET AL. (1993) HMG 2, 1082.
0.73	108	126	GENOMICS 8:400- , 1990
0.72	89	109	GENOMICS 8:400- . 1990
	212	212	GDB
	139	155	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	158	173	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	166	172	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	285	303	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	145	165	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	103	117	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	104	132	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	125	135	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	148	162	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	296	312	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	116	140	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	79	99	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	120	142	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	131	143	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	235	259	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	208	216	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	236	242	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	203	219	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	171	173	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	195	215	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	241	257	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	226	256	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	170	176	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	235	241	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	128	155	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	197	227	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	92	106	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	175	195	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	139	153	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	224	228	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	260	276	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	176	194	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	241	253	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	201	207	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	92	96	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	147	147	GDB
0.79	165	185	GDB
0.65	142	162	GDB
0.82	148	170	GDB
0.75	126	138	GDB
	175	199	GDB
	283	283	GDB
	186	200	GDB
	265	283	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	174	190	PHILIPS,H. ET AL(1991)NAR 19,6664.
0.67	67	79	NAR 18(15):4638, 1990
	315	315	GDB
	221	221	GDB
	323	323	GDB
	192	192	GDB
	128	128	GDB
	158	170	GDB
	144	156	GDB
	245	277	GDB
	999	999	BYTH,B \& COX,D (1993) HMG 2, 1085.
	141	173	GDB
	248	274	GDB
	183	203	- IIZUKA, M. ET AL. (1993) HMG 2, 1979.
	215	237	IIZUKA, M. ET AL. (1993) HMG 2, 1979.
	164	176	IIZUKA, M. ET AL. (1993) HMG 2, 1979.
	157	179	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	298	318	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	247	259	WEISSENBACH J: NATURE GENETIC, JUNE 1994

CH	LOCUS	ASSAY	HET	PIC	$\begin{gathered} \text { SIZE } \\ \text { MIN } \end{gathered}$	$\begin{aligned} & \text { ANGE } \\ & \text { MAX } \end{aligned}$	REFERENCE
14	D14S253	AFM212ze3	0.57		141	151	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S254	AFM214x8	0.51		123	159	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S255	AFM220zh4	0.61		197	207	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S256	AFM224x64	0.27		134	156	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S257	AFM224yb8	0.68		174	194	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S258	AFM224才12	0.21		170	182	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S259	AFM225yb10	0.56		252	270	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S260	AFM238wo 7	0.59		188	202	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S261	AFM238yd6	0.65		169	199	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S262	AFM240ve5	0.83		196	206	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S263	AFM254xa9	0.66		148	158	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S264	AFM084ya1	0.73		216	234	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S265	AFM136yb4	0.26		148	168	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S266	AFM150xa 7	0.81		132	138	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S267	AFM263wh9	0.69		193	225	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S268	AFM265vt9	0.73		91	128	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S269	AFM267zd5	0.57		213	229	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S270	AFM270zh1	0.49		214	224	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S271	AFM277xe9	0.69		226	246	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S272	AFM281wg1	0.76		224	232	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S273	AFM283va9	0.59		179	199	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S274	AFM288vg1	0.63		114	134	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S275	AFM291za9	0.67		195	205	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S276	AFM292wal	0.70		86	98	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S277.	AFM295zd5	0.76		140	158	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S278	AFM296zd5	0.51		150	158	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S279	AFM301wh9	0.62		196	212	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S280	AFM304ya	0.75		229	241	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S281	AFM309xh5	0.75		173	181	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S282	AFM311wd1	0.64		164	174	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S283	AFM312xh1	0.82		125	153	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S284	AFM318th1	0.79		156	180	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S285	AFM319u4	0.31		171	191	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S286	AFM324tb1	0.81		157	195	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S287	AFM324va9	0.79		240	254	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S288	AFM328yc5	0.82		189	209	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S289	AFM330za9	0.78		192	206	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S290	AFM343ze5	0.81		233	253	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S291	AFMa120xc1	0.68		210	216	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S292	AFMa120xg 5	0.40		110	118	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S293	AFMa143x65	0.54		153	165	WEISSENBACH J: NATURE GENETIC, JUNE 1994
14	D14S297	GATA5H04	0.68		99	99	GDB
14	D14S298	GATA2B03	0.62		201	201	GDB
14	D14S299	wg1cs	0.86		294	318	ARMOUR, J. ET AL (1994) HMG 3, 599-605.
14	D14S301	GATA10H04	0.75		265	277	GDB
14	D14S302	GATA13B06	0.62		178	182	GDB
14	D14S304	GGAT2D06			249	249	GDB
14	D14S306	GATA4B04	0.85		190	210	GDB
14	D14S34	MFD 42	0.59	0.59	107	117	NAR 18(15):4640, 1990
14	D14S42	NA		0.65	115	133	JORDAN,S.A.ET AL(1991)NAR 19,1171.
14	D14S43	NA		0.72	152	190	SHARMA,V. ET AL.(1992) NAR 19,1722.
14	D14S45	NA	0.79	0.74	79	95	LUTY, J.\& LITT,M. (1991) NAR 19,4308.
14	D14S47	MFD 86	0.70	0.58.	75	89	GENOMICS 13:532-536, 1992
14	D14S48	MFD101	0.82	$0.73{ }^{\circ}$	259	277	GENOMICS 14:209-219, 1992
14	D14S49	MFD119	0.81	0.84	168	179	GENOMICS 14:209-219, 1992
14	D14550	MFD130	0.77	0.73	166	180	GENOMICS 14:209-219, 1992
14	D14S51	MFD165	0.77	0.80	131	149	GENOMICS 14:209-219, 1992
14	D14552	MFD167	0.68	0.58	79	99	GENOMICS 14:209-219, 1992
14	D14553	MFD190	0.71	0.68	135	161	GENOMICS 14:209-219, 1992
14	D14S54	MFD192	0.77	0.72	254	258	GENOMICS 14:209-219, 1992
14	D14S55	MFD198	0.48	0.51	123	129	GENOMICS 14:209-219, 1992
14	D14S57	MIT-MS16	0.63		135	151	HUMAN GENET 87:401, 1991
14	D14S579	ATA3B06	0.73		292	316	GDB
14	D14558	MIT-MS162	0.63		205	205	HUMAN GENET 87:401, 1991
14	D14S580	ATA4B10	0.45		208	232	GDB
14	D14S581	GAAT1B03	0.50		191	199	GDB
14	D14S582	GATA29G12	0.62		204	204	GDB
14	D14S583	GATA46A06	0.92		265	265	GDB
14	D14S584	GATA48E09	0.69		284	284	GDB
14	D14S585	GATA49B10	0.57		247	247	GDB

CH	LOCUS	ASSAY	HET
14	D14S586	GATA51F02	0.58
14	D14S587	GGAA10C09	0.94
14	D14S588	GGAA4A12	0.69
14	D14S59	MIT-MH90	0.88
14	D14S61	AFM025tc9	0.81
14	D14S62	AFM027× 3	67.00
14	D14S63	AFM058yh2	0.77
14	D14S64	AFM079ze5	0.77
14	D14S65	AFM093yg5	0.80
14	D14S66	AFM109ya3	0.67
14	D14S67	AFM137xh12	0.00
14	D14S68	AFM164tb12	0.89
14	D14S69	AFM164×f10	0.70
14	D14S70	AFM191ve1	0.77
14	D14S71	AFM197xf12	0.75
14	D14S72	AFM199zf4	0.83
14	D14S73	AFM203zal1	0.63
14	D14S74	AFM210zh4	0.80
14	D14S75	AFM214yg5	0.77
14	D14S76	AFM214zg3	0.70
14	D14S77	AFM2182h4	0.94
14	D14S78	AFM234wo5	0.68
14	D14S79	AFM240zd4	0.67
14	D14S80	AFM242xa9	0.84
14	D14S81	AFM260xb1	0.84
14	D14S99E	NA	0.75
14	MYH6	NA	0.81
14	MYH7	NA	0.82
14	P1	NA	0.65
14	P1-5	NA	0.90
14	PCl	NA	0.80
14	PCI-II	NA	0.80
14	Pl-1	NA	0.83
14	SSTR1	NA	0.84
14	TCRA	NA	0.77
14	TCRD	NA	0.00
15	ACTC	NA	0.41
15	ASIPWS	NA	0.74
15	CYP19	NA	0.91
15	D15S100	MIT-MS164	0.79
15	D15S101	MIT-MS178	0.83
15	D15S102	MIT-N130	0.85
15	D15S103	MIT-G113	0.58
15	D15S104	MIT-M131	0.83
15	D15S106	MFD 81	0.24
15	D15S107	MFD 87	0.77
15	D15S108	MFD102	0.52
15	D15S11	NA	0.74
15	D15S111	Utws 1513	0.75
15	D15S112	Utsw 1547	0.70
15	D15S113	NA	0.73
15	D15S114	AFM019tcs	0.71
15	D15S115	AFM029yg1	0.55
15	D15S116	AFM07827	0.84
15	D15S117	AFM098yg 1	0.79
15	D15S118	AFM112xa1	0.76
15	D15S119	AFM150x4	0.73
15	D15S120	AFM164zc9	0.75
15	D15S121	AFM189yc1	0.67
15	D15S122	AFM200wb4	0.79
15	D15S123	AFM205ye1	0.81
15	D15S124	AFM207xa3	0.35
15	D15S125	AFM214xd10	0.80
15	D15S126	AFM218yf12	0.83
15	D15S127	AFM224xe11	0.87
15	D15S128	AFM273yf9	0.79
15	D15S129	AFM-Z1280	0.84
15	D15S130	AFM072yb11	0.71
15	D15S131	AFM262xb1	0.84
15	D15S132	AFM265x9	76

PIC	MIN	MAX	REFERENCE
	214	214	GDB
	263	263	GDB
	117	141	GDB
	99	111	HUMAN GENET 87:401, 1991
	197	227	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	118	127	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	199	217	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	126	136	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	125	149	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	186	194	WEISSENBACH,J ET AL(1992) NATURE 359:794-801
	133	167	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	148	203	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	205	213	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	212	220	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	191	211	WEISSENBACH,J ET AL(1992) NATURE 359:794-801
	257	273	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	99	119	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	291	313	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	184	202	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	167	207	WEISSENBACH,J ET AL(1992) NATURE 359:794-801
	207	247	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	211	233	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	81	89	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	132	160	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	175	209	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	142	168	GDB
0.79	108	132	FOUGEROUSSE,F. ET AL.(1992) HMG 1,64.
0.80	130	158	WARLICK,C. ET AL.(1992) HMG 1, 136.
	101	113	ROGEAV,E.\&KERYANOV.S.(1992) HMG 1,657.
	155	189	GDB
	115	139	GDB
	128	156	GDB
	225	239	GDB
	185	211	GDB
	186	200	CORNELIS,F.ET AL.(1992) GENOMICS13,820-825.
0.74	118	128	JORDAN,S.A.ET AL(1991)NAR 19,1959.
	219	239	WATKINS,C. ET AL(1991) NAR 19,6980.
0.70	243	263	MUTIRANGURAA. ET AL(1992)HMG 1,139.
	168	192	POLYMEROPOULOS,M. ET AL.(1991) NAR 19,195.
	183	183	HUMAN GENET 87:401. 1991
	104	104	HUMAN GENET 87:401. 1991
	217	217	HUMAN GENET 87:401، 1991
	233	233	HUMAN GENET 87:401, 1991
	170	170	HUMAN GENET 87:401, 1991
0.21	101	109	GENOMICS 8:400-1990
0.63	132	146	JONES,M. ET AL.(1992) HMG 1,131-33.
0.52	185	205	JONES,M. ET AL.(1992) HMG 1,131-33.
	243	263	GDB
	143	157	BECKMAN, J. ET AL. (1993) HMG 2, 2019-2030.
	133	151	BECKMAN, J. ET AL. (1993) HMG 2, 2019-2030.
	130	140	SUBMITTED
	177	187	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	172	200	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	164	184	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	132	150	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	218	230	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	185	197	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	150	174	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	258	264	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	143	159	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	191	207	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	99	107	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	157	169	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	188	218	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	- 114	147	- WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	193	209	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	208	224	GDB
	218	232	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	238	274	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	69	83	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801

ASSAY	HEI	PIC
AFM016yg 1	0.80	
AFM019tf6	0.85	
AFM046xc9	0.78	
AFM135yc1	0.72	
AFM182yb4	0.73	
AFM200zg11	0.78	
AFM205ye3	0.68	
AFM2112c1	0.74	
AFM214xg11	0.54	
AFM2172g1	0.23	
AFM234vf12	0.75	
AFM234zd6	0.81	
AFM248yh1	0.66	
AFM261xb 9	0.82	
AFM248ve5	0.80	
UTSW1591	0.77	
Utsw 1560	0.69	
MH22	0.68	
MFD288	0.78	0.74
AFM200ve9	0.71	
AFM234ye11	0.78	
AFM107x97	0.73	
AFM265vb1	0.75	
AFM281yh1	0.71	
AFM282wg5	0.66	
AFM286z65	0.87	
AFM290ya 5	0.47	
AFM291zh5	0.81	
AFM299y'9	0.68	
AFM309vg9	0.78	
AFM310we1	0.82	
AFM312wd1	0.56	
AFM320vd9	0.64	
AFM323yd9	0.67	
AFM331vb5	0.71	
AFM350vh1	0.75	
AFMa123xc5	0.76	
AFMa132yb1	0.73	
AFMa143xc5	0.77	
GATA8B06	0.91	
MFD209	0.48	0.46
MFD351	0.60	0.52
M770F4-12	0.77	
738	0.78	
GATA8C05	0.89	
GTAT182	0.44	
wg1d1	0.78	
M770F4-12	0.85	
CYP11A	0.63	
ATA3E11	0.53	
GATA27A03	0.87	
GATA50G06	0.80	
GGAA5F05	0.73	
MFD 49	0.87	0.85
MX8	0.79	
G127	0.83	
MIT-MS14	0.75	
MIT-MS112	0.81	
MIT-MS149	0.50	
NA	0.75	0.70
NA	0.78	
NA	0.82	0.83
NA	0.44	0.35
NA	0.57	
MFD 12	0.57	- 0.43
MFD 24.	0.67	0.66
MFD 23	0.73	0.75
MFD 62	0.59	0.54
MFD 65	0.47	0.45
NA	0.63	

PIC
SIZE ANGE
MIN MAX REFERENCE
WEISSENBACH J: NATURE GENETIC, JUNE 1994 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH J: NATURE GENETIC, JUNE 1994 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 GDB
BECKMAN, J. ET AL. (1993) HMG 2, 2019-2030.
BECKMAN, J. ET AL. (1993) HMG 2, 2019-2030. GENOMICS 8:400- , 1990
WEISSENBACH J: NATURE GENETIC, JUNE 1994 GDB
GENOMICS 8:400-. 1990
GENOMICS 8:400- . 1990
GDB
GDB
GDB
GDB
ARMOUR, J. ET AL. (1994) HMG 3, 599-605.
GDB
BECKMAN, J. ET AL. (1993) HMG 2, 2019-2030.
GDB
GDB
GDB
GDB
NAR 18(15):4640, 1990
BECKMAN, J. ET AL. (1993) HMG 2, 2019-2030.
BECKMAN, J. ET AL. (1993) HMG 2, 2019-2030.
HUMAN GENET 87:401, 1991
HUMAN GENET 87:401, 1991
HUMAN GENET 87:401, 1991
POLYMEROPOULOS,M. ET.AL.(1991) NAR 19,4018.
GLATT,K. ET AL.(1992) HMG 1,348.
MUTIRANGURA,A. ET AL(1992)HMG 1,67.
MELONI,R. ET AL(1992)NAR 20,1427.
PHILLIPS,H. ET AL(1991)NAR 19,6964.
NAR 18(13):4036, 1990
NAR 18(13):4034, 1990
NAR 18(13):4036, 1990
NAR 18(13):4036, 1990
NAR 18(13):4036, 1990
HARRIS,P. ET AL.(1991) LANCET 338,1484-86.

CH	LOCUS	ASSAY	HET
16	D16S285	NA	0.82
16	D16S287	NA	0.78
16	D16S288	NA	0.73
16	D16S289	NA	0.77
16	D16S291	NA	0.79
16	D16S292	NA	0.74
16	D16S295	16AC62F3	0.66
16	D16S298	NA	0.79
16	D16S299	NA	0.72
16	D16S305	NA	0.82
16	D16S308	NA'	0.77
16	D16S310	MIT-MH20	0.67
16	D16S312	MIT-1103	0.75
16	D16S313	MIT-MS79	0.57
16	D16S320	NA	0.86
16	D16S347	16AC12F8	0.76
16	D16S363	A6AC51G1	0.78
16	D16S389	16AC10B3	0.77
16	D16S390	16AC10F5	0.80
16	D16S392	16AC305E9	0.78
16	D16S393	16AC323H4	0.87
16	D16S395	16AC33G11	0.69
16	D16S397	MFD 98	0.70
16	D16S398	MFD168	0.90
16	D16S400	AFM024xg1	0.62
16	D16S401	AFM025tg9	0.00
16	D16S402	AFM031xa5	0.87
16	D16S403	AFM049xd2	0.86
16	D165404	AFM056yt6	0.82
16	D16S405	AFM070ya1	0.78
16	D16S406	AFM079yh3	0.82
16	D16S407	AFM113xa	0.86
16	D16S408	AFM137x88	0.69
16	D16S409	AFM161xal	0.71
16	D16S410	AFM165yb6	0.57
16	D16S411	AFM185xa3	0.79
16	D16S412	AFM191wb10	0.76
16	D16S413	AFM196xg1	0.85
16	D16S414	AFM205za11	0.61
16	D16S415	AFM205ze5	0.74
16	D16S416	AFM210yg 3	0.43
16	D16S417	AFM220xb10	0.73
16	D16S418	AFM225xd2	0.83
16	D16S419	AFM225-12	0.76
16	D16S420	AFM238×62	0.82
16	D16S421	AFM240yh6	0.57
16	D16S422	AFM249xc5	0.80
16	D16S423	AFM249yc5	0.75
16	D16S446	MFD272	0.31
16	D16S449	16AC51A4	0.85
16	D16S451	16AC69F12	0.84
16	D16S452	16AC33A4	0.68
16	D16S454	16AC45G5	0.75
16	D16S468	C28	0.90
16	D16S494	AFM193xh10	0.74
16	D16S495	AFM199zb10	0.54
16	D16S496	AFM214zg5	0.37
16	D16S497	AFM218yal1	0.68
16	D16S498	AFM218yb10	0.86
16	D16S499	AFM259x69	0.80
16	D16S500	AFM112xg5	0.56
16	D165501	AFM113xa9	0.70
16	D16S502	AFM266xg9	0.79
16	D16S503	AFM274ya	0.80
16	D16S504	AFM292xh5	0.73
16	D16S505	AFM296tb1	0.74
16	D16S506	AFM297yg	0.75
16	D16S507	AFM301269	0.74
16	D16S508	AFM304xd1	0.80
16	D16S509	AFM308y 9	0.84

CH	LOCUS	ASSAY	HET
16	D16S510	AFM312vd5	0.24
16	D16S511	AFM312xd1	0.82
16	D16S512	AFM320wf1	0.76
16	D16S513	AFM321th5	0.74
16	D16S514	AFM330vd9	0.71
16	D16S515	AFM340ye5	0.82
16	D16S516	AFM350vd1	0.60
16	D16S517	AFMa132we9	0.50
16	D16S518	AFMa132x99	0.66
16	D16S519	AFMa133x5	0.77
16	D16S520	AFMa135xg 5	0.87
16	D16S521	AFMa139wg1	0.58
16	D16S522	16AC8.21	0.69
16	D16S523	16AC13H1	0.68
16	D16S524	16AC40A7	0.76
16	D16S525	16AC308G7	0.91
16	D16S531	$16 A C 8.15$	0.86
16	D16S533	NA	0.78
16	D165539	GATA11C06	0.60
16	D16S540	GATA7B02	0.68
16	D16S541	GATA7E02	0.77
16	D16S543	wg12	0.83
16	D16S663	CW2	0.83
16	D16S665	SM6	0.69
16	D16S668	MFD180	0.70
16	D165747	ATA2D09	0.42
16	D16S748	ATA3A07	0.80
16	D16S749	GAAT1E9	0.69
16	D165750	GAAT2B10	0.47
16	D16S751	GATA49809	1.00
16	D16S752	GATA51G03	0.92
16	D16S753	GGAA3G05	0.88
16	HBAP1	NA	0.76
16	SPN	NA	0.96
17	CACNLB1	PCR2	0.82
17	CHRNBI	c15F4	0.88
17	D17S107	VAW134	0.72
17	D17S113	NA	0.64
17	D17S122	PRM11-GT	0.74
17	D17S1288	ATA1H07	0.93
17	D17S1289	GATA41E09	0.58
17	D17S1290	GATA49C09	0.92
17	D17S1291	GCT1E1	0.31
17	D17S1292	GCT8D06	0.62
17	D17S1293	GGAA7D11	0.88
17	D17S1294	GGAA9D03	0.70
17	D17S250	MFD 15	0.91
17	D17S25011	MFD 46	0.94
17	D17S261	MFD 41	0.43
17	D17S379	NA	0.74
17	D17S513	NA	0.89
17	D17S518	NA	0.76
17	D17S520	MFD144	0.77
17	D17S525	CCl17-453	0.72
17	D17S559	CCl17-713	0.70
17	D17S578	MFD152	0.63
17	D17S579	MFD188	0.87
17	D17S581	MIT-MS52	0.75
17	D17S582	MIT-MS105	0.63
17	D17S583	MIT-N127	0.54
17	D17S584	MIT-MS246	0.52
17	D17S588	42D6	0.85
17	D175740	2KZ14-B4	0.77
17	D17S776	MFD191	0.40
17	D17S783	AFM026vh7	0.71
17	D175784	AFM044xg 3	0.79
17	D17S785	AFM049xe1	0.84
17	D175786	AFM051xd10	0.77
17	D175787	AFM095tc5	0.82
17	D175788	AFM095zd19	. 70

SIZE	ANGE
MIN	MAX
271	287
182	222
201	211
244	274
117	129
222	244
164	176
257	277
272	290
135	157
181	197
156	172
103	119
77	87
143	169
143	175
116	154
199	215
148	172
232	248
144	164
280	502
113	129
86	140
117	127
270	270
187	214
138	150
109	117
223	223
101	276
252	276
95	107
145	185
81	121
165	165
234	246
146	160
157	167
160	216
148	148
199	199
147	147
96	96
262	290
248	272
151	169
144	160
157	171
342	362
183	203
88	100
130	144
101	107
110	135
148	174
111	133
155	155
123	123
178	178
139	139
154	174
103	151
111	129
241	255
226	238
181	207
135	157
138	166
188	198

REFERENCE

WEISSENBACH J: NATURE GENETIC, JUNE 1994 WEISSENBACH J: NATURE GENETIC, JUNE 1994
GDB
GDB
GDB
GDB
GDB
GDB
GDB
GDB
GDB
ARMOUR, J. ET AL. (1994) HMG 3, 599-605.
PERAL, B. ET AL (1994) AM. J. HUM. GENET. 54, 899-908.
PERAL, B. ET AL (1994) AM. J. HUM. GENET. 54, 899-908.
AM J HUM GEN 44:388-396, 1989
GDB
GDB
GDB
GDB
GDB
GDB
GDB
FOUGEROUSSE,F. ET AL.(1992) NAR 20,1165. ROGEAV.E.\&KERYANOV,S.(1992) HMG 1,657.
GDB
GUZZETTA,V. ET AL.(1992) GENOMICS13,551-559.
BARKER, D. ET AL. (1993) HMG 2, 1086.
BARKER,D. ET AL.(1992) NAR 20,923.
HARRIS,P. ET AL,(1991) LANCET 338,1484-86.
GDB
GDB
GDB
GDB
GDB
GDB
GDB
NAR 18(8):2200, 1990
GENOMICS 8:400- , 1990
NAR 18(8):2200, 1990
CARROZZO,R.\& LEDBETTER,D.(1993) HMG2,615.
OLIPHANT,A. ET AL(1991) NAR 19,4794.
COUCH,F. ET AL.(1991) NAR 19,5093.
IN PREPARATION
STACK, M. ET AL (1994) HMG 3, 1443.
STACK, M. ET AL. (1994) HMG 3, 1443.
GENOMICS 8:400-. 1990
J. WEBER, ET AL, GENOMICS, IN PRESS

HUMAN GENET 87:401, 1991
HUMAN GENET 87:401, 1991
HUMAN GENET 87:401, 1991
HUMAN GENET 87:401, 1991
GDB
O'CONNELL,P. ET AL.(1993) GENOMICS 15,38-47.
GENOMICS 8:400- 1990
WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL(1992) NATURE 359:794-801 WEISSENBACH,J ET AL(1992) NATURE 359:794801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801

CH	LOCUS	ASSAY	HET	SIZE PIC MIN	$\begin{aligned} & \text { ANGE } \\ & \text { MAX } \end{aligned}$	REFERENCE
17	D17S789	AFM107yb8	0.83	154	170	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D175790	AFM151xa11	0.79	187	201	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D175791	AFM155xd12	0.88	165	199	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D175792	AFM158xc3	0.60	190	200	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D175793	AFM165zd4	0.70	95	109	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D175794	AFM168xd12	0.00	226	236	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D175795	AFM175xg ${ }^{\text {a }}$	0.82	105	121	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D175796	AFM177xh6	0.82	144	174	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D175797	AFM179xa1	0.59	198	204	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D175798	AFM179xg11	0.00	209	229	… WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D175799	AFM192yh2	0.69	186	200	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D17S800	AFM200zf4	0.74	168	178	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D17S801	AFM203xg 5	0.86	258	336	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D175802	AFM210xa5	0.83	166	188	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D175804	AFM225zc1	0.62	156	170	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D17S805	AFM234ta1	0.59	216	228	WEISSENBACH,J ET AL_(1992) NATURE 359:794-801
17	D175806	AFM234td2	0.91	153	185	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D17S807	AFM234xc9	0.86	114	138	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D17S808	AFM238yf8	0.68	147	161	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D175809	AFM248tb9	0.72	229	247	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D175810	AFM248yg 1	0.51	236	242	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D17S836	AFM163yg 1	0.48	202	210	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S839	AFM200yb12	0.56	155	175	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D175840	AFM207vf4	0.59	238	252	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S841	AFM238vb10	0.42	253	273	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S842	AFM240xe5	0.64	112	122	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S846	227	0.83	215	255	GDB
17	D17S849	AFM234wg 3	0.68	251	261	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
17	D17S855	248yg9	0.82	145	145	ANDERSON, L. ET AL. (1993) GENOMICS 17, 618-623
17	D17S856	OF2	0.39	260	260	ANDERSON, L. ET AL. (1993) GENOMICS 17, 618-623
17	D17S857	OF1	0.81	106	122	GDB
17	D17S858	OF3	0.63	113	127	GDB
17	D175859	OF4	0.78	133	133	ANDERSON, L. ET AL. (1993) GENOMICS 17, 618-623
17	D17S920	AFM186xa1	0.68	97	109	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D175921	AFM191× 12	0.62	169	185	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S922	AFM197xh6	0.61	178	192	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D175923	AFM200va9	0.76	285	291	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D175924	AFM203wh4	0.66	124	132	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S925	AFM206yh8	0.60	151	165	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S926	AFM207xa11	0.62	243	260	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S928	AFM217yd10	0.30	135	165	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D175929	AFM0742f	0.61	217	229	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S930	AFM240yg 7	0.74	104	110	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S931	AFM248tg5	0.53	218	238	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D175932	AFM248yg9	0.66	185	201	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S933	AFM254vg 5	0.52	188	206	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D175934	AFM256vt9	0.48	170	190	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D175935	AFM260yd5	0.80	150	156	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S936	AFM260yg5	0.78	93	103	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D175937	AFM107ye3	0.73	125	149	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D175938	AFM263wh5	0.90	164	182	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D175939	AFM267xh1	0.54	191	215	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S940	AFM268yd5	0.67	207	215	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S941	AFM269xd1	0.74	269	277	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S942	AFM26syl1	0.77	168	176	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S943	AFM269zbi	0.65	181	199	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S944	AFM277vg9	0.69	212	224	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S945	AFM282ydi	0.62	186	208	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D175946	AFM283zb9	0.79	128	142	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S947	AFM290vc9	0.87	250	282	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D175948	AFM291ve9	0.76	125	149	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S949	AFM292vh9	0.67	207	221	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D175950	AFM298wa	0.67	174	198	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S951	AFM298wg 5	0.58	170	188	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D175952	AFM302wh9	0.71	129	141	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D175953	AFM304xh5	0.69	119	131	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S954	AFM316vg1	0.85	218	281	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S955	AFM317yg 1	0.68	181	189	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S956	AFM319wc1	0.47	162	174	WEISSENBACH J: NATURE GENETIC, JUNE 1994
17	D17S957	AFM323wd9	0.67	128	134	WEISSENBACH J: NATURE GENETIC, JUNE 1994

P1C	MIN	$\begin{aligned} & \text { MAE } \\ & \text { MAX } \end{aligned}$
	101	115
	127	137
	127	135
	163	163
	127	127
	201	217
	256	264
	201	253
0.70	130	140
	182	198
0.45	104	110
	171	187
	235	274
	357	377
	132	148
	158	176
	103	135
	104	128
0.78	103	119
0.65	104	124
	146	146
0.86	177	247
0.74	112	136
0.56	98	108
	263	323
0.52	162	172
0.70	204	222
	182	182
0.78	79	109
0.69	185	209
	180	196
	68	88
	95	111
0.57	181	203
	266	278
	89	99
	123	141
	123	141
	135	165
	142	148
	136	150
	233	243
	114	126
	208	218
	137	151
0.78	129	153
	183	197
	160	169
	179	193
	172	184
	283	291
	233	251
	212	216
	168	180
	273	285
	234	244
0.56	197	211
	270	292
	251	264
	149	163
	231	243
	119	139
	158	170
	263	275
	244	254
	240	252
	204	304
	120	142
	183	203
	295	311

REFERENCE
WEISSENBACH J: NATURE GENETIC, JUNE 1994 WEISSENBACH J: NATURE GENETIC, JUNE 1994 WEISSENBACH J: NATURE GENETIC, JUNE 1994 GDB GDB GDB
GDB POLYMEROPOULOS,M. ET AL.(1993) HMG 2,689. DEINARD.A. ET AL.(1992)NAR 20,1171. GDB POLYMEROPOULOS,M. ET AL.(1991) NAR 19,1961. GDB
ANDERSON, L. ET AL. (1993) HMG 2, 1083.
GDB
GDB
FUTREAL,P.A.,ET AL(1992) HMG 1,66. JONES,M.\& NAKAMURA,Y.(1992) GENES,CHROM.\& CANCER 5,89-90. BARE,J. ET AL. (1992) HMG 1,553.
NAR 18(8):2201, 1990
NAR 18:():6465, 1990
HUMAN GENET 87:401, 1991
GENOMICS 8:400-. 1990
GENOMICS 8:400-. 1990
SZUBRYT,S. ET AL. (1993) HMG 2,90.
GDB
GENOMICS 8:400-, 1990
GENOMICS 8:400 . 1990
GDB
STRAUB,R. ET AL.(1993) GENOMICS 15,48-56. SZUBRYT,S. ET AL. (1993) HMG 2,90.
ROJAS,KATHERINE ET AL.(1992)GENOMICS 14,1095-97. ROSEN,D.\& EROWN,JR.,R.(1993) HMG 2,617. ROSEN,D.\& BROWN,JR.,R.(1993) HMG 2,617. SZUBRYT,S. ET AL. (1993) HMG 2,90.
WEISSENBACH J: NATURE GENETIC, JUNE 1994 SZUBRYT,S. ET AL. (1993) HMG 2,90. WEISSENBACH J: NATURE GENETIC, JUNE 1994 SZUBRYT.S. ET AL. (1993) HMG 2,90.
WEISSENBACH J: NATURE GENETIC, JUNE 1994 WEISSENBACH J: NATURE GENETIC. JUNE 1994 WEISSENBACH J: NATURE GENETIC, JUNE 1994

Locus	ASSAY	HEI
D185483	AFM324wco	0.63
D18S484	AFM326te9	0.84
D18S485	AFM330yd9	0.78
D18S486	AFM333wd5	0.65
D18S487	AFM344tas	0.51
D18S488	AFM344才1	0.67
D18S49	MFD245	0.73
D18S498	CU18-014	0.75
D18S499	MIT-T38	0.71
D18S50	CU18-009	0.73
D18551	UT574	0.86
D18S52	AFM020tf12	0.77
D18S53	AFM036ya	0.80
D18S535	GATA13	0.92
D185536	GATA8E05	0.72
D18S537	GATA2E06	0.74
D18S539	GATA3G05	0.63
D18S54	AFM080xa7	0.82
D18S541	GATA10A09	0.79
D18S542	GATA11A06	0.88
D18S548	GATA4H06	0.78
D18S55	AFM122xc1	0.78
D185554	AFM296wd5	0.64
D185556	PCR1	0.88
D18S56	AFM123yal	0.75
D18557	AFM147yg 7	0.88
D18558	AFM164xa 3	0.74
D18S59	AFM178xc3	0.82
D18S60	AFM178x 3	0.38
D18S61	AFM193y ${ }^{\text {P }}$	0.88
D18S62	AFM197xh12	0.67
D18S63	AFM205td6	0.80
D18S64	AFM212x95	0.75
D18S65	AFM240vi6	0.73
D18S66	AFM240xc7	0.86
D18S67	AFM248te1	0.82
D18568	AFM248yb9	0.80
D18S69	AFM248yt	0.79
D18570	AFM254vd5	0.84
D18S71	AFM254yd5	0.82
D18572	AFM256vd5	0.54
D18573	AFM266wa5	0.71
D18574E	NA	0.82
D18S78	MFD 80	0.47
D18S843	ACT1A01	0.80
D185844	ATA1H06	0.77
D185845	ATA5B08	0.60
D18S846	GAAT1E07	0.38
D185847	GATA25H01	0.87
D18S848	GATA27H10	0.63
D18S849	GATA30B03	0.80
D18S850	GATA53B01	0.67
D185851	GATA6D09	0.55
D185852	GCT5007	0.58
N/A	GATA24	0.72
DCC	NA	0.82
FECH	NA	0.68
MBP	NA	0.80
PACAP	NA	0.78
N/A	GAATIC6	0.62
N/A	GAAA1B03	0.81
APOC2	MFD 5	
ATP1A3	NA	0.57
BCL	NA	0.47
CEA	MFD113	0.75
CEAll	NA	
D19S112	PCR1	0.86
D19S112	PCR1	0.86
D19S113	MFD111	0.50
D19S114	MFD112	0.60

PIC	MIN	MAX	REFERENCE
	197	225	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	260	266	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	176	190	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	105	109	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	115	127	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	239	264	WEISSENBACH J: NATURE GENETIC, JUNE 1994
0.69	102	118	GENOMICS 8:400-1990
	171	191	GDB
	150	178	GDB
0.69	176	190	SZUBRYT.S. ET AL. (1993) HMG 2,90.
0.85	267	319	SZUBRYT,S. ET AL. (1993) HMG 2,90.
	116	130	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	159	179	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	150	150	GDB
	146	170	GDB
	190	190	GDB
	252	252	GDB
	205	221	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	272	283	GDB
	182	194	GDB
	212	224	GDB
	134	152	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	212	228	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	172	202	GDB
	197	209	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	88	110	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	144	160	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	148	164	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	156	172	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	157	183	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	187	195	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	255	279	WEISSENBACH.J ET AL.(1992) NATURE 359:794-801
	188	209	WEISSENBACH,J ET AL(1992) NATURE 359:794-801
	168	178	WEISSENBACH, J ET AL.(1992) NATURE 359:794-801
	244	262	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	113	129	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	270	290	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	194	210	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	111	126	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	252	282	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	193	203	WEISSENBACH, J ET AL.(1992) NATURE 359:794-801
	140	144	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	119	137	POLYMEROPOULOS,M. ET AL.(1992) HMG 1,779.
0.47	151	163	GENOMICS 8:400- , 1990
	179	191	GDB
	182	200	GDB
	218	236	GDB
	162	166	GDB
	212	236	GDB
	87	115	GDB
	269	269	GDB
	202	202	GDB
	256	276	GDB
	117	117	GDB
	N/A	N/A	GDB
	106	160	RISINGER,J.\& BOYD,J. (1992) HMG 1,657.
	225	261	GDB
	208	232	POLYMEROPOULOS,M. ET AL.(1992) HMG 1,658.
	101	125	GDB
	144	152	GDB
	204	228	GDB
0.70	129	155	AM J HUM GEN 44:388-396, 1989
0.54	164	176	GDB
	127	139	ST GEORGE-HYSLOP.P.H. ET AL.(1992)NAR 20,927.
0.71	95	111	'AM J HUMAN GENET, 44:388-396, 1989
0.65	104	120	KEIRNAN,E.C.ET AL(1991)NAR, 19,3160.
	120	142	GDB
	120	142	JANSEN, G. ET AL. (1992) GENOMICS 13, 509-517.
	92	100	GENOMICS 8:400-. 1990
	85	95	AM J HUMAN GENET, 44:388-396, 1989

ASSAY	HET	PIC
AFMa132-69	0.51	
AFMa139we9	0.71	
MFD318	0.70	0.65
MFD319	0.75	0.72
wgig5	0.87	
GATA6D01	0.73	
GATA9B02	0.69	
GGAA2A03	0.86	
GGAT4B07	0.31	
SSLP-19	0.83	
MFD 9	0.72	0.69
MFD 10	0.39	0.42
MFD 11	0.78	0.71
SSLP-199	0.85	
SSLP-1910	0.76	
GATA50C01	0.60	
MFD 13	0.60	0.61
MFD 37	0.52	0.40
NA	0.73	
NA	0.74	
NA	0.87	
PCR2	0.70	
INSRE3	0.58	
NA	0.66	
NA	0.49	
NA	0.73	0.77
NA	0.72	
GAAT1F1	0.69	
ADABPR		0.77
NA		0.64
NA	0.61	0.58
AFM057xa3	0.77	

SIRE ANGE
MIN MAX REFERENCE

WEISSENBACH J: NATURE GENETIC. JUNE 1994 WEISSENBACH J: NATURE GENETIC, JUNE 1994 GENOMICS 8:400-, 1990
GENOMICS 8:400-, 1990
ARMOUR, J. ET AL. (1994) HMG 3, 599-605.
GDB
GDB
GDB
GDB
GDB
AM J HUMAN GENET, 1993, IN PRESS
AM J HUMAN GENET, 1993, IN PRESS
NAR 18(7):1927, 1990
GDB
GDB
GDB
NAR 18(15):4639, 1990
NAR 18(9):2835, 1990
GDB
GDB
MCDONALD,M. ET AL.(1993) HMG 2,619.
GDB
GDB
RICHARDS,R. ET AL.(1991) GENOMICS 11,77-82.
ZULIANI,G \& HOBBS,H.H.(1990) NAR18,4300.
LEVITT,R. ET AL.(1992) HMG 1,139.
GDB
GDB
ROUSTAN,P. ET AL.(1992) HMG 1,778.
GDB
GDB
WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL. (1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH.J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH, J ET AL.(1992) NATURE 359:794-801 WEISSENBACH,J ET AL.(1992) NATURE 359:794-801 WEISSENBACH J: NATURE GENETIC, JUNE 1994 WWASAKI,N.ET AL(1991)NAR 19,6970.
WEISSENBACH J: NATURE GENETIC, JUNE 1994 WEISSENBACH J: NATURE GENETIC, JUNE 1994

Locus	ASSAY	HET
D21S13E	NA	
D21S1431	ACT2E10	0.56
D21S1432	GATA11C12	0.64
D21S1433	GATA31C01	0.83
D21S1434	GATA43F04	0.67
D21S1435	GATA49E01	0.67
D21S1436	GGAA2E02	0.73
D21S1437	GGAA3C07	0.93
D21S145	P1.44	0.71
D21S156	MFD 55	0.92
D21S167	NA	
D21S168	NA	
D21S171	MFD 95	0.66
D21S172	NA	
D21S198	NA	
D21S210	NA	0.86
D21S211	MFD163	0.53
D21S212	NA	0.84
D21S213	JHU21-GT05	0.74
D21S214	NA	0.82
D21S215	JHU21-GT14	0.68
D21S217	21-GT11	0.72
D21S219	NA	0.76
D21S222	MIT-G121	0.88
D21S223	NA	0.80
D21S224	NA	0.74
D21S228	JHU21-GT25a	0.58
D21S232	21-GT09	0.68
D21S235	NA	0.72
D21S236	NA	0.71
D21S258	NA	0.87
D21S259	AFM016xe5	0.80
D21S260	AFM147xb12	0.52
D21S261	AFM193x 10	0.51
D215262	AFM198tc5	0.67
D21S263	AFM2112g9	0.75
D21S265	AFM234wa5	0.85
D21S266	AFM234xg 9	0.60
D21S267	AFM238wc3	0.88
D21S268	AFM260ze9	0.88
D215269	AFM263x5	0.73
D21S270	AFM031x-5	0.86
D21S370	NA	
D215416	ABM-C19	0.79
D21S49	NA	0.70
D21S65	NA	0.83
HMG14	NA	0.69
IFNAR	IOWA 21-07	0.83
PFKL	NA	0.70
CRYB2	NA	0.60
CRYB2A	NA	0.75
CYP2D	NA	0.80
CYP2D(q13)	NA	0.70
D22S156	MFD 33	0.78
D22S257	MFD 51	0.67
D22S258	MFD162	0.82
D22S264	NA	0.80
D22S268	COS75	0.60
D22S270	MFD204	0.78
D22S272	AFM024xc9	0.70
D22S273	AFM106xd2	0.73
D22S274	AFM164th8	0.78
D22S275	AFM164ze3	0.82
D22S276	AFM165za5	0.74
D22S277	AFM168xa 1	0.85
D22S278	AFM182xd12	0.77
D22S279	AFM205yc11	0.75
D22S280	AFM225x6	0.83
D22S281	AFM238wcl1	0.83
022S282	AFM261ye5	0.84

PIC	MIN	Max	REFERENCE
0.69	111	115	GUO,Z. ET AL.(1990) NAR 18,4770.
	168	177	GDB
	127	155	GDB
	247	247	GDB
	187	187	GDB
	172	172	GDB
	160	196	GDB
	119	143	GDB
	168	180	GDB
0.79	77	107	GENOMICS 8:400- . 1990
0.81	156	182	GUO, ${ }^{\text {E ET AL (1990) NAR 18,4967. }}$
0.73	104	118	GUO,Z. ET AL.(1990) NAR 18,5924.
0.69	111	133	HUMAN GENET 87:401, 1991
0.58	145	161	SHARMA,V. ET AL.(1992) HMG 1,289.
0.81	112	128	SHARMA,V. ET AL.(1991) NAR 19,4023.
	140	190	ANTONARAKIS,S. GENOMICS IN PRESS
0.48	93	103	GENOMICS 8:400 , 1990
	414	462	GENOMICS 8:400-1990
	152	164	GDB
	240	256	GENOMICS 8:400- , 1990
	168	180	GDB
	276	286	WARREN,A.ET AL.(1992)GENOMICS 14,818-19.
	167	181	GOTO,J. ET AL.(1992) HMG 1,782.
	131	131	HUMAN GENET 87:401, 1991
	77	91	ROSEN,D. ET AL. (1992) HMG 1,547.
	119	137	ROTHSCHILD,C.ET AL.(1993)AM.J.HUM.GENET.52,110-123.
	168	174	GDB
	118	124	WEBER,C. ET AL.(1993) HMG 2,612.
	134	186	DONALDSON,D. ET AL.(1992) HMG 1,651.
0.65	104	128	SHARMA,V. ET AL.(1992) HMG 1,289.
	184	206	WEHNERT,A. ET AL.(1992)HMG 1,449.
	117	131	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	267	277	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	296	304	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	142	152	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	175	201	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	244	258	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	153	173	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	175	203	WEISSENBACH,J ET AL. (1992) NATURE 359:794-801
	226	250	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	235	255	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	199	223	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
0.73	207	221	GOTO,J. ET AL.(1993) HMG 2,616.
	99	129	GDB
	152	162	BESPALOVA,I. ET AL.(1993)HMG $2,613$.
	184	206	GOTO,J. ET AL.(1992) HMG 1,350.
0.67	69	93	POLYMEROPOULOS,M. ET AL.(1991) NAR 19,4306.
	462	480	MCINNIS,M. ET AL.(1991) GENOMICS 11,573-576.
0.66	129	145	POLYMEROPOULOS,M. ET AL.(1991) NAR 19,2517.
	200	212	MARINEAU,C.\& ROULEAU,G.(1992) NAR20,1430.
	172	193	BUETOW, K. ET AL. (1993) GENOMICS 18, 329-339.
0.78	98	116	POLYMEROPOULOS,M. ET AL.(1991) NAR 19,3753.
	108	130	TROFATTER,JA. ET AL. (1991) NAR19,2802.
0.63	96	110	NAR 18(7):1927, 1990
0.46	125	133	J. WEBER, CEPH, V. 5
0.78	183	195	J. WEBER, ET AL, GENOMICS, IN PRESS
	190	210	MARINEAU,C.ET AL.(1992)NAR 20,1430.
	244	252	GDB
0.74	128	148	GENOMICS 8:400-1990
	132	150	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	194	206	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	202	214	WEISSENBACH,J ET AL. (1992) NATURE 359:794-801
	160	174	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	241	263	WEISSENBACH,J ET AL. (1992) NATURE 359:794-801
\cdots	140	170	WEISSENBACH,J ET AL. (1992) NATURE 359:794-801
	231	245	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	249	258	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	208	220	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	135	151	WEISSENBACH, J ET AL.(1992) NATURE 359:794-801
	144	164	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801

CH	Locus	ASSAY	HET
22	D22S283	AFM262vh5	0.89
22	D22S284	AFM078w 5	0.77
22	D22S298	NA	0.74
22	D22S299	NA	0.79
22	D22S300	42.13	0.87
22	D22S300	NA	0.87
22	D22S301	NA	0.71
22	D22S302	NA	0.75
22	D22S303	NA	0.68
22	D22S304	NA	0.65
22	D22S306	NA	0.61
22	D22S307	NA	0.63
22	D22S310	NA	0.90
22	D22S311	NA	0.81
22	D22S315	AFM183xe9	0.80
22	D22S343	pN92	0.95
22	D22S345	MFD313	0.73
22	D22S351	22TG1	0.76
22	D22S418	AFM031yb10	0.72
22	D22S419	AFM2119110	0.34
22	D22S420	AFM217xd	0.73
22	D22S421	AFM234vh2	0.54
22	D22S422	AFM256vd1	0.56
22	D22S423	AFM261xd9	0.80
22	D22S424	AFM112yb4	0.58
22	D22S425	AFM265y5	0.64
22	D22S426	AFM273vd9	0.88
22	D22S427	AFM288we5	0.74
22	D22S428	AFM321yb9	0.61
22	D22S429	AFM343ye9	0.82
22	D22S430	NA	0.68
22	D22S442	wgid5	0.84
22	D22S444	GGAT3A11	0.56
22	D22S445	GGAT3C10	0.77
22	D22S446	AFM292va9	0.82
22	D22S448	164.1	0.86
22	D22S683	GATA11B12	0.94
22	D22S684	GATA4F03	1.00
22	D22S685	GATA6F05	0.90
22	D22S686	GGAA10F06	1.00
22	F8WWFP	NA	0.61
22	F8WWFPII	PCR2	0.57
22	IL2RB	lowa22-02	0.91
22	TOPIP2	NA	0.91
X		GATA3B02	1.00
x	D18S543	GATA2A12	0.77
x	DXS6786	ATA4A02	0.64
x	DXS6787	ATA4H10	0.48
x	DXS6788	ATA5G11	0.71
x	DXS6789	GATA31F01	0.92
x	DXS6790	GATA31H06	1.00
x	DXS6791	GATA42D03	0.77
x	DXS6792	GATA48D12	0.85
x	5DMD	NA	
x	ALAS2	NA	0.78
x	AR	NA	0.89
x	ARA	NA	0.91
x	CD40	HIGM1	0.70
X	CD40	NA	0.70
x	CYBB	NA	0.76
x	DMD-44	STR44	0.87
x	DMD-49	STR49	0.93
x	DMD-Y5	5-5n3cal	0.76
X	DXS1000	AFM248te9	0.35
X	DXS1001	AFM248we5	0.81
X	DXS1002	AFM249vi5	0.71
x	DXS1003	AFM276x5	0.80
X	DXS101	NA	0.76
X	DXS102	CX38.1	0.71
X	DXS1036	AFM072zh3	0.82

PIC	M1N	MAX	REFERENCE
	126	152	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	86	102	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	123	123	RAM,K. ET AL.(1992) NAR 20,1428.
	192	192	RAM,K. ET AL. (1992) NAR 20,1428.
	214	232	GDB
	214	232	BUETOW, K. ET AL. (1993) GENOMICS 18, 329-339.
	205	205	RAM,K. ET AL. (1992) NAR 20,1428.
	218	218	RAM,K. ET AL. (1992) NAR 20,1428.
	220	220	PORTER,J. ET AL.(1993) GENOMICS 15,57-61.
	133	133	RAM,K. ET AL (1992) NAR 20,1428.
	105	105	RAM,K. ET AL.(1992) NAR 20,1428.
	136	136	RAM,K. ET AL. (1992) NAR 20,1428.
	174	196	BUETOW, K. ET AL. (1993) GENOMICS 18, 329-339.
	262	262	RAM, K. ET AL.(1992) NAR 20,1428.
	177	203	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	169	193	BUETOW, K. ET AL. (1993) GENOMICS 18, 329-339.
0.69	119	129	GENOMICS 8:400- , 1990
	145	163	GDB
	137	161	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	257	273	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	148	164	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	159	173	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	120	140	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	215	235	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	156	168	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	192	202	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	215	225	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	96	110	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	147	155	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	253	259	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	84	98	GDB
	210	234	ARMOUR, J. ET AL. (1994) HMG 3, 599-605.
	124	132	GDB
	110	130	GDB
	198	232	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	186	208	GDB
	160	196	GDB
	230	230	GDB
	172	196	GDB
	180	180	GDB
	329	349	GDB
	130	150	GDB
	149	163	BREWSTER,E. ET AL.(1992) NAR 19,4022.
	113	155	TROFATTER,J.ET AL (1992) HMG 1,455.
	N/A	N/A	GDB
	230	250	GDB
	227	227	GDB
	261	261	GDB
	178	178	GDB
	148	148	GDB
	290	290	GDB
	166	166	GDB
	240	240	GDB
0.78	88	108	HUGNOT,J.P.ET AL(1991)NAR 19,3159.
	149	167	COX,T. ET AL. (1992) HMG 1,639-641.
	195	195	SLEDDENS,H.ET AL(1992) NAR 20,1427.
	261	312	FEENER,ET AL.(1991) AM.J.HUM.GENET. 48,621-627.
	197	231	CUTLER, R. ET AL. (1993) HMG 2, 828
	197	231	GDB
	154	160	GDB
	174	204	GDB
	227	257	GDB
	96	116	GDB
	230	236	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	197	215	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	266	274	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	169	195	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	185	230	GDB
	145	163	GDB
	145	151	WEISSENBACH J: NATURE GENETIC, JUNE 1994

CH	LOCUS	ASSAY	HEI
x	DXS1039	AFM119xd6	0.78
x	DXS1043	AFM126zd2	0.69
x	DXS1047	AFM150xf10	0.74
x	DXS1048	AFM151xg11	0.75
x	DXS1053	AFM164zd4	0.50
x	DXS1055	AFM168ya3	0.66
x	DXS1058	AFM200ye7	0.39
x	DXS1059	AFM203yd8	0.83
x	DXS106	NA	0.81
x	DXS1061	AFM205yd2	0.87
x	DXS1062	AFM207×b8	0.79
x	DXS1065	AFM2242t2	0.76
x	DXS1066	AFM234tfs	0.82
x	DXS1067	AFM234vg7	0.81
x	DXS1068	AFM238yc11	0.82
x	DXS1072	AFM276was	0.53
x	DXS1105	AFM263wc1	0.41
x	DXS1106	AFM263wal	0.00
x	DXS1108	SDF	0.75
X	DXS1110	NA	0.68
x	DXS1111	NA	0.69
x	DXS1113	NA	0.75
x	DXS1123	41ADF	0.68
x	DXS1126	EAD	0.68
x	DXS1191	AFM191zal1	0.71
x	DXS1192	AFM196xal	0.70
x	DXS1193	AFM199we7	0.85
x	DXS1194	AFM203wa5	0.73
x	DXS1195	AFM207zd6	0.81
x	DXS1196	AFM056yb8	0.78
x	DXS1197	AFM072za5	0.50
x	DXS1199	AFM248wf9	0.75
x	DXS1200	AFM254Wh1	0.46
x	DXS1201	AFM256ze5	0.69
x	DXS1202	AFM260ye 5	0.60
x	DXS1203	AFM262vg1	0.50
x	DXS1204	AFM106xa3	0.44
x	DXS1205	AFM265va5	0.84
x	DXS1206	AFM269ya	0.77
x	DXS1209	AFM273zd5	0.75
x	DXS1210	AFM274z65	0.77
x	DXS1211	AFM276v9	0.50
x	DXS1212	AFM280v5	0.76
X	DXS 1213	AFM282za9	0.73
X	DXS1214	AFM283wg9	0.81
x	DXS1215	AFM287ze5	0.61
x	DXS1216	AFM2872g1	0.85
x	DXS1217	AFM288ye9	0.55
x	DXS1218	AFM292wb9	0.42
x	DXS1219	AFM297yd1	0.60
X	DXS1220	AFM302xc9	0.58
X	DXS1221	AFM303wd1	0.73
x	DXS1222	AFM308×b9	0.72
x	DXS 1223	AFM309yc1	0.75
X	DXS1224	AFM311v5	0.65
X	DXS1225	AFM311vg5	0.66
X	DXS1226	AFM316y5	0.72
X	DXS1227	AFM317ye9	0.45
x	DXS1229	AFM337wd5	0.74
X	DXS1230	AFM3372b1	0.62
X	DXS1231	AFM340ye1	0.80
x	DXS1232	AFMa123yb5	0.51
X	DXS1233	AFMa141xe5	0.80
x	DXS1235	DMD-50	0.70
X	DXS1237	DMD-45 ...	0.87
X	DXS1254	MFD207	0.79
x	DXS1255	MFD279	0.27
x	DXS1275	AFM2612h5	0.75
X	DXS1283E	PRGS20	0.88
x	DXS1356	wg1e1	0.83

P1C	$\begin{aligned} & \text { SIZE } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \text { ANGE } \\ & \text { MAX } \end{aligned}$	REFERENCE
	89	103	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	148	162	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	196	210	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	162	172	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	194	206	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	81	93	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	275	283	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	180	200	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	87	103	FAIRWEATHER,N. ET AL (1993) HMG 2,607-608.
	224	- 242	... WEISSENBACH J: NATURE GENETIC, JUNE 1994
	222	248	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	160	164	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	257	269	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	214	230	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	245	259	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	271	285	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	208	226	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	175	185	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
	165	177	GDB
	252	268	GDB
	119	129	BROWNE,D. ET AL.(1993) HMG 2,611.
	154	178	WEBER,C. ET AL.(1993) HMG 2,612.
	168	178	GDB
	230	252	GDB
	237	245	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	121	135	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	134	146	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	261	283	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	235	239	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	209	227	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	240	248	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	277	291	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	275	281	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	267	287	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	265	285	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	210	220	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	237	249	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	184	198	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	167	181	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	106	116	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	194	206	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	159	173	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	230	238	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	230	244	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	210	220	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	246	250	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	244	248	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	231	243	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	261	275	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	230	246	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	192	218	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	149	161	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	234	240	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	158	170	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	157	167	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	194	218	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	201	223	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	174	186	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	202	230	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	189	199	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	202	208	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	163	197	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	191	197	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	233	251	CLEMENS,ET AL.(1991) AM.J.HUM.GENET. 49,951-960.
	154	184	CLEMENS,ET AL.(1991) AM.J.HUM.GENET. 49,951-960.
0.76	99	113	GENOMICS 8:400-. 1990
0.26	95	115	GENOMICS 8:400-1990
	206	220	WEISSENBACH J: NATURE GENETIC, JUNE 1994
	145	167	GDB
	195	233	ARMOUR, J. ET AL. (1994) HMG 3, 599-605.

CH	Locus	ASSAY	HEI	P18	MIN	MAX	REFERENCE
x	DXS1367	ds-1	0.72		107	135	SCHINDELHAUER, D. ET AL. HMG 3, 1027
X	DXS16	16CA	0.85		88	114	CHANG, Y. ET AL. (1994) HMG 3, 1029.
X	DXS1683	A0563ME	0.67		142	174	GDB
X	DXS1684	NA	0.82		130	148	GONG. W. ET AL. (1994) HMG 3, 1442.
X	DXS178	NA	0.65		174	200	GDB
X	DXS207	PCR1	0.85		115	137	GDB
X	DXS227	NA	0.85		174	194	FOUGEROUSSE,F. ET AL.(1992) HMG 1,64.
X	DXS292	VK14	0.58		66	76	GDB
X	DXS294	NA	0.75	0.75	122	148	GEDEON,A. ET AL.(1991) NAR 19,5087.
x	DXS297	VK23	0.66		- 179	195	GDB
x	DXS3	NA	0.64		175	181	STANIER,P. ET AL.(1991) NAR 19,4793.
X	DXS337	RX9H6	0.73		139	145	GDB
x	DXS418	P122	0.83		140	158	GDB
X	DXS424	NA	0.83		126	142	HUANG,T. ET AL(1992) GENOMICS 13,375-380.
x	DXS43	43CA	0.86		86	130	CHANG, Y. ET AL. (1994) HMG 3, 1029.
x	DXS441	NA	0.76		173	189	RAM,K. ET AL.(1992) NAR 20,1428.
x	DXS443	RX324	0.60		204	210	GDB
X	DXS451	KQST80	0.80		182	204	GDB
x	DXS453	MFD 66	0.72		160	183	NAR 18(13):4037, 1990
x	DXS454	MFD 72	0.75		144	152	NAR 18(15):4635, 1990
x	DXS458	MFD 79	0.58		178	190	NAR 18(15):4635, 1990
x	DXS538	NA	0.72		154	184	BROWNE,D. ET AL.(1991) NAR 19,1161.
x	DXS548	RS46	0.65		190	206	RIGGINS, GJ. (1992) AM J MED GENET 44, 237-243.
x	DXS556	NA	0.73		176	192	THISELTON,D. ET AL.(1993)HMG 2,613.
x	DXS559	NA	0.63		230	248	ROUSTAN,P. ET AL.(1992) HMG 1,778.
X	DXS571	NA	0.46		130	148	CURTIS,A. ET AL. (1992) HMG 1,776.
X	DXS573	NA	0.72		137	145	ROUSTAN,P. ET AL.(1993) HMG $2,92$.
X	DXS7	NA	0.00		157	167	MOORE,B. ET AL.(1992)NAR 20,929.
X	DXS730	MIT-MS21	0.63		192	192	HUMAN GENET 87:401, 1991
X	DXS731	MIT-MS266	0.74		100	100	HUMAN GENET 87:401, 1991
X	DXS737	MIT-MS120	0.60		167	167	HUMAN GENET 87:401, 1991
X	DXS738	MIT-E114	0.71		144	144	HUMAN GENET 87:401, 1991
X	DX585	85CA	0.79		0	0	CHANG, Y. ET AL. (1994) HMG 3, 1029.
X	DXS981	STRX1	0.86		182	199	GDB
X	DXS983	AFM078zal	0.63		173	183	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
X	DXS984	AFM105xc5	0.72		154	184	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
X	DXS985	AFM112d2	0.60		133	139	WEISSENBACH.J ET AL.(1992) NATURE 359:794-801
x	DXS986	AFM116xg1	0.76		149	173	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
X	DXS987	AFM120xa9	0.84		206	224	WEISSENBACH,J ET AL(1992) NATURE 359:794-801
x	DXS988	AFM123xd4	0.62		134	144	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
x	DXS989	AFM135xe7	0.82		173	199	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
X	DXS990	AFM136yc7	0.76		172	180	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
X	DXS991	AFM151xf6	0.82		266	290	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
x	DXS992	AFM184xg 5	0.87		201	211	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
x	DXS993	AFM203wf4	0.79		292	312	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
X	DXS994	AFM205wd2	0.00		212	220	WEISSENBACH,J ET AL (1992) NATURE 359:794-801
X	DXS995	AFM2072g5	0.61		193	199	WEISSENBACH.J ET AL.(1992) NATURE 359:794-801
X	DXS996	AFM212xe5	0.82		153	171	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
X	DXS997	AFM217xa5	0.65		109	117	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
x	DXS998	AFM224zg11	0.57		113	119	WEISSENBACH,J ET AL.(1992) NATURE 359:794-801
X	DXS999	AFM234yti2	0.75		260	276	WEISSENBACH,J ET AL (1992) NATURE 359:794-801
X	DYS-II	NA	0.82	0.77	214	228	FEENER,ET AL.(1991) AM.J.HUM.GENET. 48,621-627.
X	DYS-III	NA	0.54	0.58	219	225	FOUGEROUSSE,F. ET AL.(1992) NAR 20,1165.
X	F8C	NA	0.69		133	149	GDB
X	FMR-1	NA	N/A		N/A	N/A	PERGOLIZZI,R.G., ET AL. (1992)LANCET 339,2271-72.
X	HPRT	NA		0.70	151	163	HEARNE,C. 8 TODD,J. (1991) NAR 19,5450.
X	HPRTB	NA	0.75		263	299	EDWARDS,A. ET AL.(1992)GENOMICS 12,241-253.
X	KAL	NA	0.61	0.72	179	187	BOULOUX,P.ET AL(1991)NAR 19,5453.
X	MAOA	NA	0.75		285	388	HINDS,H. ET AL.(1992) GENOMICS 13,896-97.
X	MAOB	NA	0.64	0.73	285	388	GRIMSBY,J. ET AL.(1992)NAR 20,924.
X	PFC	NA	0.65		224	224	COLEMAN,M.ET AL.(1991) GENOMICS 11,991-996.
Y	DYS388	ATA10F11	N/A		127	127	GDB
Y	DYS389	GATA30F10	N/A		248	256	GDB
Y	DYS390	GATA31E10	N/A		205	221	GDB
Y	DYS391	GATA32C10	\cdots N/A	.	285	293	GDB

A genetic map of the mouse with 3,012 simple sequence length polymorphisms

William F. Dietrich, Joyce C. Miller, Robert G. Steen, Mark Merchant, Deborah Damron, Robert Nahf, Diane C. Joyce, Michael Wessel, Robert D. Dredge, Andre Marquis, Lincoln D. Stein, Nathan Goodman, David C. Page, and Eric S. Lander

Whitehead Institute/MIT Center for Genome Research, Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142

Abstract

We have constructed a genetic map of the mouse genome containing 3,012 SSLPs. The map provides an average spacing of 0.5 cM between markers, corresponding to about 1 Mb . Approximately 88% of the genome lies within 1.1 cM of a marker and 98% lies within 2.2 cM . The markers have an average polymorphism rate of 50% in crosses between laboratory strains. The markers are distributed in a relatively uniform fashion across the genome, although some deviations from randomness can be detected. In particular, there is a significant underrepresentation of markers on the X chromosome. This map represents the halfway point toward our goal of developing a mouse genetic map containing 6,000 SSLPs.

Introduction

Dense linkage maps are an invaluable tool for genetic and genomic analysis. They facilitate high resolution genetic mapping and positional cloning of monogenic traits, allow genetic dissection of polygenic traits, permit finestructure linkage disequilibrium studies, assist in evolutionary comparisons, and provide an ordered scaffold on which complete physical maps of genomes can be assembled. The power of genetic maps increases with their density. For key organisms such as the human and mouse, extremely dense genetic maps are essential.

The discovery of simple sequence length polymorphisms (SSLPs) or microsatellites has greatly accelerated genetic map construction ${ }^{1-4}$. SSLPs occur at high frequency throughout mammalian genomes, tend to be highly polymorphic, are easily assayed by the polymerase chain reaction (PCR), and can be disseminated simply by publishing the sequence of their PCR primers. Several projects are underway to build dense SSLP maps of the human genome, notably by Weissenbach and colleagues ${ }^{3,5}$.

For the past three years, the Whitehead Institute/MIT Center for Genome Research (CGR) has been developing an SSLP map of the mouse ${ }^{4,6-9}$. In 1992, we reported an initial map consisting of 317 markers ${ }^{4}$. In October 1993, we reported a 1518 marker map, integrated into the mouse gene map ${ }^{8,9}$. Here, we report the construction of a genetic map of the mouse genome containing 3,012 SSLPs. Markers are distributed at an average spacing of 0.5 cM , corresponding to about 1 Mb . The map represents the halfway point toward our goal of developing a mouse genetic map containing 6,000 SSLPs.

Construction of genetic map

The mouse genetic map was constructed essentially as previously described ${ }^{4}$. Briefly, random clones containing the simple sequence repeat $(C A)_{n}$ were identified by oligonucleotide hybridization from total mouse genomic libraries with size-selected inserts and their DNA sequence was determined by single-pass automated sequencing. In addition, mouse DNA sequences containing a variety of simple sequence repeats were identified in known gene sequences, primarily from GenBank. A PCR assay encompassing each simple sequence repeat was designed based on computer analysis. The PCR assays were tested for polymorphism on 12 inbred mouse strains. Those that defined different alleles in the OB and CAST strains-about 92% of the totalwere genotyped in 46 progeny from an ($O B \times$ CAST) F2 intercross. Because the cross involves 92 meioses, there is a crossover every 1.1 cM on average and markers can be ordered to this resolution. (See Materials and Methods for further details.)

The genetic map is shown in Figure 1. The map contains 3012 SSLPs, of which 2798 were derived from anonymous clones and 214 were taken from known gene sequences reported in GenBank and elsewhere. The map densely covers all 20 mouse chromosomes and has a total genetic length of 1405 cM (Table 1). Because the markers were genotyped in an F2 intercross, the map represents sex-averaged genetic distance. The obsërved genetic distances agree reasonably well with previous consensus estimates based on data from various mouse crosses.

A full description of the markers-including primer sequences, complete locus sequence, allele sizes in characterized inbred strains, and genotypes in the cross-would require more than 200 journal pages and is thus omitted. Instead, this information can be obtained for any subset of markers by sending queries to an automatic electronic mail server maintained by CGR. To obtain a query form, send electronic mail consisting of the single word "help" to genome_database@genome.wi.mit.edu. Over the Internet, queries are typically answered in under two minutes.

Our SSLP map has recently been integrated with the mouse gene map8,9. Over 250 SSLPs were genotyped in a B6 x (B6 x SPRET) backcross in which Copeland, Jenkins and colleagues have genetically mapped RFLPs for about 1000 genes.

Distribution of genetic markers

A key issue in evaluating a map is the distribution of markers throughout the genome. Analysis of our initial 317 marker mouse map suggested that SSLPs were distributed in a relatively uniform fashion. With more than 3000 markers on the current map, it is possible to reinvestigate this question with greater precision.

There are a variety of ways to study whether the distribution of markers is uniform. One approach is to ask whether the observed number of markers on each chromosome agrees with expectation assuming that markers are uniformly distributed with respect to cytogenetic length ${ }^{10}$. For the autosomes, the chromosomal distribution of the random markers agrees remarkably well
with expectation (Table 2). There are no statistically significant deviations (after accounting for multiple hypothesis testing).

By contrast, the X chromosome shows a clear deficit of random markers (Table 2). In examining the proportion of markers from the X chromosome, a small correction is required inasmuch as the first 12% of the random markers were isolated from male DNA ${ }^{4}$ while the remaining 88% were isolated from female DNA. After adjusting for this slight systematic underrepresentation, the X chromosome contains only 54% as many markers as expected under the assumption of a uniform distribution across cytogenetic length. Possible explanations for the striking deficit include: (1) a lower density of $(C A)_{n}$ repeat sequences on the X chromosome or (2) a lower rate of polymorphism among $(C A)_{n}$ repeats present on the X chromosome. (The trivial explanation that our "female" DNA source was actually from a male was excluded on two grounds. We confirmed the sex of the DNA sources by using PCR assays for the mouse $Z f x$ and $Z f y$ loci on the X and Y chromosomes, respectively ${ }^{11}$. We also noted that the proportion of markers on the X chromosome was two-fold higher among those markers isolated from the female DNA than the known male DNA.)

Another way to study the distribution of genetic markers is to examine the occurrence of clusters of crossovers and clusters of markers in the map. In our data, the position of every marker relative to every crossover can be identified. By ordering all crossovers (occurring in any of ${ }^{7}$ the meioses studied) and all markers relative to one another, the map of each chromosome can be reduced by a long string of the form "mmmmecmmmce. . . ", where each m denotes the occurrence of a marker and each c denotes the
occurrence of a crossover (in one of the meioses studied). The string above, for example, indicates a succession of a block of four markers which showed no recombination in the meioses studied, an interval of two crossovers, a block of three markers which showed no recombination, and so on. Runs of many consecutive c 's correspond to large genetic intervals, while runs of many consecutive m 's correspond to large blocks of recombinationally unseparated markers.

If genetic markers are uniformly distributed with respect to crossovers, then the string should correspond to tossing a coin with probability π_{m} of being " m " and probability $\pi_{c}\left(=1-\pi_{m}\right)$ of being " c ". Here, $\pi_{m}=M /(M+C)$ where M is the total number of markers and C is the total number of crossovers. The expected proportion of genetic intervals containing $\geq \mathrm{i}$ consecutive crossovers is easily seen to be $\pi_{c}{ }^{i}$ (i.e., the probability that an m is followed by at least i consecutive c's). The distribution of the length of the longest genetic interval (i.e., the longest run of c's) can also be calculated ${ }^{12}$ (see Methodology). Similarly, the expected proportion of blocks containing $\geq \mathrm{i}$ recombinationally unseparated markers is $\pi_{\mathrm{m}}{ }^{\mathrm{i}}$ and the distribution of the longest such block can be calculated. To avoid bias due to the distribution of gene sequences, the analysis was performed using only the randomly generated markers.

With a single exception, the observed distribution of interval lengths fits expectation reasonably well (Table 3 and Figure 2). The longest run of consecutive crossovers has expected length 5.9 , with a 95% confidence interval of roughly $5.0-8.5$. The single outlier is the distalmost interval on Chromosome 19 between D19Mit33 and D19Mit6, which had 11 crossovers or about 13 cM . The probability that such a large interval would occur by chance
anywhere in the map is only 0.003 . (Genotypes were carefully reconfirmed to ensure that the crossovers did not result from mistyping.) The data suggest the possibility of a recombinational hotspot near the telomere of Chromosome 19, at least in (CAST x B6) F2 crosses. Interestingly, there does not appear to be enhanced recombination in a (SPRET \times B6) \times B6 backcross: Eicher and Shown ${ }^{13}$ reported that the interval D19Mit1-D19Mit33-D19Mit6 measured only 5 cM . This might be due to a difference between the strains or to enhanced recombination being present only in male meiosis (which contributes to recombination frequency in $F 2$ intercrosses but not in M. spretus backcrosses in which only the female parent segregates for polymorphisms).

The distribution of the number of markers occurring between consecutive crossovers shows some modest evidence of clustering (Table 4 and Figure 3). There are significantly more occurrences of two consecutive crossovers without an intervening marker than expected by chance ($485 \mathrm{vs} .425 .3 \pm 17.0$; Z-score $=3.5$). These data are consistent with the presence of recombinational hotspots in some regions. Adjusting for this excess, the remainder of this distribution is not a bad fit to expectation. The largest block of recombinationally unseparated markers would be expected to contain about 18 markers, with a 95% confidence interval of $15-25$. In fact, the largest observed block is 24 which falls within the expected range.

The map appears to provide convenient entry points for nearly the entire genome. Approximately 88% of the map lies within 1.1 cM of a marker and 98% lies within 2.2 cM . The coverage is only slightly less than the expectation
for randomly spaced markers, which is 91% and 99%, respectively (based on expectations in Tables 3 and 4).

Polymorphism among mouse strains.

SSLPs are particularly useful for mouse genetics because they are highly variable even among inbred laboratory mouse strains, making it possible to genotype virtually any cross of interest ${ }^{4}$. For the SSLPs in the map, allele sizes were determined in 12 inbred strains (10 laboratory strains, which are derived from M. m. domesticus andM. m. musculus progenitors; the different subspecies M. m. castaneus; and the different species M. spretus). The SSLPs in the map are necessarily variant between OB and CAST, since this was a prerequisite for genetic mapping in the cross.

The average number of alleles per SSLP was 6.0 ± 1.0 (Figure 4).
Conveniently, over 75% of the pairwise allele difference are ≥ 4 basepairs - making it possible to score the difference on high percentage agarose gels. The polymorphism rate between laboratory strains and the different species M. spretus or the different subspecies M. m. castaneus was about 94%, while the polymorphism rate among laboratory strains averaged about 50\% (Table 5). In only five of 45 pairwise comparisons among the 10 laboratory strains was the polymorphism rate below 44\%: C3H-DBA (38\%), C3H-BALB (37\%), C3H-A (33\%), BALB-A (32\%), and OB-B6 (11\%). (The last case is expected since OB and $\mathrm{B6}$ are a congenic pair, witrh OB having been derived by repeated backcrossing to B 6 with selection for the ob mutation.)

Interestingly, the polymorphism rate among laboratory strains was not constant across chromosomes (Table 6). The most extreme deviation was for the X chromosome, which showed a polymorphism rate of only 29% as compared to 50% for the autosomes. In addition, Chromosome 10 showed a significantly lower rate of polymorphism (35\%). The rate of polymorphism between laboratory strains and M. spretus or M. m. castaneus did not vary significantly across chromosomes.

Discussion

The 3,012 marker genetic map of the mouse constructed here constitutes the densest SSLP map constructed in any organism to date. The total genetic length has not grown significantly with the addition of the last 1500 markers, suggesting that the map covers essentially the entire mouse genome. Interestingly, the genetic length of 1405 cM measured in our (CAST $\times \mathrm{OB}$) F2 intercross is significantly larger than the length of 1224 cM in a (SPRET \times B6) backcross. (For this comparison, the genetic length of the SPRET \times B6 backcross was recalculated using the Kosambi map function. The corresponding lengths are 1437 and 1344 cM with Haldane's map function ${ }^{8}$.) The discrepancy is more striking than it may appear, since the F2 intercross reflects sex-averaged genetic distance while the backcross measures female genetic distance, which is generally thought to be substantially larger than in males. The difference may reflect crossover-suppression caused by local inversions between laboratory mouse and the evolutionary more distant M. spretus ${ }^{8}$.

By a number of tests, the markers appear to be relatively uniformly distributed across the genome, although some modest evidence of clustering is present. There is only one suprisingly large gap, a 12 cM interval at the distal end of chromosome 19. Increased recombination in subtelomeric regions has been suggested for some human chromosomes ${ }^{14}$. More generally, there is an slight overall excess clustering of crossovers, which could reflect non-uniformity in the distribution of recombination or (CA) $\mathbf{n}_{\mathbf{n}}$ repeats with respect to physical distance. Recombinational hotspots and coldspots are certainly known to exist in many organisms including the mouse ${ }^{15}$, but the relative uniformity of marker distribution indicates that their effect is not dramatic on maps of the density and resolution reported here. Studies involving much denser maps may reveal greater clustering of recombination at a finer level, while studies involving many more meioses might reveal greater clustering of markers.

An unexpected observation was the nearly two-fold underrepresentation of markers on the X chromosome. The deficit could be due either to a deficit of (CA) ${ }_{n}$ repeats on the X chromosome or a lower polymorphism rate among those $(C A)_{n}$ repeats on the X chromosome. In principle, these alternatives could be distinguished by determining the chromosomal distribution of the $(C A)_{n}$ repeats that were not polymorphic between $O B$ and CAST.

It is also striking that the rate of polymorphism among laboratory strains was significantly lower on the X chromosome than for other chromosomes, although there was no difference for the rate of polymorphism between laboratory strains and the more distant CAST or SPR. In the human, the X chromosome has been reported to have a three-fold lower rate of RFLP
polymorphism ${ }^{16}$. The effect has been attributed to the different genetic and population genetic forces acting on the X chromosome as compared to the autosomes. For example, the mutation rate is thought to be higher in the male germline than the female germline. Since X chromosomes pass through only $2 / 3$ as often as do autosomes, the mutation rate may be correspondingly lower. Also, the fact that X chromosomes function in the haploid state in males implies that selection acts differently, which may diminish polymorphism. Our data suggest that the presence of reduced polymorphism on the X chromosome may be general, at least in mammals.

The 3,012-marker SSLP map should facilitate a wide range of biological studies. For initial genetic mapping studies, one can select about 100 markers spaced at 15 cM intervals. It may be convenient to use polymorphisms that are easily resolved on agarose gels (about 75% of the total). To map a polygenic or quantitative trait ${ }^{17}$, one would genotype each progeny for each marker, a task that might take a few months or less. To map a monogenic trait, one can proceed even more rapidly by using 'phenotyping pooling' ${ }^{18}$ in which one initially genotypes only two samples-containing pooled DNA from affected progeny and unaffected progeny, respectively. The two samples should show similar proportions of the two parental alleles at markers unlinked to the trait, but quite different proportions for linked markers. In this manner, one can initially localize a trait with only about 200 PCR reactions, a task that can be accomplished in a few days. Once initial linkage is detected, individual progeny should be genotyped using all markers in the region to identify the closest flanking markers. Since a typical gene should lie at an average distance of 500 kb of a marker and since YAC lbraries with average insert size of 700 kb are available ${ }^{19,20}$, chromosomal walking to the
gene should be rapid. In addition to its application in positional cloning, the map should be valuable for evolutionary studies as well ${ }^{21}$.

For the purpose of constructing a physical map of the mouse genome with overlapping YACs, an even denser genetic map would be desirable. With a map consisting of 6,000 SSLPs, the average spacing between markers would be 500 kb and the typical gene would be at an average distance of 250 kb , both distances being smaller than the average size of current YACs. Given the presence of $50,000-100,000(\mathrm{CA})_{\mathrm{n}}$ repeats in the mouse genome and the availability of streamlined methods for genetic map construction, such a goal should be feasible ${ }^{19}$.

Methodology

Construction of genetic map. Briefly, (1) sequences containing simple sequence repeats (almost all $(C A)_{n}$) were obtained, either through sequencing of genomic clones that hybridize to $(\mathrm{CA})_{15}$ or $(\mathrm{GT})_{15}$, or by searching sequence databases; (2) PCR primers flanking the simple sequence repeat were selected;
(3) the PCR assays were used to characterize allele sizes in twelve mouse strains: C57BL/6J-ob/ob, C57BL/6J, DBA/2J, A/J, C3H/HeJ, BALB/cJ, AKR/J, NON/Lt, NOD/MrkTacBr, LP/J (all laboratory strains, derived from M. m. domesticus and M. m. musculus), SPRET/Ei (a strain of the species M. spretus), and CAST/Ei (a strain of the subspecies M. m. castaneus); (4) for those assays detecting variation between OB and CAST, 46 progeny from an (OB \times CAST)F2 intercross were genotyped; and (5) genetic maps were constructed by using the MAPMAKER computer package ${ }^{22}$, incorporating a mathematical error-checking procedure ${ }^{23}$. These steps were performed essentially as previously described, with the following modifications. The OB and B6 strains are a congenic pair, with OB having been constructed by repeated backcrossing to $B 6$ with selection for the ob mutation.

Genomic Libraries. The short-insert total genomic libraries were constructed by using a variety of different procedures: complete single digestion with MboI, AluI, HaeIII, and complete triple digests using AluI, HaeIII, and RsaI. Digests were fractionated on 4% NuSieve GTG agarose and fragments between 200 and 500 bp were selected for ligation into M13mp19. (Some libraries were also prepared by ligation into the plasmid pCDNAII, but this vector was eventually abandoned in favor of M13mp19 due to the superior sequence quality obtained from the single stranded template.) All libraries were transformed into XL1-Blue cells (Stratagene). DNA was prepared from

M13 clones by using a magnetic bead miniprep, essentially as previously described ${ }^{24}$.

Length Screen of Clones: In some proportion of clones, the (CA) ${ }_{\mathbf{n}}$ repeat is too close or too far from the cloning site to allow PCR primers to be selected on both sides. To avoid sequencing such clones, a preliminary screening step was used to determine the size of the insert and the position of the repeat relative to the vector sequence. Miniprepped DNA was diluted 30 -fold in distilled, deionized $\mathrm{H}_{2} \mathrm{O}$, and $1 \mu \mathrm{l}$ of this dilution was used as the template in a $15 \mu \mathrm{l}$ PCR reaction using AmpliTaq DNA polymerase (Perkin-Elmer Cetus) set up according to the manufacturer's specifications. Three PCR reactions were performed on each miniprep: (1) with primers flanking the M13 cloning site ("Forward": 5"-TGTAAAACGACGGCCAGT-3" and "Reverse": 5'-CAGGAAACAGCTATGACC-3'); (2) with the "Forward" primer and a primer complementary to a (CA) n_{n}-repeat (5^{\prime}-CCCGGATCC(GT) $)_{-} 3^{\prime}$); and (3) with the "Forward" primer and a primer complementary to a (GT) $\mathbf{n}^{\text {-repeat }}$ (5 'CCCGGATCC(CA) $\left.)_{-}-3^{\prime}\right)$. Reaction 1 is designed to measure the length of the insert, while Reaction 2 or 3 is designed to measure the distance from the Forward primer to the repeat. Reaction 1 and a pool of reactions 2 and 3 were electrophoresed on a 2% Metaphor agarose gel (FMC Bioproducts). Clones with insert size less than 700 bp and with the repeat within a range of $50-500$ bp from the Forward primer were sequenced. Length screening was carried out in high throughput in 96 -well microtiter plates.

Duplicate Checking. To avoid mapping previously encountered simple sequence repeats, a computer program was used to compare newly determined DNA sequences to previously sequenced clones. The proportion of duplicates remained in the range of $5-10 \%$ throughout the project, owing to
periodic substitution of new libraries constructed with different restriction enzymes.

Genotyping: To genotype F2 progeny for SSR polymorphisms, PCR reactions were performed with one radioactively labeled primer and one unlabelled primer and the products were visualized upon autoradiography of polyacrylamide gels. Primers were end-labeled with [γ^{32} P]ATP (RediVue, Amersham) according to standard protocols ${ }^{25}$. A 20 ng aliquot of genomic DNA was amplified in a $10 \mu \mathrm{l}$ PCR reaction using AmpliTaq DNA polymerase (Perkin-Elmer Cetus) according to manufacturer's specifications. The primer concentrations were 75 nM end-labeled forward primer, and 75 nM unlabeled reverse primer. The reactions were overlaid with $40 \mu \mathrm{l}$ of light mineral oil (Sigma). Reactions were amplified on a TC1600 thermal cycler (Intelligent Automation Systems, Cambridge, MA) using the following protocol: 30 cycles of $92^{\circ} \mathrm{C}$ for 30 seconds, $55^{\circ} \mathrm{C}$ for 30 seconds, and $72^{\circ} \mathrm{C}$ for 30 seconds. Gels and autoradiography were as previously described (Dietrich, et al. 1992).

Analysis of clusters of crossovers and markers. As noted in the text, the assumption that markers are randomly distributed with respect to genetic distance implies that the sequence of markers and crossovers occurring in the map should follow the expected behavior of coin flips. The expected behavior of head runs in coin flipping has been well studied ${ }^{12}$. If the probability of heads is p, the expected proportion of tails followed by at least i consecutive heads is p^{i}. If R_{n} denotes the longest run of consecutive heads when the coin is flipped n times, the expected value of R_{n} is $\mu=\log _{1 / \mathrm{p}}((\mathrm{n}-1)(1-\mathrm{p})+1)$ and the
distribution of R_{n} is given approximately by $\operatorname{Prob}(R-\mu>t) \approx \exp (-p t)$. These formulas are used in computing the expectations in Tables 5 and 6.

Acknowledgments

We thank laboratory aides Loden Wangchuk, Dawa Tsering and Gail Farino for excellent technical assistance. We thank Robert Williams and Richelle Cutler of the University of Tennessee and Lois Maltais of the Jackson Laboratory for their help in ascertaining the official mouse gene names for SSLPs developed from gene sequences in GENBANK. This work was supported in part by grants from the National Center for Human Genome Research and the Markey Foundation (to E.S.L.).

References

1. Weber, J.L. \& May, P.E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44, 388-396 (1989).
2. Love, J.M., Knight, A.M., McAleer, M.A., \& Todd, J.A. Towards construction of a high-resolution map of the mouse genome using PCR analysed microsatellites. Nucleic Acids Res. 18, 4123-4130 (1990).
3. Weissenbach, J., et al. A second-generation linkage map of the human genome. Nature 359, 794-801 (1992).
4. Dietrich, W.F. et al. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423-447 (1992).
5. Weissenbach, J. et al. (submitted).
6. Dietrich, W.F. et al. in Genetic Maps 1992 (ed O’Brien, S.) 4.1104.142 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1992).
7. Miller, J.C., et al. in Genetic Variants and Strains of the Laboratory Mouse, 3rd ed. (ed. Lyons, M.F. \& Searle, A.) (Oxford Univ. Press, New York , 1994) (in press).
8. Copeland, N.G., et al. A genetic linkage map of the mouse: Current applications and future prospects. Science 262, 57-66 (1993).
9. Copeland, N.G., et al. Genome Maps IV: The Mouse. Science 262, 67-82 (1993).
10. Evans, E. in Genetic Variants and Strains of the Laboratory Mouse, 2nd ed., (ed. M.F. Lyon and A. Searle) 576-578 (Oxford University Press, New York, 1989).
11. Mardon, G., et al. Mouse Zfx protein is similar to Zfy-2: each contains an acidic activating domain and 13 zinc fingers. Mol Cell Biol 10, 6818 (1990).
12. Arratia, R., Goldstein, L. \& Gordon, L. Poisson Approximation and the Chen-Stein Method. Stat. Sci. 5, 403-434 (1990).
13. Eicher, E.M. \& Shown, E.P. Molecular markers that define the distal ends of mouse autosomes 4, 13, 19 and the sex chromosomes. Mammal. Genome. 4, 226-229 (1993).
14. Tanzi, R.E., et al. A genetic linkage map of human chromosome 21: analysis of recombination as a function of sex and age. Am J Hum Genet 50, 551-8 (1992).
15. Bryda, E.C., De Pari, J.A., Sant'Angelo, D.B,, Murphy, D.B., \& Passmore, H.C. Multiple sites of crossing over within the Eb recombinational hotspot in the mouse. Mamm Genome 2, 123-9 (1992).
16. Hofker, M.H., et al. The X chromosome shows less genetic variation at restriction sites than the autosomes. Am J Hum Genet 3, 438-51 (1986).
17. Lander, E.S. \& Botstein, D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185-199 (1989).
18. Michelmore, R.W., Paran, I., \& Kesseli, R.V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88, 9828-32 (1991).
19. Larin, Z., Monaco, A.P. \& Lehrach, H. Yeast artificial chromosome libraries containing large inserts from mouse and human DNA. Proc. Natl. Acad. Sci., 88, 4123 (1991).
20. Kusumi, K., Smith, J.S., Segre, J.A., Koos, D.S. \& Lander, E.S. Construction of a large-insert yeast artificial chromosome (YAC) library of the mouse genome. Mammalian Genome 4, 391-392 (199 3).
21. Bruford, M.W. \& Wayne, R.K. Microsatellites and their application to population genetic studies. Curr. Opin. Genet. Devel. 3, 939-944 (1993).
22. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M., Lincoln, S. and Newburg, L. MAPMAKER: An interactive computer package for constructing genetic linkage maps of experimental and natural populations. Genomics 1, 174-181 (1987).
23. Lincoln, S.E. \& Lander, E.S. Systematic detection of errors in genomic linkage data. Genomics 14, 604-610 (1992).
24. Hawkins, T. M13 single-strand purification using a biotinylated probe and streptavidin coated magnetic beads. DNA Seq 3, 65-9 (1992).
25. Sambrook, J., Fritsch, E.F. and Maniatis, T. Molecular Cloning: A Laboratory Manual, Ed. 2. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989).

Figure Legends

Fig. 1 SSLP genetic map of the mouse. For the 99% of markers that were developed at the Whitehead Institute/MIT Center for Genome Research, formal locus names have been abbreviated. For example, the locus D7Mit3 is simply denoted by 3 on chromosome 7. For loci developed elsewhere, the laboratory designation is retained (e.g., D4Nds1 is denoted Nds1). For loci developed from genes for which an gene symbol has been assigned by the mouse nomenclature committee, the gene symbol is given in parentheses to aid in correlation with the mouse gene map. Linkage groups are represented by lines, with the centromere at the top. Each linkage group consists of markers that are linked to each other by a LOD score of at least 5 . The type face of marker names indicates the statistical support for the genetic order shown. Markers whose order relative to the rest of the map is supported by a LOD of 2.5 or higher are indicated in bold face type; these are referred to as "framework" markers. Markers whose order is supported by a LOD between 1.0 and 2.5 are indicated in plain face type. Markers in italics have a LOD in support of order of 1.0 or less; these markers represent ambiguities with regard to the flanking markers only, but their placement LOD score relative to the rest of the map is greater than 2.5. Ambiguities can arise either because genotypes were not obtained for a few progeny or because the marker is dominant rather than codominant (about 5% of the total). Distances in centiMorgans between markers are indicated to the left of the line and were calculated using Kosambi's map function. Where multiple markers did not recombine in the 92 meioses studied, they are listed together in a block.

Fig. 2 Observed proportion of genetic intervals in the map having $\geq i$ crossovers compared to the expected proportion of $\pi_{c}{ }^{i}$ (where $\pi_{c}=0.32$). Data are plotted on a logarithmic scale, for which the expected data fall on a line. Observed data are plotted as points. Solid line contains expected values, with dotted lines indicating upper and lower confidence intervals corresponding to 2 standard deviations.

Fig. 3 Observed proportion of blocks in the map containing $\geq \mathrm{i}$ recombinationally unseparated markers compared to the expected proportion of $\pi_{m}{ }^{1}$ (where $\pi_{m}=0.68$). Data are plotted on a logarithmic scale, for which the expected data fall on a line. Observed data are plotted as points. Solid line contains expected values, with dotted lines indicating upper and lower confidence intervals corresponding to 2 standard deviations.

Fig. 4 Histogram showing number of distinct allele sizes among 12 strains characterized for 3012 SSLPs reported here.

Table 1. Genetic Markers and Genetic Length by Chromosome

Chromosome	Number of Markers	Number of Random Markers	Number of Genes	'Consensus' Genetic Length ${ }^{\text {a }}$	Observed Genetic Lengthb
1	236	220	16	98	114.4
2	223	208	15	107	95.5
3	160	149	11	100	67.8
4	177	171	6	81	74.7
5	174	162	12	93	84.4
6	169	153	16	74	63.9
7	175	160	15	89	69.4
8	161	155	6	81	75.3
9	158	141	17	70	71.1
10	142	136	6	78	73.6
11	172	149	23	78	84.8
12	140	130	10	68	61.9
13	157	152	5	72	62.6
14	139	126	13	53	65.9
15	131	123	8	62	63.7
16	97	96	1	59	54.8
17	130	114	16	53	51.1
18	110	105	5	57	40.1
19	65	62	3	42	57.6
X	96	86	10	88	72.3
Total	3012	2798	214	1503	1404.9

Table 2. Distribution of Random Markers based on Cytogenetic Length of Chromosomes

Chrom. \begin{tabular}{cccc}
\& \& \multicolumn{3}{c}{ Nased on cytogenetic lengtha }

\cline { 3 - 3 }

Random
Markersb
:---:
length
:---:
of Markers

\end{tabular}

Autosomes only

1	220	7.7%	$208.4 \pm$	± 3.9	0.84
2	208	7.4%	$201.2 \pm$	$\pm .6$	0.50
3	149	6.4%	173.4 ± 12.7	-1.91	
4	171	6.3%	170.5 ± 12.6	0.04	
5	162	6.1%	164.4 ± 12.4	-0.19	
6	153	5.9%	$160.1 \pm$	12.3	-0.58
7	160	5.5%	150.2 ± 11.9	0.82	
8	155	5.3%	143.8 ± 11.7	0.96	
9	141	5.1%	138.6 ± 11.5	0.21	
10	136	5.1%	137.2 ± 11.4	-0.10	
11	149	5.0%	136.6 ± 11.4	1.09	
12	130	5.2%	141.2 ± 11.6	-0.97	
13	152	4.7%	126.8 ± 11.0	2.29	
14	126	4.8%	129.1 ± 11.1	-0.28	
15	123	4.3%	117.2 ± 10.6	0.55	
16	96	4.1%	110.3 ± 10.3	-1.39	
17	114	4.1%	111.7 ± 10.3	0.22	
18	105	4.1%	112.3 ± 10.4	-0.70	
19	62	2.9%	79.0 ± 8.8	-1.94	
Total	2712	100.0%	2712.0		

Table 2 (continued)

Autosomes vs. $\mathbf{X f}^{\mathbf{f}}$

Autosomes	2712	93.7%	2640.7 ± 12.0	5.94
X	86	6.3%	159.3 ± 12.0	-5.94
Total	2798	100.0%	2798.0	

a. Cytogenetic length taken from Evans (1989).
b. Only random markers are considered to avoid biases in chromosomal distribution of known genes.
c. Mean \pm standard deviation.
d. Z-score = (observed-expected)/standard deviation.
e. None of the Z-scores are significant at the $\mathrm{p}=0.05$, after correction for multiple testing (Bonferroni correction for 19 tests).
f. Expectation reflects the fact that 12% of the random markers were derived from male DNA (thus underrepresentingthe X chromosome by a factor of two) and 88% from female DNA. Z-score is significant at $\mathrm{p}<$ 0.0001.

Table 3. Distribution of number of crossovers between consecutive random markersa

Crossovers per Interval	Observed		Expected ${ }^{\text {b }}$			$\mathbf{P}(\text { longest run } \geq \mathbf{n})^{\mathbf{b}}$
	Number	Percentage	Number		rcentag	
0	1928	69.9\%	$1878.1 \pm$	24.5	69.7\%	100\%
1	542	19.7\%	$598.7 \pm$	21.6	21.1\%	100\%
2	185	6.7\%	$190.9 \pm$	13.3	6.4\%	100\%
3	61	2.2\%	60.8 士	7.7	1.9\%	100\%
4	26	0.9\%	$19.4 \pm$	4.4	0.6\%	100\%
5	8	0.3\%	$6.2 \pm$	2.5	0.2\%	95\%
6	5	0.2\%	$2.0 \pm$	1.4	0.1\%	61\%
7	1	<0.1\%	$0.6 \pm$	0.8	<0.1\%	26\%
8	0	0.0\%	$0.2 \pm$	0.4	<0.1\%	9\%
9	0	0.0\%	$0.1 \pm$	0.3	<0.1\%	3\%
10	0	0.0\%	$0.0 \pm$	0.1	<0.1\%	1\%
11	1	<0.1\%	$0.0 \pm$	0.1	<0.1\%	0.3\%
Total	2757					

a. Only random markers are considered to avoid biases in distribution of known genes.
b. See methodology concerning calculation.

Table 4. Distribution of number of random markers occurring between consecutive crossoversa

Markers per Block	Observed		Expected ${ }^{\text {b }}$			\mathbf{P} (longest run $\geq \mathbf{n})^{\mathbf{b}}$
	Number	Percentage	Number		entage	
0	485	36.4\%	$425.3 \pm$	17.0	31.9\%	100\%
1	284	21.3\%	$289.7 \pm$	15.1	21.7\%	100\%
2	170	12.7\%	$197.3 \pm$	13.0	14.8\%	100\%
3	105	7.9\%	$134.4 \pm$	11.0	10.1\%	100\%
4	80	6.0\%	$91.6 \pm$	9.2	6.9\%	100\%
5	58	4.3\%	$62.4 \pm$	7.7	4.7\%	100\%
6	44	3.3\%	$42.5 \pm$	6.4	3.2\%	100\%
7	36	2.7\%	$29.0 \pm$	5.3	2.2\%	100\%
8	23	1.7\%	$19.7 \pm$	4.4	1.5\%	100\%
9	14	1.0\%	$13.4 \pm$	3.6	1.0\%	100\%
10	13	1.0\%	$9.2 \pm$	3.0	0.7\%	100\%
11	6	0.4\%	$6.2 \pm$	2.5	0.5\%	100\%
12	8	0.6\%	$4.2 \pm$	2.1	0.3\%	100\%
13	4	0.3\%	$2.9 \pm$	1.7	0.2\%	100\%
14	0	0.0\%	$2.0 \pm$	1.4	0.1\%	98\%
15	2	0.1\%	$1.3 \pm$	1.2	0.1\%	94\%
16	0	0.0\%	$0.9 \pm$	1.0	0.1\%	85\%
17	0	0.0\%	$0.6 \pm$	0.8	<0.1\%	73\%
18	0	0.0\%	$0.4 \pm$	0.7	<0.1\%	59\%
19	0	0.0\%	$0.3 \pm$	0.5	<0.1\%	45\%
20	1	0.1\%	$0.2 \pm$	0.4	<0.1\%	34\%
21	$\because \quad 0$	0.0\%	$0.1 \pm$	0.4	<0.1\%	24\%
22	0	0.0\%	$0.1 \pm$	0.3	<0.1\%	17\%
23	0	0.0\%	$0.1 \pm$	0.2	<0.1\%	12\%
24	1	0.1\%	$0.0 \pm$	0.2	<0.1\%	8\%
Total	1334					

a. Only random markers are considered to avoid biases in distribution of known genes.
b. See methodology concerning calculation.

Table 6. Polymorphism rate for $\mathbf{3 , 0 1 2}$ markers by chromosome

Chromosome	Among lab strains $\mathbf{a , b}$	Lab strains vs. SPR or CAST
1	54%	94%
2	45%	93%
3	50%	94%
4	53%	94%
5	47%	96%
6	47%	94%
7	45%	93%
8	42%	93%
9	50%	94%
10	35%	96%
11	54%	95%
12	49%	92%
13	47%	94%
14	48%	94%
15	51%	93%
16	43%	95%
17	57%	92%
18	51%	95%
19	49%	93%
X	29%	94%
Xenome-wide	49%	94%

a. Pairwise comparisons of OB, B6, DBA, A C3H, BALB, AKR, NON, NOD, and LP.
b. Standard error of the mean for each chromosome depends on number of markers studied, but is approximately 0.6% for typical chromosomes and 0.1% for the genome-wide average.
c. Standard error of the mean for each chromosome depends on number of markers studied, but is approximately
1.7% for typical chromosomes and 0.4% for the genome-wide average.

Table 5. Rate of polymorphism for $\mathbf{3 , 0 1 2}$ markers among 12 mouse strains ${ }^{\text {a,b }}$

	OB	B6	DBA	A	C3H	BALB	AKR	NON	NOD	LP	SPR	CAST
OB	-											
B6	10%	-										
DBA	54%	51%	-									
A	55%	53%	47%	-								
C3H	55%	52%	38%	33%	-							
BALB	53%	51%	46%	32%	37%	-						
AKR	54%	52%	48%	45%	44%	44%	-					
NON	55%	52%	52%	48%	48%	48%	49%	-				
NOD	56%	53%	49%	51%	49%	50%	49%	45%	-			
LP	56%	54%	51%	53%	50%	49%	52%	51%	52%	-		
SPR	93%	93%	92%	93%	93%	93%	93%	92%	92%	93%	-	
CAST	100%	98%	94%	94%	95%	95%	95%	95%	95%	94%	95%	

a. Strains designations are: $\mathrm{OB}=\mathrm{C} 57 \mathrm{BL} / 6 \mathrm{~J}-\mathrm{ob} / \mathrm{ob}, \mathrm{B} 6=\mathrm{C} 57 \mathrm{BL} / 6 \mathrm{~J}, \mathrm{DBA}=\mathrm{DBA} / 2 \mathrm{~J}, \mathrm{~A}=\mathrm{A} / \mathrm{J}, \mathrm{C} 3 \mathrm{H}=\mathrm{C} 3 \mathrm{H} / \mathrm{HeJ}$, $\mathrm{BALB}=\mathrm{BALB} / \mathrm{cJ}, \mathrm{AKR}=\mathrm{AKR} / \mathrm{J}, \mathrm{NON}=\mathrm{NON} / \mathrm{Lt}, \mathrm{NOD}=\mathrm{NOD} / \mathrm{MrkTacBr}, \mathrm{LP}=\mathrm{LP} / \mathrm{J}, \mathrm{SPR}=\mathrm{SPRET} / \mathrm{Ei}, \mathrm{CAST}=$ CAST/Ei.
b. Standard error of the mean is approximately 0.9% for rates near 50% and 0.4% for rates near 95%.,

Chromosome 1

Figure 1
consists of twenty (20) papers

Chromosome 2

Chromosome 3

Chromosome 4

Chromosome 5

Chromosome 6

Chromosome 7

Chromosome 9

Chromosome 8

Chromosome 10

Chromosome 11

Chromosome 12

Chromosome 14

Chromosome 13

Chromosome 15

Chromosome 16

Chromosome 17

Chromosome 18

Chromosome 19

Chromosome X

Dietrich et al.

Dietrich et al.

Number of Alleles

Isolation and Chromosomal Assignment of 100 Highly Informative Human Simple Sequence Repeat Polymorphisms

Thomas J. Hudson, ${ }^{\star} \dagger$ Marcy Engelstein,* Matthias K. Lee,* Elizabeth C. Ho, ${ }^{*}$ Marc J. Rubenfield, ${ }^{*, 1}$ Christopher P. Adams,* David E. Housman,*† and Nicholas C. Dracopoli*, ${ }^{2}$
*Center for Genome Research, and †Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

Received January 29, 1992; revised March 2, 1992

Abstract

One hundred highly informative simple sequence repeat (SSR) polymorphisms have been isolated and mapped to specific human chromosomes by somatic cell hybrid analysis. These markers include 97 (CA) $)_{n}, 2$ (AGAT) $_{n}$, and a single (AACT) ${ }_{n}$ repeat. All the SSRs have heterozygosities >0.50 and can be amplified using identical PCR conditions. At least one SSR was detected on every chromosome, except for chromosomes 22 and Y. The frequency of (CA) $)_{n}$ repeats on each chromosome was proportional to the relative chromosomal length, except for chromosome 15 , on which a substantial excess of markers was identified. (c) 1992 Academic Press, Inc.

INTRODUCTION

The development of genetic maps of eukaryotic genomes has always been limited by the availability of markers. The earliest maps of human autosomes were developed using a variety of phenotypic markers, including blood group antigens, serum protein polymorphisms, and erythrocyte isozymes (Mohr, 1954; Giblett, 1969). These markers were generally quite uninformative and required a diverse range of biochemical and immunological techniques for their analysis. This situation changed rapidly after Botstein et al. (1980) observed that DNA sequence polymorphisms provided an enormous, untapped source of variation in eukaryotic genomes. Markers based on restriction site polymorphisms proliferated rapidly during the early 1980's and were soon supplemented by the more informative minisatellites (Jeffreys et al., 1985) or variable number of tandem repeat (VNTR) polymorphisms (Nakamura et al., 1987). Lowresolution maps of the human genome (Donis-Keller et al., 1987) have been completed using RFLPs and minisatellites, but these maps are limited in their usefulness because of the relatively low informativeness of most

[^11]RFLPs ($H<0.50$), and the nonrandom distribution of the minisatellites in the telomeric regions of human chromosomes (Royle et al., 1988). The recent discovery that simple sequence repeats (SSRs), or microsatellites, are highly informative has provided another source of DNA polymorphisms (Weber and May, 1989). SSRs are widely dispersed throughout eukaryotic genomes (Hamada et al., 1982; Stallings et al., 1991), highly polymor phic (Weber and May, 1989; Weber, 1990), and easily typed using the polymerase chain reaction (PCR). These characteristics make them ideal markers for the construction of high-resolution maps of the human genome (White et al., 1990; Dracopoli et al., 1991). In this article, we report the development of 100 highly informative markers ($H>0.50$) in the human genome that can all be analyzed using identical PCR conditions.

METHODS AND MATERIALS

Construction of small insert genomic libraries. Human female genomic DNA was digested with Rsal and HaellI. Fragments in the $300-$ to $500-\mathrm{bp}$ range were isolated after electrophoresis in a 1% low-meltingtemperature agarose gel and purified by phenol extraction. The sizefractionated human genomic DNA was ligated into 10 multiplex se quencing vectors (Church and Kieffer-Higgins, 1988) and into M13mp19. Both the multiplex plasmid and M13mp19 vector DNA were prepared by digestion with Smal and dephosphorylated by treatment with calf intestinal alkaline phosphatase (Sambrook et al, 1989).

Library screening for clones containing (CA) ${ }_{n}$ and tetranucleotide repeats. The multiplex plasmid libraries were plated at low density ($100-500$ colonies per $150-\mathrm{mm}$ plate) on LB plates with tetracycline ($50 \mu \mathrm{~g} / \mathrm{ml}$). Colonies were replicated onto nylon filters and autoclaved for 3 min before prehybridization at $65^{\circ} \mathrm{C}$ in 1.0 M sodium phosphate (pH 7.2), 0.5 M EDTA, 20% SDS, 10% BSA (Church and Gilbert 1984) for $1-4 \mathrm{~h}$. Labeling reactions using T4 polynucleotide kinase were carried out as described in Sambrook et al. (1989), and the unincorporated $\left[\gamma{ }^{32} \mathrm{P}\right]$ ATP was removed on a Nuctrap probe purification column (Stratagene Inc., La Jolla, CA). The filters were hybridized overnight at $65^{\circ} \mathrm{C}$ in the same buffer after the addition of $1 \times 10^{\circ}$ $\mathrm{cpm} / \mathrm{ml}$ of end-labeled (CA) ${ }_{15}$ oligonucleotides. The filters were washed at room temperature in two changes of $1 \times \mathrm{SSC} / 0.1 \%$ SDS for $30-60 \mathrm{~min}$ and then for 60 min in two changes of the same buffer at $65^{\circ} \mathrm{C}$. The washed filters were exposed to X-ray film overnight, and positive colonies were picked onto a secondary plate for rescreening.
The M13mp19 libraries were also plated out at low density on LB plates by standard methods (Sambrook et al., 1989). Replica filters of
the M13mp19 plaques were hybridized with both the (CA) ${ }_{15}$ and its reverse complement (GT) ${ }_{15}$ oligonucleotides under the same conditions as the multiplex library colony lifts. Replica filters of the M13mp19 library were also hybridized at $50^{\circ} \mathrm{C}$ to a pool of labeled oligonucleotides containing tetranucleotide repeat sequences $\left((A A T T)_{8},(\text { AAAT })_{8},(A A C T)_{8},(A A G T)_{8},(A G A T)_{8}\right.$, and $\left.(A C A T)_{8}\right)$ and washed in $1 \times \mathrm{SSC} / 0.1 \%$ SDS at a maximum temperature of $50^{\circ} \mathrm{C}$.

DNA sequencing. M13mp19 phage clones were prepared by standard methods, and DNA was purified by phenol extraction (Sambrook et al., 1989) or on Qiagen columns (Qiagen Inc.) and sequenced using the Taq dye primer cycle sequencing kit on the ABI 373A DNA sequencing system (Applied Biosystems Inc.). All M13mp19 clones are designated 'MH' (Table 3). The multiplex vector clones were prepared and sequenced by standard multiplex sequencing methods (Church and Kieffer-Higgins, 1988) and are designated MS (Table 3). All clones with any other designation are multiplex vector clones sequenced using a custom-labeled primer with the Taq dye primer cycle sequencing kit on the ABI 373A DNA sequencing system or by manual dideoxy sequencing with Sequenase (US Biochemicals Inc.).

Primer selection. The sequence data were analyzed using PRIMER (M. J. Daly, S. Lincoln, and E. S. Lander, unpublished). PRIMER is a computer program for selecting PCR primer pairs to amplify regions of genomic DNA flanking specified target sequences, such as (CA) $)_{n}$ repeats. PRIMER analyzes potential primer sequences on each side of the target, calculates annealing temperatures, determines homology to Alu or LINE repetitive elements, determines whether primers have significant complementarity to themselves or each other, and determines the total size and GC content of the PCR product.

Primer pairs were selected using the automatic function of PRIMER, where the optimal oligonucleotide T_{m} was set at $60^{\circ} \mathrm{C}$, and the range for the PCR product size was set from 100 to 250 bp . In some cases alternate primers were selected because of the presence of an Alu repeat close to the SSR that prevented the selection of primer pair within the default size range.
The PRIMER program can be obtained directly over the Internet by using anonymous ftp to GENOME.WI.EDU and copying the program from the folder DISTRIBUTION/PRIMER.0.4. The program may also he obtained from Dr. Eric S. Lander at the Whitehead Institute for Biomedical Research (9 Cambridge Center, Cambridge, MA 02142).

ICR typing. PCR was performed using a single [$\left.\gamma^{-32} \mathrm{P}\right]$ ATP endlabeled primer under conditions described previously (Dracopoli and Meisler, 1990), except that all reactions were carried out in 96 -well plate format. The $20-\mu \mathrm{l}$ PCR reactions contained 100 ng template DNA, 2 pmol of the end-labeled forward primer, 8 pmol unlabeled forward primer, 10 pmol reverse primer, $0.2 \mathrm{~m} M \mathrm{dNTPs}$, and 0.5 U of Taq DNA polymerase. To increase specificity, $0.2 \mu \mathrm{l}$ Perfect Match polymerase enhancer (Stratagene, La Jolla, CA) was added to the amplifications containing somatic cell hybrid template DNA. PCR reactions were carried out in Perkin-Elmer/Cetus 9600 thermal cyclers using the following cycling conditions: Initial denaturation at $94^{\circ} \mathrm{C}$ for 5 min , followed by 30 cycles of $94^{\circ} \mathrm{C}$ for $10 \mathrm{~s}, 55^{\circ} \mathrm{C}$ for 30 s , and $72^{\circ} \mathrm{C}$ for 30 s , and a final extension of 5 min at $72^{\circ} \mathrm{C}$. The PCR reactions were then mixed with an equal volume of deionized formamide containing bromophenol blue (0.25%) and xylene cylanol (0.25%), denatured at $100^{\circ} \mathrm{C}$ for 5 min , rapidly cooled on ice and loaded onto 6% denaturing polyacrylamide gels. The gels were run for 3 h at 120 W , covered with a thin plastic film, and exposed to X-ray film at $-70^{\circ} \mathrm{C}$ for 2-24 h .

Somatic cell hybrid panels. The analysis of the somatic cell hybrid panels was completed in two phases. Preliminary assignments were made by analysis of the 18 samples in the NIGMS human/rodent somatic cell hybrid mapping panel 1 (Taggart et al., 1985; Mohandas et al., 1986). These assignments were independently confirmed by analysis of the appropriate monochromosomal hybrids from the NIGMS human/rodent somatic cell hybrid mapping panel 2.

Panel 1 consists of 15 somatic cell hybrids derived from the fusion of human male fibroblast cells (IMR-91) with mouse B-82 cells. These 15 hybrids, derived from the same human parental cell line, are supple-
mented with two mouse/human monochromosomal hybrids for chromosomes 16 and X and a single Chinese hamster/human monochromosomal hybrid for chromosome 9 . These three monochromosomal hybrids are all derived from a different human parental cell line.

Panel 2 consists of 23 hybrids containing a single human chromosome and one hybrid containing human chromosome 1 and X . The monochromosomal hybrids that contain human chromosomes 9 and 16 are the same as those in the NIGMS panel 1.

Preliminary chromosomal assignments for each SSR were obtained by comparing the distribution of human-specific PCR products with the pattern of human chromosomal distribution in the NIGMS panel 1. The assignments based on the analysis of panel 1 were all independently confirmed by analysis of the appropriate monochromosomal hybrids from NIGMS panel 2. PCR amplification of hybrid cell DNAs resulted in specific amplification of the predicted human band and in some cases the amplification of additional human and rodent bands. Preliminary chromosomal localizations were only determined for those systems that generated a distinct human PCR product with identical allele sizes to the parental IMR-91 cell line in NIGMS panel 1. In most cases, complete concordance was detected between the presence of the human PCR product and a specific chromosome in panel 1. Complex systems with multiple nonspecific bands that often resulted in discordancies were abandoned at this point. However, a few systems with relatively clean amplification of the human bands from the hybrid cell DNA gave minor discrepancies resulting in their tentative assignment to > 1 chromosome. These systems were subsequently resolved by the analysis of the appropriate monochromosomal hybrids or they were also abandoned.

Mendelian inheritance of SSR polymorphisms. The Mendelian inheritance of each of the SSRs was determined by analysis of two extended families containing a total of 34 individuals.

RESULTS

$(C A)_{n}$ Repeats

Sequence data were obtained from 417 short insert genomic clones containing a $(\mathrm{CA})_{n}$ repeat. These sequences included perfect, imperfect, and compound dinucleotide repeats (Weber, 1990). The repeat element lengths are defined as the longest, uninterrupted sequence of (CA) ${ }_{n}$ dinucleotides. A total of 265 (64%) sequences contained a $(\mathrm{CA})_{n}$ repeat, where $n \geqslant 14,115$ (28%) sequences contained a (CA) ${ }_{n}$ repeat, where $n<14$, and $37(9 \%)$ did not contain a (CA) repeat within the region that was sequenced. One additional $(\mathrm{CA})_{n}$ repeat, D7S466, was derived from an M13mp19 library containing genomic DNA from the hybrid cell line A9/1492-37, which was previously thought to be monochromosomal for chromosome 1p (Dracopoli et al., 1988). The complete nucleotide sequences for all the (CA) n repeats in Table 3 have been deposited in GenBank and the Accession Nos. are listed in Table 3.

Tetranucleotide Repeats

Sequence data were obtained for eight clones containing tetranucleotide repeats after hybridization of a pool of six oligonucleotides to the low-density filters used for the isolation of $(\mathrm{CA})_{n}$ repeats from the $\mathrm{M} 13 \mathrm{mp} 19 \mathrm{li}-$ brary. The complete nucleotide sequences for the tetranucleotide repeats in Table 3 have been deposited in GenBank and the Accession Nos. are listed in Table 3.

TABLE 1

Chromosomal Assignment of 124 (CA) n_{n} Repeat Blocks Derived from a Genomic Library of Human Female DNA

Chromosome	Relative length	No. (CA) expected ± 1 SD b	No. (CA) $\boldsymbol{n}_{\boldsymbol{n}}$	z-score

[^12]
Primer Selection

The 265 sequences containing an uninterrupted run of $\geqslant 14$ dinucleotides and the eight tetranucleotide repeats with more than eight uninterrupted repeats were selected for further analysis. Primer pairs were chosen from $166(63 \%)$ of the $265(\mathrm{CA})_{n}$ sequences analyzed by PRIMER. Primer pairs were not chosen from 99 (37\%) of the sequences because the (CA) ${ }_{n}$ repeat was too close to the cloning site in $55(21 \%)$ clones, was flanked by an Alu repeat in $22(8 \%)$ clones, or was flanked by a region of low G/C content in $5(2 \%)$ clones or because the sequence was ambiguous or incomplete in 17 (6\%) clones.

Five of the eight tetranucleotide repeats were located adjacent to Alu repetitive elements. Primers were selected from the three sequences without $A l u$ and were only selected from $2 / 5$ sequences containing the Alu repeat.

Chromosomal Assignments

A total of $124(75 \%)$ of the $166(\mathrm{CA})_{n}$ repeats and 4 tetranucleotide repeats were mapped to specific chromosomes. Chromosomal assignments were not determined for $42(25 \%)$ of these (CA$)_{n}$ repeats because they either had very low heterozygosities or because they amplified poorly. At least one (CA) n repeat was detected on every chromosome except for 22 (Table 1). Since the
library was constructed from female genomic DNA, no markers were expected on the Y chromosome. The observed assignment of the (CA) repeats was compared to the expected distribution if (CA) ${ }_{n}$ repeats are randomly distributed in the human genome. The expected frequencies for each chromosome were calculated by assuming that the frequency of $(\mathrm{CA})_{n}$ repeats is proportional to the relative chromosomal length (Table 1). The observed frequency of (CA) ${ }_{n}$ repeats agrees with that predicted by the model of random distribution, except on chromosome 15 , which has a substantial excess of markers. The data describing the chromosomal assignment of each of the 100 markers in Table 3 have been deposited in the Genome Database (GDB).

Heterozygosity

The $166(\mathrm{CA})_{n}$ repeats and 4 tetranucleotide repeats were tested for heterozygosity against 24 unrelated CEPH parents (12 male and 12 female). The heterozygosity of the $5(\mathrm{CA})_{n}$ repeats assigned to the X chromosome were reanalyzed on a panel of 24 unrelated females from the CEPH reference families. Heterozygosities were determined for $136(82 \%)$ of the (CA) ${ }_{n}$ repeats and $4(80 \%)$ tetranucleotide repeats. Thirty (18%) of the (CA) ${ }_{n}$ repeats and $1(20 \%)$ tetranucleotide repeat were abandoned for a variety of reasons, including poor amplification, extreme stuttering, or the amplification of multiple secondary bands. The heterozygosity varied between 0.00 and 1.00 in the screening panel of 24 individuals (Fig. 1). Eighty percent of the (CA) ${ }_{n}$ repeats had heterozygosities >0.50, and 49% had heterozygosities > 0.70 (Table 2). The data describing the polymorphism at each of the 100 markers in Table 3 have been deposited in the GDB.

Mendelian Inheritance of SSR Polymorphisms

Mendelian inheritance of all the SSRs listed in Table 3 was tested by coamplifying pairs of markers in the

FIG. 1. Heterozygosity at 136 human (CA) ${ }_{n}$ repeats as a function of the maximum length of the uninterrupted dinucleotide repeat in the sequenced alleles. The relationship between heterozygosity and dinucleotide repeat length was estimated by fitting a second-order polynomial curve to the data using an iterative least-squares method.

MAPPING 100 HUMAN SSRs

TABLE 2
Heterozygosity at 136 Human (CA) ${ }_{\boldsymbol{n}}$ Repeats

Heterozygosity	Number of SSRs	Cumulative $\%$
$1.00-0.90$	3	2.2
$0.89-0.80$	25	20.6
$0.79-0.70$	39	49.3
$0.69-0.60$	18	62.5
$0.59-0.50$	24	80.1
$0.49-0.40$	6	84.6
$0.39-0.30$	7	89.7
$0.29-0.20$	7	94.9
$0.19-0.10$	5	96.3
$0.09-0.00$		100.0

same $20-\mu \mathrm{l}$ PCR reaction. Marker pairs were selected for coamplification so that the PCR product sizes differed by $>50 \mathrm{bp}$. In almost all cases, the pairs of SSRs coamplified without problems, although the relative signal strength was often reduced. Mendelian inheritance for the 100 SSRs listed in Table 3 was observed in 2 extended families containing DNA samples from 34 individuals.

DISCUSSION

We describe the development of a cohesive panel of human genetic markers in which every SSR can be analyzed using identical PCR conditions. This panel includes highly informative markers from every chromosome, except 22 and Y. The primer sequences of the 100 SSRs with confirmed chromosomal assignments and with heterozygosities $\geqslant 0.50$ are given in Table 3. Most of these highly informative markers are being typed on the CEPH reference families by several collaborating laboratories.

Analysis of (CA) ${ }_{n}$ repeats derived from mouse genomic libraries (Love et al., 1990; Dietrich et al., 1992) and RFLPs defined by probes derived from a human genomic library (Donis-Keller et al., 1987) demonstrates that total genomic libraries are a relatively unbiased source of clones. In contrast, the isolation of markers from libraries derived from somatic cell hybrids is often complicated by the nonrandom distribution of clones, and by contamination with other human chromosomal DNA or rodent DNA (Dracopoli et al., 1988; Hazan et al., 1992; Kwiatkowski et al., 1992). (CA) ${ }_{n}$ repeats have been reported to be relatively uniformly distributed throughout eukaryotic genomes (Hamada et al., 1982; Hamada and Kakunaga, 1982; Stallings et al., 1991), and linkage mapping of human (CA) ${ }_{n}$ repeats (Decker et al., 1992; Dracopoli et al., 1991; Wilkie et al., 1992) and mouse (CA) ${ }_{n}$ repeats (Dietrich et al., 1992) derived from total genomic libraries have not identified any evidence of clustering. The frequencies of (CA) ${ }_{n}$ repeats on each chromosome were, with a single exception, not significantly different from that expected by a model of random distribution (Table 1). However, the detection of 12 $(\mathrm{CA})_{n}$ repeats on chromosome 15 is significantly greater
than that predicted for a chromosome of this size. The reason for the excess of (CA) ${ }_{n}$ repeats on this chromosome is not apparent, and previous studies have not demonstrated an abnormal number of (CA) ${ }_{n}$ repeats on chromosome 15. Analysis of the single-copy sequence flanking each (CA) ${ }_{n}$ repeat on chromosome 15 demonstrates that 11 of the 12 different clones are unique. Therefore, the excess of markers on this chromosome is not due to the biased amplification of a single clone in the multiplex plasmid library.

The heterozygosities observed at (CA) ${ }_{n}$ repeats have been shown to increase with the length of the dinucleotide repeats (Weber, 1990). Since we were attempting to identify highly informative markers, PCR assays were only developed for the repeats with at least 14 uninterrupted dinucleotides in the sequenced allele. The distribution of heterozygosities for these $136(\mathrm{CA})_{n}$ repeats (Fig. 1) is very similar to that described by Weber (1990). There is a gradual increase in the average heterozygosity with increasing length of dinucleotides, but the range of heterozygosity remains wide in the interval from 14 to 22 uninterrupted dinucleotides, which includes the great majority of (CA) ${ }_{n}$ repeats identified in this study (Fig. 1). A total of $67(49 \%)$ of these SSRs have heterozygosities >0.70 (Table 2) and are therefore suitable for inclusion in the "index maps" of human chromosomes.

Weber (1990) has estimated that there are approximately $35,000(\mathrm{CA})_{n}$ repeat blocks with >12 uninterrupted dinucleotides in the human genome. Between 5 and 10% of human genomic DNA is recovered in the $300-$ to $500-\mathrm{bp}$ fraction after digestion with restriction enzymes with four-base recognition sites that do not contain a CpG sequence. Therefore, the HaeIII and RsaI fractions should each contain approximately $3500(\mathrm{CA})_{n}$ repeats with >12 uninterrupted dinucleotides. In the absence of extensive cloning biases, it should be possible to isolate many more (CA) repeats and other SSRs from these libraries without encountering many duplicate clones. Only 7 duplicated sequences were identified after analysis of the first 417 sequences. Five of these were sequentially numbered clones that presumably resulted from duplicate picking of the same colonies. The sixth duplicated sequence consisted of 2 independently derived clones that mapped on chromosome 15. The seventh duplicated sequence consisted of two independently derived clones that mapped on chromosome 1. Although the sequence flanking the dinucleotide repeat was identical, the two clones contained a $(\mathrm{CA})_{19}$ and (TG) ${ }_{17}$ repeat, demonstrating that they were derived from different alleles in the heterozygous genomic DNA used to construct the library. Surprisingly, this (CA) ${ }_{n}$ repeat has also been isolated a third time from the A9/ 1492-37 hybrid library. At this time, it is not possible to systematically compare these 100 highly informative SSRs with those developed in other laboratories because the sequence data for most of the clones are not available in GenBank. However, it is unlikely that many SSRs have been duplicated because of the very large number of $(\mathrm{CA})_{n}$ repeats in the human genome, and because the

TABLE 3
Description of 100 Highly Informative Human SSRs

Locus	Marker	GenBank Accession No.	Primer sequences $\left(5^{\prime}-3^{\prime}\right)$	bp	Repeat	Chromosome	H
D1S159	MIT-MX4	M87710	TCCTTTACATAAATCATTGTCGTG	147	(CA)19	1	0.67
			CGACTCTGCATTACCTTGATAGC				
D1S160	MIT-MS48	M87711	GGTGAAACTAACACTCAACCTGG	150	(CA)19	1	0.72
			GCATCTAGCAAACAGCATGTG				
D1S161	MIT-E112	M87712	CAGGCTTCCAGTTGTCTTCC	159	(CA)17	1	0.84
			CTTCCTGGAATCCAGATGGA				
D1S162	MIT-MS154	M87713	GGGGGAAGAAGTCCGAGTAG	134	(GT)22	1	0.91
			ATAAGGGGAACAGGTCTGGG				
D1S163	MIT-MS217	M87714	TCTTCGTGTGTGGAACCGTA	200	(GT) 18	1	0.68
			GCGAGAAATGAACTTGGCTC				
D1S164	MIT-MS165	M87715	TATTTGGGGCAATAAATCAACC	229	(GT)20	1	0.83
			CTCAGCTCGTTCATTAAATCCC				
D2S93	MIT-G105	M87720	ATGGTGTCATGGTGTTTTGTG	146	(GT)16	2	0.83
			GCACATTAAAAATTGCAAAATG				
D2S94	MIT-MS153	M87721	AGCCTTGGGGAAAACTGG	150	(GT)17	2	0.75
			AACTGGCACAAAGATGCTCC				
D2S95	MIT-A119	M87722	GACAGAGCAACACCCCAACT	146	(GT)17	2	0.85
			TCATCACTCACCCAGACCAA				
D2S96	MIT-N118	M87723	TTCCCCTGGTTCTCTCCC	178	(GT)14	2	0.78
			GATCTGCTAGAATGAAGAAAACACA				
D2S97	MIT-MS211	M87724	GAAAAAGCAGAGAAAAAGACCG	105	(GT) 15	2	0.81
			TCAAGGGAAAAAACAGCGTT				
D2S98	MIT-MS222	M87725	TGTTCAGGATAAATGTACCCCC	131	(CA) 24	2	0.71
			GAGCACAGAGGCAGGAAGTC				
D2S99	MIT-F6	M87726	ACTGCTATTCACAGTTCAGGGA	192	(TG) 23	2	0.73
			TTTCTGGAAGGTTCTTCAGAGC				
D2S100	MIT-MH105	M87719	AGGCTCTTGCCATTCTGAAA	143	(CA)16	2	0.52
			GTATGTCAACCATCCTCTTCCA				
D3S1209	MIT-MS24	M87727	GCTCTTCCTCTCCCTGCC	156	(CA) 22	3	0.75
			TACAAGGGGTGGGAGGTACA				
D3S1210	MIT-MS140	M87728	GGGCTATTTTTGCAACTTACTCG	157	(CA) 17	3	0.71
			ATCCTGATGGCAATATGAAATG				
D3S1211	MIT-1106	M87729	CAGGGCTTGTGGGATTAGAA	181	(CA)15	3	0.88
			ATTTCAGATTTCAGGACAAGGG				
D3S1212	MIT-E109	M87730	gGTACTTTCCACCTAGTCAAAACA	193	(CA) 16	3	0.75
			TGTAGGGTTTGCAATGTCCA				
D3S1214	MIT-E144	M87731	TCTCCACTTT'TCCACCCTA	151	(CA) 15	3	0.60
			TTCGGTCAGGAGCTGCTG				
D3S1215	MIT-MS207	M87732	ATATTTCAGCGTGTGAGATACACA	101	(CA)16	3	0.78
			CATCTCACTCTGGAAGAGAAAATG				
D3S1216	MIT-K117	M87733	CTACTGAGGGATGTTGATGGC	170	(GT)23	3	0.86
			TTGTTTAAGCCATTCAGTCTATGG				
D3S1217	MIT-F8	M87734	TGACAAGTTTAAAGGGTCCCA	190	(GT) 17	3	0.83
			TGTCAAAGTCCCCTTCCTTG				
D3S1227	MIT-MS238	M87735	TAACAGGAGGAATTTTTCTTCTGG GCAAACTGGGTCCTACCCTT	149	(GT) 17	3	0.61
D4S243	MIT-MH34	M87736	TCAGTCTCTCTTTCTCCTTGCA TAGGAGCCTGTGGTCCTGTT	173	(AGAT) 10	4	0.67
D4S244	MIT-MS176	M87737	CGTTTAAGGCCACTTTGCTT	148	(CA)18	4	0.83
			AAAATTGCAAGAAGGCTAATGG				
D4S245	MIT-N133	M87738	TGCAAGTAAACAGTGACCAAAG	107	(CA)16	4	0.52
			TTTGGATATTTGCATTCAAAAA				
D4S246	MIT-MS205	M87739	TGAATATCCCAGCTTTAGAAAAGA	163	(GT) 14	4	0.67
			CCAGCTGTCACTGAGTCAGTT				
D4S247	MIT-MS240	M87740	AATGAGTGGGAAGGTTGCAG	173	(GT)14	4	0.82
			TATACCTATTTCCAGGCATAAGCA				
D4S250	M1T-N136	M87686	TGGACTTGAACTAGTTCTCCAGC	215	(CA) 17	4	0.83
			AGGTTCTCCAGAGAAACAAAACC				
D5S349	MIT-A127	M87741	ATTTGGTTTCCATAGAATCTGAGA	140	(CA)27	5	0.81
			TTACACCCACCAGATTAAGCG				
D5S350	MIT-MS131	M87742	CTCACTCACTTCTCTCTCTGCG	136	(GT) 18	5	0.61
			TTCAAGCGCGAGAAGAATTT				
D5S351	MIT-I105	M87743	ACCAGTCTATGGCAACACAGC	197	(CA)17	5	0.75
			GATGAGCATTGCCACTTTAGC				
D5S352	MIT-MS158	M87744	CCACCGCAGCCAGCTAAT	149	(GT)21	5	0.96
			GAGGTGGGTAGATTACTTGAGTCC				
D5S353	MIT-MH98	M87745	ATACACTGGAAATCCACATTGTG	133	(GT) 18	5	0.83
			ATCCCACACACAGTGCAGAA				
D5S354	MIT-MH96	M87746	CCGAATTGGTCTATAGGTACGC	135	(GT)19	5	0.76
			TCTCATATTGAAGCACAGAAAAAA				
D5S355	MIT-MH91	M87747	GATGTCTTTCCATTGTCTTCTGG	194	(GT)14	5	0.67
			ATAGAAAACCCAGCAAGATAAACA				

TABLE 3-Continued

TABLE 3-Continued

Note. The chromosomal assignment for each locus was determined by somatic cell hybrid analysis. Heterozygosities were determined after analysis of 24 unrelated genomic DNA samples. The length of the PCR product of the sequenced allele is defined in base pairs, and the number and type of repeated elements on the sequenced strand is defined. The primer sequences all have a T_{m} between 58 and $62^{\circ} \mathrm{C}$ and may be amplified using identical PCR conditions described in the text. The complete sequence data for each locus have been deposited in GenBank and may be accessed using the GenBank Accession No.
libraries used by Weber (1990) to isolate many (CA) n repeats were constructed from different restriction digests. Similar analyses of $303(\mathrm{CA})_{n}$ repeats from an MboI-digested and size-fractionated mouse genomic library identified only 6 duplicates (Dietrich et al., 1992). Although there are approximately 50% more (CA) ${ }_{n}$ repeats in the mouse genome (Stallings et al., 1991), these data suggest that the independent isolation of identical
human (CA) ${ }_{n}$ repeats in different laboratories will be a rare event that can be quickly resolved as the repeats are added to the human genetic map.

ACKNOWLEDGMENTS

We thank George Church for help with multiplex sequencing. This work was supported by National Institutes of Health (NIH) Grant

RO1-HG00395 (to N.C.D.) and NIH Center for Genome Research Grant P50-HG00098. Thomas Hudson is a recipient of a ClinicianScientist Award from the Medical Research Council of Canada.

REFERENCES

Botstein, D., White, R. L., Skolnick, M. H., and Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction length polymorphisms. Am. J. Hum. Genet. 32: 314-331.
Church, G. M., and Gilbert, W. (1984). Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1991-1995.
Church, G. M., and Kieffer-Higgins, S. (1988). Multiplex DNA sequencing. Science 240: 185-188.
Decker, R. A., Moore, J., Ponder, B., and Weber, J. L. (1992). Linkage mapping of human chromosome 10 microsatellite polymorphisms. Genomics 12: 604-606.
Dietrich, W., Katz, H., Lincoln, S. E., Shin, H.-S., Friedman, J., Dracopoli, N. C., and Lander, E. S. (1992). A genetic map of the mouse suitable for typing intraspecific crosses. Genetics, in press.
Donis-Keller, H., Green, P., Helms, C., Cartinhour, S., Weiffenbach, B., Stephens, K., Keith, T. P., Bowden, D. W., Smith, D. R., Lander, E. S., Botstein, D., Akots, G., Rediker, K. S., Gravius, T., Brown, V. A., Rising, M. B., Parker, C., Powers, J. A., Watt, D. E., Kauffman, E. R., Bricker, A., Phipps, P., Muller-Kahle, H., Fulton, T. R., Ng, S., Schumm, J. W., Braman, J. C., Knowlton, R. G., Barker, D. F., Crooks, S. M., Lincoln, S. E., Daly, M. J., and Abrahamson, J. (1987). A genetic linkage map of the human genome. Cell 51:319337.

Dracopoli, N. C., and Meisler, M. H. (1990). Mapping the human amylase gene cluster on the proximal short arm of chromosome 1 using a highly informative (CA) ${ }_{n}$ repeat. Genomics 7: 97-102.
Dracopoli, N. C., O'Connell, P., Elsner, T. I., Lalouel, J.-M., White, R. L., Buetow, K. H., Nishimura, D. Y., Murray, J. C., Helms, C., Mishra, S. K., Donis-Keller, H., Hall, J. M., Lee, M. K., King, M.-C., Attwood, J., Morton, N. E., Robson, E. B., Mahtani, M., Willard, H. F., Royle, N. J., Patel, I., Jeffreys, A. J., Verga, V., Jenkins, T., Weber, J. L., Mitchell, A. L., and Bale, A. E. (1991). The CEPH consortium linkage map of human chromosome 1. Genomics 9: 686-700.
Dracopoli, N. C., Stanger, B. Z., Ito, C. Y., Call, K. M., Lincoln, S. E., Lander, E. S., and Housnıan, D. E. (1988). A genetic linkage map of 27 loci from PND to FY on the short arm of human chromosome 1. Am. J. Hum. Genet. 43: 462-470.
Giblett, E. R. (1969). "Genetic Markers in Human Blood," Blackwell, Oxford, UK.
Hamada, H., and Kakunaga, T. (1982). Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 298: 396-398.
Hamada, H., Petrino, M. G., and Takunaga, T. (1982). A novel repeated element with Z-DNA forming potential is widely found in evolutionary diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 79: 6465-6469.
Hazan, J., Dubay, C., Pankowiak, M.-P., Becuwe, N., and Weissen-
bach, J. (1992). A genetic linkage map of human chromosome 20 composed entirely of microsatellite markers. Genomics 12: 183189.

Jeffreys, A. J., Wilson, V., and Thein, S. L. (1985). Hypervariable 'minisatellite" regions in human DNA. Nature (London) 314: 6773.

Kwiatkowski, D. J., Henske, E. P., Weimer, K., Ozelius, L., Gusella, J. F., and Haines, J. (1992). Construction of a GT polymorphism map of human 9q. Genomics 12: 229-240.
Love, J. M., Knight, A. M., McAleer, M. A., and Todd, J. A. (1990). Towards construction of a high resolution map of the mouse genome using PCR analyzed microsatellites. Nucleic Acids Res. 18: 4123-4130.
Mohandas, T., Heinzmann, C., Sparkes, R. S., Wasmuth, J., Edwards, P., and Lusis, A. J. (1986). Assignment of human 3-hydroxyl-3methylglutaryl coenzyme A reductase gene to q13-q23 of chromosome 5. Somat. Cell Mol. Genet. 12: 89-94.
Mohr, J. (1954). "A Study of Linkage in Man," Munksgaard, Copenhagen.
Nakamura, Y., Leppert, M., O'Connell, P., Wolff, R., Holm, T., Culver, M., Martin, C., Fujimoto, E., Hoff, M., Kumlin, E., and White, R. (1987). Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235: 1616-1622.
Ott, J. (1985). "Analysis of Human Genetic Linkage," The Johns Hopkins Univ. Press, Baltimore.
Royle, N. J., Clarkson. R. E., Wong, Z., and Jeffreys, A. J. (1988). Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics 3: 352-360.
Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). "Molecular Cloning: A Laboratory Manual." Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Stallings, R. L., Ford, A. F., Nelson, D., Torney, D. C., Hildebrand, C. E., and Moyziz, R. K. (1991). Evolution and distribution of (GT) repetitive sequences in mammalian genomes. Genomics 10: 807815.

Taggart, R. T., Mohandas, T. K., Shows, T. B., and Bell, G. I. (1985). Variable number of pepsinogen genes are located in the centromeric region of human chromosome 11 and determine the high frequency of electrophoretic polymorphisms. Proc. Natl. Acad. Sci. USA 82: 6240-6244.
Weber, J. L. (1990). Informativeness of human (dC-dA) $\cdot(\mathrm{dG}-\mathrm{dT})_{n}$ polymorphisms. Genomics 7: 524-530.
Weber, J. L., and May, P. E. (1989). Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388-396.
White, R. L., Lalouel, J.-M., Nakamura, Y., Donis-Keller, H., Green, P., Bowden, D. W., Mathew, C. G. P., Easton, D. F., Robson, E. B., Morton, N. E., Gusella, J. F., Haines, J. L., Retief, A. E., Kidd, K. K., Murray, J. C., Lathrop, G. M., and Cann, H. M. (1990). The CEPH consortium primary linkage map of human chromosome 10. Genomics 6: 393-412.
Wilkie, P. J., Krizman, D. B., and Weber, J. L. (1992). Linkage map of human chromosome 9 microsatellite polymorphisms. Genomics 12: 607-609.

The Whitehead Institute/MIT Center for Genome Research (CGR) opened in July, 1993 at One Kendall Square in Cambridge, supported by a grant from the National Center for Human Genome Research. The major goals of the Center are: (1) to construct genetic and physical maps of the mouse genome; (2) to create a physical map of the human genome; and (3) to ensure that these resources are distributed to the scientific community in a timely and convenient fashion. These maps and others like them provide crucial infrastructure for the study of mammalian genetics and should be valuable in the identification of disease genes.

In order to accomplish its goals, $G G R$ is organized in project teams and cores. At present, they are: Mouse, Human, Informatics, Sequencing and YAC.

This is the fiet issue of our Center newsletter, which is plennod to eppoar quarterly. Its geal is to provide up-to-date information about progress and to describe resources available from the Center. We solicit your suggestions about ways to improve the utility of this newsletter in subsequent editions.

MOUSE GENETIC MAP REACHES 4537 SSLPs

The Mouse Genome Mapping Project aims at building genetic and physical maps covering the entire mouse genome. Such maps should make it rapid and simple for any mouse geneticist to map monogenic or polygenic traits and to obtain cloned DNA spanning the region of interest. In this way, tedious mapping and walking efforts should become unnécessary:

The first step is the construction of a high density genetic map consisting of 6,000 simple sequence length polymorphisms (SSLPs). These markers are easily typed by PCR and have a high polymorphism rate in both interspecies and intraspecies crosses. The vast majority of these markers are anonymous CA_{n}-repeat loci, isolated and sequenced from a whole genomic library.
(continued on page 2)

HUMAN PHYSICAL MAP TOPS 3419 STSs

The Human Genome Mapping Project aims at constructing a physical map of the human genome by the strategy of STS content mapping. The goal is to screen a total of 10,000 sequence tagged sites (STSs) by mid-1996 on 25,000 YACs from the CEPH mega-YAC library (average size 1 Mb), in order to identify the YACs containing each STS. In addition, the STSs will be screened on a panel of 'whole-genome'radiation hybrids'to provide an important mesure of top-downorder. The STSs will consist of about 5,000 genetically mapped simplo sequence length polymorphisms (SSLPs) from other groups (principally, Jean Weissenbach's group at Genethon and the CHLC consortium) and 5,000 completely random STSs developed at CGR.
(continued on page 2)

MOUSE GENETIC MAP

(continued from page 1)
The genetic markers are all genotyped in a single ($\mathrm{OB} \times \mathrm{CAST}$) F_{2} intercross with 46 progeny, for a total of 92 informative meioses. With this cross, genetic markers can thus be placed in "bins" with an average size of 1.1 centiMorgans (cM). The genetic markers are also tested in twelve inbred mouse strains, to determine their allele sizes.

As of the July 1994 data release, the genetic map contains 4537 SSLPs-with an average spacing of 0.30 cM or 660 kb . The SSLP map is also being closely integrated into the mouse gene map. Approximately one-quarter of the SSLP markers will be genotyped in DNAs from a (B6 x SPRET) x B6 backcross of N. Copeland and N. Jenkins, which has been scored for RFLPs in more than 1000 genes. To date, some 250 markers have been typed in this cross. In addition, CGR entered into a collaboration with the European Collaborative Interspecific Backcross (EuCIB) to map the SSLPs at higher resolution, by typing them in a 1,000-progeny backcross.

Once the genetic map is complete, the project will turn to physical mapping. The initial goal is to construct a physical map by STS-content mapping of mouse YAC libraries. A total of 10,000 STSs will be used, consisting of the 6,000 SSLPs and some 4,000 random STSs. This collection will provide anchor points with an average spacing of 300 kb . Using these STSs, we plan to screen YAC libraries with an average size of about 700 kb . CGR has already constructed a 4.3 -fold coverage mouse YAC library, most of which has an average insert size of about 700 kb . Additional YAC libraries are under construction. Once the initial STS content mapping is completed, we hope to close as many gaps as possible in a directed fashion.

HUMAN PHYSICAL MAP

(continued from page 1)
Over the past year, we have been developing methods to scale up physical mapping, which includes an automated PCR setup process which generates 18,000 PCR reactions per day. The detection of these PCR products is done by a chemiluminescent hybridization assay, and data capture using CCD cameras.

YAC screening is currently carried out by a two-level scheme. At the top level, we screen superpools from eight microtiter plates. From each positive superpools, we then screen 28 subpools corresponding to the rows, columns and plates of a block. These coordinates should provide a unique address provided that the block contains only a single YAC containing the STS; the address can be ambiguous (i.e., have more than one row, column or plate) if the block has two or more YACs containing the STS.

To date, we have identified YACs for 3419 STSs which fall into the following categories: (i) 1427 Genetically mapped polymorphic STSs, which allow contigs to be anchored to the genetic map; (ii) 838 Random genome-wide STSs, of which approximately 75% are unambiguously assigned to a chromosome using the NIGMS Human/Rodent Somatic Cell Hybrid Mapping Panel \#1; (iii) 857 unpublished CA-repeat-containing STSs generously provided by J. Weissenbach. These CA-repeats, which were not sufficiently polymorphic to be genotyped for the Genethon human genetic map, are an additional source of random STSs; (iv) 114 new chromosome 22 STSs generated from sequences derived from flow-sorted chromosome libraries, in collaboration with the Human Genome Center for Chromosome 22 in Philadelphia. These STSs and the corresponding YACs already provide considerable coverage of the long arm of chromosome 22; and (v) 253 STSs from public data bases.

With the current data, the average spacing between STSs is about 875 kb . This is still not sufficient to allow the assembly of a comprehensive and reliable STS content map. As additional STSs are added, contigs covering substantial portions of the genome are expected to fall together.

CGR.Resources

CGR strives to ensure rapid and convenient access by the scientific community to information, reagents, and software tools developed by our mapping projects.

Databases

Human physical mapping and mouse genetic mapping data are released on a quarterly basis in January, April, July, and October. The data is available in a number of ways.

Via ftp - You will need access to an ftp program such as Fetch on the Macintosh. Set your program to \log into genome.wi.mit.edu. Use "anonymous" for the user name, and use your e-mail address for the password. Data files are stored in /distribution/mouse_sslp_releases and/distribution/ human_STS_releases.

Via e-mail - Send e-mail to the address genome_database@genome.wi.mit.edu, with the word "help" appearing as the first word on the subject line or body text. You will receive instructions for accessing the data by return mail. As of spring 1994, only the mouse genetic mapping information is available via this route.

Via World Wide Web - You will need a World Wide Web client, such as Mosaic (widely available for multiple platforms). Tell your client to connect io http://www-genome.wi.mit.edu, and follow the links to the data directories.

For further help with database services, call Lincoln Stein, Assistant Director of Informatics, 617-252-1916, lstein@genome.wi.mit.edu.

Software

Software is available via World Wide Web and ftp . All software is stored in the directory /distribution/software.

The programs currently available are as follows:

MAPMAKER-an interactive computer package for construction of genetic maps in experimental crosses and human reference families.

MAPMAKER/QTL-an interactive computer package for genetic mapping of quantitative trait loci (QTLs) in experimental crosses, using LOD scores.

PRIMER-a computer program for selection of PCR primers satisfying specified conditions.

EXCEL TCP/IP PLUGIN- a Microsoft Excel add-on that allows regions of the spreadsheet to be sent to and received from UNIX hosts on the Internet.

Distribution of Biological Reagents

CGR tries to promote broad and immediate access to biological reagents, by encouraging and assisting distribution services by the private sector.

- To ensure access to mouse and human STSs, CGR pioneered in 1990 an arrangement under which Research Genetics, Inc. retains a portion of all PCR primer pairs synthesized for our use and sells aliquots to the scientific community at discount prices, under the name "MapPairs." The arrangement has since been extended to include PCR primers from other genome centers, as well.
- To ensure access to mouse and human YACs, CGR distributed copies of its mouse YAC library (4.3 -fold coverage in YACs of about 700 kb ; Kusumi et al. Mammalian Genome, 4:391-2 (1993)) and the CEPH mega-YAC library (plates 613-984) to both Research Genetics, Inc. and Genome Systems, Inc. These companies provide library services, including: screening service for individual STSs; purchase of YAC DNA pools for PCR screening of STSs; and purchase of a copy of the entire library. For more information contact:

Research Genetics, Inc.
2130 Memorial Parkway, SW
Huntsville AL 35801
Phone: (800)-533-4363
Fax: (205) 536-9016
\%.
Genome Systems, Inc.
7166 Manchester Road
St. Louis MO 63143
Phone: (800)-248-7609
FAX: (314)-647-4134
CGR receives no royalties from distribution of reagents by private companies.

Policy on Data Release and Patents

To promote the broadest possible use of the biological tools developed under the Human Genome Project, Whitehead Institute has adopted a policy that:

- Genetic and physical maps (including all clones, genetic markers, primers and sequences)

CGR Resources Continued

will be made promptly available to the scientific community, will be placed in the public domain, and will not be patented.

- No access to maps will be granted to any commercial entity in advance of public release.

Data releases are scheduled every 90 days. At the end of each calendar quarter, all genomic mapping data are reviewed and prepared for distribution via CGR's electronic databases. Data releases typically occur within two weeks of the close of the quarter (i.e., in mid-January, mid-April, midJuly and mid-October). Releases are announced by electronic messages posted to the following two newsgroups: "bionet.genome.chromosomes" and "bionet.announce".

The purpose of CGR's data release policy is to ensure that scientific colleagues have immediate access to information that may assist them in the search for genes. Data releases do not constitute scientific publication of CGR's work, but rather provide scientists with a regular look into our lab
notebooks. For projects aimed at the analysis of particular genes or small subchromosomal regions, permission is hereby granted to use our data without the need for a formal collaboration, subject only to appropriate acknowledgement. For projects aimed at large-scale mapping of entire chromosomes or entire genomes, use of the data and markers should be on a collaborative basis. The information for the mouse genetic map should be cited as:

Whitehead Institute/MIT Center for Genome Research, Genetic Map of the Mouse, Data Release 7 (July 1994)

Dietrich, W.F. et al. A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genetics 7:220-245 (1994).

The information for the human genome mapping project should be cited as:

Whitehead Institute/MIT Center for Genome Research, Human Genetic Mapping Project, Data Release 2 (July 1994).

If you would like to receive future issues of the Whitehead Institute/MIT Center for Genome Research Newsletter in hard copy, please complete and send in the following form:
*Issues are also available on the World Wide Web. Our URL is http://www-genome.wi.mit.edu/

Name
Institution

Department
Street/Building
City, State, Zip (Country)
Return to: Newsletter Editor, Whitehead Institute/MIT, Center for Genome Research, One Kendall Square, Building 300, Cambridge, MA 02139-1561 or e-mail: newsletter @genome.mit.edu

References

The following references may provide useful background on CGR projects and related topics.

Mouse Mapping

Copeland, N.G. et al. A genetic linkage map of the mouse: Current applications and future prospects. Science 262: 57-66 (1993).

Copeland, N.G. et al. Genome maps IV: The mouse. Science 262: 67-82 (1993).

Dietrich, W.F. et al. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131: 423-447 (1992).

Dietrich, W.F. et al. A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genetics 7:220-245 (1994).

Dietrich, W.F. et al. in Genetic Maps 1992 (ed. O’Brien, S.) 4.100-4.142 (Cold Spring Harbor Laboratory Press, New York, 1992.)

Kusumi, K. et al. Construction of a large-insert yeast artificial chromosome (YAC) library of the mouse genome. Mammalian Genome 4:391-392 (1993).

Miller, J.C. et al. SSLP/Microsatellite genetic linkage map of the mouse. In M. F. Lyon and A.G. Searle (eds.) Genetic Variants and Strains of the Laboratory Mouse, Third Edition, Oxford University Press, Oxford (1994).

Human Mapping

Foote, S. et al. The human Y chromosome: Overlapping DNA clotes spanning the euchromatic region. Science 258: 60-66 (1992).

Hudson, T.J. et al. Is n lation and chromosomal assignment of 100 highly.informative human simple sequence repeat polymorphisms. Genomics 13:622-629 (1992).

Vollrath, D. et al. The 'human Y chromosome: A 43 -interval map based on naturally occurring deletions. Science 258: 52-59 (1992).

Informatics

Goodman, N. et al. Building a laboratory information system around a C++-based objectoriented DBMS. In Proceedings of the 20th International Conference on Very Large Data Bases. Santiago (1994).

Goodman, N. et al. Requirements for a deductive query language in the MapBase genomemapping database. In Proceedings of the Workshop on Programming with Logic Databases: 18-32 Vancouver (Oct. 1993).

Goodman, N. An object-oriented DBMS war story: Developing a genome mapping database in C++. In Modern Database Management: ObjectOriented and Multidatabase Technologies, Won Kim, ed. ACM Press; NY (1994).

Rozen, S. et al. Constructing a domain-specific using a persistent object system. Sixth International Workshop on Persistent Object Systems. Tarascon (1994).

Stein, L. et al. Splicing UNIX into a genome mapping laboratory. In USENIX Summer 1994 Technical Conference : 221-229 (June 1994).

Computer Programs

Lander, E.S. et:al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181 (1987).

Lander, E.S. and Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185-199 (1989).

Lincoln, S.E. and Lander, E.S. Constructing genetic linkage maps with MAPMAKER: A tutorial and reference manual. Whitehead Institute Technical Report: 107 (1987).

Patterson, A. et al. Resolution of quantitative traits into mendelian factors by using a complete RFLP linkage map. Nature 335: 721-726 (1988).

WHITEHEAD INSTITUTE/MIT CENTER FOR GENOME RESEARCH STAFF

Difector
Associate Directors
Mouse Genome Mapping:
Co-Directors
Assistant Director
Human Genome Mapping:
Director
Assistant Director
Sequencing Core:
Director
Assistant Director
Informatics Core Director
Informatics Asst. Director

Whitehead Institute/MIT
Center for Genome Research
One Kendall Square, Bldg 300
Cambridge, MA 02139-1561
This newsletter will be released quarterly by mail and is also available on the World Wide Web URL, at "http://wwwgenome.wi.mit.ediu".
\because
r

Whitehead Institute / MIT Center for Genome Research One Kendall Square, Bldg 300, Cambridge, MA 02139-1561
2)

Human Genome

Généthon to Sequence Promoters

In its short 4 -year life, the Généthon genome center, in Evry, near Paris, has carved out a position as a world leader in human genome mapping. Now, it is hoping to move into the front ranks of another area of human genomics: large-scale DNA sequencing. To do this, it is embarking on its first major collaboration with a for-profit company-a potentially controversial move for a lab funded through public donations. Last week, Généthon's paymaster, the French Muscular Dystrophy Association (AFM), announced an \$11-million, 2-year joint initiative with Genset, a Paris-based genomics company, to establish an independent lab within Généthon. Dubbed the Très Grand Séquençage (TGS) laboratory, it will employ some 25 staff members at Evry and operate a battery of more than 20 automated DNA sequencers, working around the clock.

Several labs worldwide are planning simi-lar-sized sequencing efforts, but the TGS project is unique because it is targeted at the promoter sequences that regulate gene expression. When proteins called transcription factors bind to these promoter sequences, the sequences trigger the production of messenger RNA (mRNA)-genetic messages copied from stretches of DNA that code for proteins. Several major sequencing labs are working on complementary DNA-DNA copies derived in the lab from this mRNAto identify the coding regions of the roughly 100,000 genes contained in the human ge-
nome. Marc Vasseur, Genset's chief scientist, argues that by targeting the sequences that regulate mRNA production, TGS will complement these efforts.

Collaborating with Genset was a necessity for AFM: It could not have afforded to launch the project alone, given that it is also

planning a major effort, dubbed Généthon Il , to clone the genes underlying neuromuscular disease (Science, 18 March, p. 1554). Nevertheless, AFM general secretary Pierre Birambeau is confident that the terms of the agreement with Genset will deflect any criticism of Généthon's new link with the world of commerce: Sequence data derived from the project will be made public 6 months after collection, and any revenues that subsequently accrue to AFM will be plowed back into research on neuromuscular diseases.

TGS's main strategy, says Vasseur, will be to make multiple copies of the beginning of each mRNA protein-coding message. These amplified sequences will then be used to
probe the genome, binding to the DNA from which they were transcribed. By sequencing about 1000 bases of DNA upstream from that point, Vasseur claims, it should be possible to hit the majority of the corresponding promoter sequences. "I think it's a worthwhile thing to try," agrees gene control expert Robert Tjian of the University of California, Berkeley. But for a given gene, he warns, the sequences that bind to transcription factors may be spread over many thousands of bases of DNA and are not always easy to identify merely by examining the raw sequence data. Nevertheless, other researchers are more optimistic that the TGS project will yield useful information. "It certainly will be interesting in discovering connections between genes," says gene expression researcher Moshe Yaniv of the Pasteur Institute in Paris. Comparison of promoter sequences from different genes, he says, should indicate which genes are controlled by the same transcription factors.

Both Genset and AFM also hope the TGS project will lead to clinical advances. For Genset, the targets are conditions such as cancer and inflammatory disease, including arthritis. The company is developing "transcription factor decoys"-short pieces of DNA that mimic the promoter sequences of, say, cancer-causing oncogenes. These should bind to the relevant transcription factor and so "mop them up" and prevent the genes from being activated. AFM, meanwhile, has its long-term sights set on gene therapy for neuromuscular disorders and hopes to find promoter sequences that could be used to control the expression of therapeutic genes.
-Peter Aldhous

Clinton Inaugurates Science Council

Last week, U.S. science and technology policy stood at the top of the President's agenda -for about 30 minutes. That's how long Bill Clinton presided over the first meeting of the National Science and Technology Council (NSTC). The council was created by executive order last November, but it wasn't until 30 June, at $11: 30$ a.m., that its 24 membersCabinet secretaries, agency heads, and senior White House officials-finally got together to discuss efforts to coordinate the government's $\$ 75$-billion $R \& D$ portfolio.

The 75 -minute session in the Roosevelt Room of the White House (Vice President Al Gore took over after Clinton departed in midmeeting) didn't alter the course of U.S. policy toward research. Rather, its major purpose was to tell the President about the activities of the nine committees that serve as the operating units of the NSTC. These committees, which together form what Gore described at the meeting as "a virtual agency," are supposed to set spending priori-
ties within nine areas that stand at the intersection of science and society-from health, transportation, education, and the environment to national security and civilian technologies. The first tangible results of their labor, which began over the winter and included two large conferences (Science, 4 February, p. 604, and 25 March, p. 1675), will appear in the President's 1996 budget request to Congress next February.

The President opened the meeting by stressing the importance of the federal investment in both fundamental and applied research. Then he went around the room, asking each participant to describe his or her activities on behalf of science and technology. "The discussions were strategic, not tactical," said a White House aide.

The NSTC is, in theory, on a par with the National Security Council in the White House hierarchy. But there's little chance the two councils will be equal in influence. The security council meets frequently, and
its members place a high priority on attending. Last week's NSTC meeting took 7 months to arrange, in part because of the difficulty of finding time on the President's schedule. Even so, the meeting was called with less than 2 days' notice, and some of the members were forced to send stand-ins: Nine of the 24 principals dispatched their deputies or lower ranking officials. Among the noshows was National Institutes of Health (NIH) Director Harold Varmus, who had lobbied hard for NIH membership on the council. Varmus and his family were bicycling through France as part of a longplanned vacation, and NIH's seat was occupied by deputy director Ruth Kirschstein.

There was no mention at the meeting of the President's Committee of Advisors on Science and Technology, created last fall but yet to be formed. Its 15 members are supposed to provide the president with input from the academic and private sectors on science and technology matters; the committee's charter expires in November 1995.
-Jeffrey Mervis

WHITEREAD INSTITUTE/MIT

Center for Genome Research
One Kendall Square, Building 300
Cambridge, MA 02139 USA
TEL: (617) 252-1900
FAX: (617) 252-1902

TO:	Jane Peterson National Institutes of Health/NCHGR
FAX\#:	$301-480-2770$
DATE:	July 29, 1994
FROM:	Eric Lander/Rachel Boucher
RE:	First Issue of Newsletter

6 page(s) including this cover sheet.

The Whitehead Institute/MIT Center for Genome Research (CGR) opened in July, 1993 at One Kendall Square in Cambridge, supported by a grant from the National Center for Human Genome Research. The major goals of the Center are: (1) to construct genetic and physical maps of the mouse genome; (2) to create a physical map of the human genome; and (3) to ensure that these resources are distributed to the scientific community in a timely and convenient fashion. These maps and others like them provide crucial infrastructure for the study of mammaliangenetics and should be valuable in the identification of disease genes.

In order to accomplish its goals, CGR is organized in project teams and cores. At present, they are: Mouse, Human, Informatics, Sequencing and YAC.

This is the first issue of our Center newsletter, which is planned to appear quarterly. Its goal is to provide up-to-date information about progress and to describe resources available from the Center. We solicit your suggestions about ways to improve the utility of this newsletter in subsequent editions.

MOUSE GENETIC MAP REACHES 4537 SSLPs

The Mouse Genome Mapping Project aims at building genetic and physical maps covering the entire mouse genome. Such maps should make it rapid and simple for any mouse geneticist to map monogenic or polygenic traits and to obtain cloned DNA spanning the region of interest. In this way, tedious mapping and valking efforts should become unnecessary.

The first step is the construction of a high density genetic map consisting of 6,000 simple sequence length polymorphisms (SSLPs). These markers are easily typed by PCR and have a high polymorphism rate in both interspecies and intraspecies crosses. The vast majority of these markers are anonymous CA_{n}-repeat loci, isolated and sequenced from a whole genomic library.
(continued on page 2)

HUMAN PHYSICAL MAP TOPS 3419 STSs

The Human Genome Mapping Project aims at constructing a physical map of the human genome by the strategy of STS content mapping. The goal is to screen a total of 10,000 sequence tagged sites (STSs) by mid-1996 on 25,000 YACs from the CEPH mega-YAC library (average size 1 Mb), in order to identify the YACs containing each STS. In addition, the STSs will be screened on a panel of 'whole-genome' radiation hybrids to provide an important measure of top-down order. The STSs will consist of about 5,000 genetically mapped simple sequence length polymorphisms (SSLPs) from other groups (principally, Jean Weissenbach's group at Genethon and the CHLC consortium) and 5,000 completely random STSs developed at CGR.
(continued on page 2)

MOUSE GENETIC MAP

(continued from page 1)
The genetic markers are all genotyped in a single ($\mathrm{OB} \times \mathrm{CAST}$) F_{2} intercross with 46 progeny, for a total of 92 informative meioses. With this cross, genetic markers can thus be placed in "bins" with an average size of 1.1 centiMorgans ($\mathrm{c} M$). The genetic markers are also tested in twelve inbred mouse strains, to determine their allele sizes.

As of the July 1994 data release, the genetic map contains 4537 SSLPs-with an average spacing of 0.30 cM or 660 kb . The SSLP map is also being closely integrated into the mouse gene map. Approximately one-quarter of the SSLP markers will be genotyped in DNAs from a (B6 x SPRET) x B6 backcross of N. Copeland and N. Jenkins, which has been scored for RFLPsin more than 1000 genes. To date, some 250 markers have been typed in this cross. In addition, CGR entered into a collaboration with the European Collaborative Interspecific Backcross (EuCIB) to map the SSLPs at higher resolution, by typing them in a 1,000 -progeny backeross.

Once the genetic map is complete, the project will turn to physical mapping. The initial goal is to construct a physical map by STS-content mapping of mouse YAC libraries. A total of 10,000 STSs will be used, consisting of the 6,000 SSLPs and some 4,000 random STSs. This collection will provide anchor points with an average spacing of 300 kb . Using these STSs, we plan to screen YAC libraries with an average size of about 700 kb . CGR has already constructed a 4.3 -fold coverage mouse YAC library, most of which has an average insert size of about 700 kb . Additional YAC libraries are under construction. Once the initial STS content mapping is completed, we hope to close as many gaps as possible in a directed fashion.

HUMAN PHYSICAL MAP

(continued from page 1)

Over the past year, we have been developing methods to scale up physical mapping, which includes an automated PCR setup process which generates 18,000 PCR reactions per day. The detection of these PCR products is done by a chemiluminescent hybridization assay, and data capture using CCD cameras.

YAC screening is currently carried out by a two-level scheme. At the top level, we screen superpools from eight microtiter plates. From each positive superpools, we then screen 28 subpools corresponding to the rows, columns and plates of a block. These coordinates should provide a unique address prcvided that the block contains only a single YAC containing the STS; the address can be ambiguous (i.e., have more than one row, column or plate) if the block has two or more YACscontaining the STS.

To date, we have identified YACs for 3419 STSs which fall into the following categories: (i) 1427 Genetically mapped polymorphic STSs, which allow contigs to be anchored to the genetic map; (ii) 838 Random genome-wide STSs, of which approximately 75% are unambiguously assigned to a chromosome using the NIGMS Human/Rodent Somatic Cell Hybrid Mapping Panel \#1; (iii) 857 unpublished CA-repeat-containing STSs generously provided by J. Weissenbach. These CA-repeats, which were not sufficiently polymorphic to be genotyped for the Genethon human genetic map, are an additional source of random STSs; (iv) 114 new chromosome 22 STSs generated from sequences derived from flow-sorted chromosome libraries, in collaboration with the Human Genome Center for Chromosome 22 in Philadelphia. These STSs and the corresponding YACs already provide considerable coverage of the long arm of chromosome 22; and (v) 253 STSs from public data bases.

With the current data, the average spacing between STSs is about 875 kb . This is still not sufficient to allow the assembly of a comprehensive and reliable STS content map. As additional STSs are added, contigs covering substantial portions of the genome are expected to fall together.

CGR Resources

CGR strives to ensure rapid and convenient access by the scientific community to information, reagents, and software tools developed by our mapping projects.

Databases

Human physical mapping and mouse genetic mapping data are released on a quarterly basis in January, April, July, and October. The data is available in a number of ways.

Via ftp - You will need access to an ftp program such as Fetch on the Macintosh. Set your program to \log into genome.wi.mit.edu. Use "anonymous" for the user name, and use your e-mail address for the password. Data niles are stored in /distribution/mouse_sslp_releases and /distribution/ human_STS_releases.

Vice-mail - Send e-mail to the address genome_databaseबgenome.wi.mit.edu, with the word "help" appearing as the first word on the subject line or body text. You will receive instructions for accessing the data by return mail. As of spring 1994, only the mouse genetic mapping information is available via this route.

Via World Wide Web - You will need a World Wide Web client, such as Mosaic (widely available for multiple platforms). Tell your client to connect to http://www-genome.w.mit.edn, and follow the links to the data directories.

For further help with database services, call Lincoln Stein, Assistant Director of Informatics, 617-252-1916, 1steingenome.wi.mit.edu.

Software

Software is available via World Wide Web and ftp . All software is stored in the directory/distribution/software.

The programs currently available are as follows:

MAPMAKER-an interactive computer package for construction of genetic maps in experimental crosses and human reference families.

MAPMAKER/QTL-an interactive computer package for genetic mapping of quantitative trait loci (QTLs) in experimental crosses, using LOD scores.

PRIMER-a computer program for selection of PCR primers satisfying specified conditions.

EXCEL TCP/IP PLUGIN- a Microsoft Excel add-on that allows regions of the spreadshect to be sent to and received froin UNIX hosts on the Internet.

Distribution of Biological Reagents

CGR tries to promote broad and immediate access to biological reagents, by encouraging and assisting distribution services by the private aector.

- To ensure access to mouse and human STSs, CGR pioneered in 1990 an arrangement under which Research Genetics, Inc. retains a portion of all PCR primer pairs synthesized for our use and sells aliquots to the scientific community at discount prices, under the name "MapPairs." The arrangement has since been extended to include PCR primers from other genome centers, as well.
- To ensure access to mouse and human YACs, CGR distributed copies of its mouse YAC library (4.3 -fold coverage in YACs of about 700kb; Kusumi et al. Mammalian Genome, 4:391-2 (1993)) and the CEPH mega-YAC library (plates 613-984) to both Research Genetics, Inc. and Genome Systems, Inc. These companies provide library services, including: screening service for individual STSs; purchase of YAC DNA pools for PCR screening of STSs; and purchase of a copy of the entire library. For more information contact:

Research Genetics, Inc.
2130 Memorial Parkway, SW
Huntsville AL 35801
Phone: (800)-533-4363
Fax: (205) 536-9016
Genome Systems, Inc.
7166 Manchester Road
St. Louis MO 63143
Phone: (800)-248-7609
FAX: (314)-647-4134
CGR receives no royalties from distribution of reagents by private companies.

Policy on Data Release and Patents

To promote the broadest possible use of the biological tools developed under the Human Genome Project, Whitehead Institute has adopted a policy that:

- Genetic and physical maps (including all clones, genetic markers, primers and aequences)

CGR Resources Continued

will be made promptly available to the scientific community, will be placed in the public domain, and will not be patented.

- No access to maps will be granted to any commercial entity in advance of public release.

Data releases are scheduled every 90 days. At the end of each calendar quarter, all genomic mapping data are reviewed and prepared for distribution via CGR's electronic databases. Data releases typically occur within two weeks of the close of the quarter (i.e., in mid-January, mid-April, midJuly and mid-October). Releases are announced by electronic messages posted to the following two newsgroups: "bionet.genome.chromosomes" and "bionet.announce".

The purpose of CGR's data release policy is to ensure that scientific colleagues have immediate access to injormation that may assist them in the search for genes. Data releases do not constitute scientific publication of CGR's work, but rather provide scientists with a regular look into our lab
notebooks. For projects aimed at the analysis of paricular genes or small subchromosomal regions, permission is hereby granted to use our data without the need for a formal collaboration, subject only to appropriate acknowledgement. For projects aimed at large-scale mapping of entire chromosomes or entire genomes, use of the data and markers should be on a collaborative basis. The information for the mouse genetic map should be cited as:

Whitehead Institute/MIT Center for Genome Research, Genetic Map of the Mouse, Data Release 7 (July 1994)

Dietrich, W.F. et al. A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genetics 7:20-245 (1994).

The information for the human genome mapping project should be cited as:

Whitehead Institute/MIT Center for Genome Research, Human Genetic Mapping Project, Data Release 2 (July 1994).

If you would like to receive future issues of the Whitehead Institute/MIT Center for Genome Research Newsletter in hard copy, please complete and send in the following form:
*Issues are also available on the World Wide Web. Our URL is
http://www-genome.wi.mit.edu/

Name
Institution
Department
Street/Building
City, State, Zip (Country)
Return to: Newsletter Editor, Whitehead Institute/MIT, Center for Genome Research, One Kendall Square, Building 300, Cambridge, MA 02139-1561 or e-mail: newsletter @genome.mitedu

References

The following references may provide useful background on CGR projects and related topics.

Mouse Mapping

Copeland, N.G. et al. A genetic linkage map of the mouse: Current applications and future prospects. Science 262: 57-66 (1993).

Copeland, N.G. et al. Crenome maps IV: The mouse. Science 252: 67-82 (1993).

Dietrich, W.F. et al. A genctic map of the mouse suitable for typing intraspecific crosses. Genetics 131: 423-447 (1992).

Dietrich, W.F. et al. A genetic map of the mouse with 4,006 simple sequence length polymorphismg. Naturc Genetics 7:220-245 (1994).
Dietrich, W.F. et al. in Genetic Maps 1992 (ed. O'Brien, S.) 4.100-4.142 (Cold Spring Harbor Laboratory Press, Nem York, 1992.)

Kusumi, K. et al. Construction of a large-insert yeast artificial chromosome (YAC) library of the mouse genome. Mammalian Genome 4:391-392 (1993).

Miller, J.C. et al. SSLP/Microeatelite genetic linkage map of the mouse. In M. F. Lyon and A.G. Searle (eds.) Genetic Variants and Strains of the Laboratory Mouss, Third Edition, Oxford University Press, Oxford (1994).

Human Mapping

Foote, S. et al. The human Y chromosome: Overlapping DNA clones apanning the euchromatic region. Sclence 258: 60-66 (1992).

Hudson T.J. et al. Isolation and chromosomal assignment of 100 highly informative human simple sequence repeat polymorphisms. Genomics 13:622-629 (1992).

Vollrath, D. et al. The human Y chromosome: A 43-interval map based on naturally occurring deletions. Science 258: 52-59 (1992).

Informatics

Goodman, N. et al. Building a laboratory information system around a C++-based objectoriented DBMS. In Procesdings of the 20th International Conference on Very Large Data Bases. Santiago (1994).

Goodman, N. et al. Requiremaente for a deductive query language in the MapBase genomemapping database. In Proceedings of the Workshop on Programming with Lagic Databases: 18-32 Vancouver (Oct. 1993),

Goodman, N. An object-oriented DBMS war story: Developing a genome mapping database in C++. In Modern Database Management: ObjectOriented and Multidatabase Technologies, Won Kim, ed. ACM Press, NY (1994).

Rlozen, S. et al. Constructing a domain-specific using a parsistent object system. Sixth Intermational Workehop on Persistent Object Systems. Taraticon (1994).

Stein, L. et al. Splicing UNIX into a genome mapping laboratory. In USENIX Summer 1994 Technical Conference : 221-229 (June 1994).

Computer Programs

Lander, E.S. et al. MAPMAFER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181 (1987).

Lander, E.S. and Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage mapa. Genetite 121: 185-199 (1989).

Lincoln, S.E. and Lander, E.S. Constructing genetic linkage maps with MAPMAKER: A tutorial and reference manual. Whitehead Institute Technical Report: 107 (1987).

Patterson, A. et al. Resolution of quantitative traits into mendelian factors by using a complete RFLP linkage map. Nature 335: 721-726 (1988).

Analysis of a proposed 'first-generation' physical map of the human genome

Alan Kaufnan 1,2 and James Orlin $1^{1,2,3 *}$

IWhitehead Institute/MIT Center for Genome Research, and 2Operations Research Center, and 3 Sloan School of Management Massachusetts Institute of Tectmology, Cambridge MA 02139..

To whom correspondenee should be addressed.

Abstract

Cohen and colleagues [1] recentl described a project to characterize a human yeast artificial chromosome (YAC) library and offered a 'proposed data amalysis strategy that was said to yield \& physical map covering 87% of the human genome. The authors provided no analytical evahuation to test the validity of their novel strategy for constructing' paths' in the genome. We have now examined the proposed method in detail. Analytical studies show that most paths with at most two YACs or spaming less than 5 cij are valid, butmost paths involving four or more YACs or spanning 5 cM or more are invalid. After restricting the map to paths with a high probability of being valid, we conclude that the remaining map properly covers at most 36% of the genome

Cohen et al. [1] recently reported the resuits of their efforts to construct a 'first generation' physical map of the human genome, based ori the analysis of a large-insert yeast artificial chromosome (AC) library. Briefly, the physical mapping data involved screening the 33,000 -cione CEPH mega-YAC iibrary by two different methods, STS content mapptig and Alu-PCR probe hybridization. In the first method, 2100 genetically-mapped sequence-tagged sites (STSs) [2] were screened against the YAC library (with half of the STSs screened completely and half screened partially to obtain I-2 positives). In the second method, AluPCR products were prepared from 6900 individual YACs and were screened by hybridization against spotted Alu-PCR products from a subset of 25,000 of the YACs and from monochromosomal hybri申 cell lines. (Tr addition, many YACs were also subjected to hybridization-based 'fingerprinting' [3], but these data played only a minor role in the analysis and do not significantly affect the coverage; we omit them in the discussion below.)

Based on these data, Cohen et al [1] offered a 'proposed data analysis strategy' that was said to yield a physical map covering 87% of the human genome. The proposed data analysis strategy involved creating paths between STSs. A paith of length k between two STS $\left\{s_{1}\right.$ and s_{2}, is defined as a series of YACs, $\mathrm{Y}_{1}, \mathrm{Y}_{2} \ldots$..., y_{k} such that (1) s_{1} lies in y_{1} and s_{2} lies in y_{k} by SIS content mapping and (2) for each step ($y_{i} y_{i+1}$), at least one of the two YACs was used as an Alu-PCR probe and hybridized to the other YAC. Paths of length 1 correspond to traditional STS content mapping, while longer paths depend on the Alu-PCR hybridization data. A chromqsomally allowable path is defined to be one with the property that (1) the starting fnd ending STSs, s_{1} and s_{2}, lie on the same chromosome $c_{\text {, }}$ and (2) each yi that uas used as an Alu-PCR probe either gave no signal when hybridized to the mofrochromosomal hybrid panel or hybridized to a set of chromosomes that ircluded chromosomec (N.B. For
hybridized to a set of chromosomes that included chromosome ce (N.B. For technical reasons, chromosomal assignnents were not always unique: 49% could be assigned to a single chromosome, 18\% hybridized to multiple chromosomes, and 33% could not be assigned to any chromosome.)

The first generation physical map proposed in [1] was.defined to be the set of all chomosomally allowable paths of langth ≤ 7 connecting pairs of STSs with genetic distance $\leq 10 \mathrm{cM}$. The authors ofered no experimental or analytical justification for the choice of path length nor any analysis to suggest that most such paths are correct. They simply noted that as longer paths are allowed, the coverage of the genome increased. With paths of length one, three, five, and seven, the strategy covered $11 \%, 30 \%, 70 \%$ and 87%, respectively, of the total genetic length of the genome.

There is a serious issue to be addressed:- Using the proposed approach, utterly rardom data might also appear to cover the genome. Specifically, it is well-known in ranciom graph theory [4]. hhat, in certain random structures, paths of bounded length suffice to connect essentially all pairs of points. This phenomenon has recently gained populaf attention through the award-winning play, "Six Degrees of Separation", in which it is asserted that any two people in the world can be connected through a paih of at most six acquaintances. It is important to evaluate whether the same thenomenon accounts for the apparently complete coverage of human genome.

We set out to evaluate the proposel data analysis strategy using the data from the March 30, 1994 CEPFH data release. We first constructed the minimum: Iength chromosomally allowable path [5] fonnecting every pair of STSs located on the same chromosome-regardless of the genetic distance between them. Figure la shows the proportion of STSs that could be connected, as a funcion of the path length and the genetic distance between them. We were interested to
determine what fraction of these paths ensulted from spurious random conrections.

A simple way to determine the ploportion of false connections is to consider apparent short paths between STSs separated by $\geq 50 \mathrm{cM}$. Such paths must surrely be spurious masmuch as the average YAC length is only 1 Mb , corresponding to only about 1 cM in the human genome. The proportion of such distant STSs comected by ciromosomally allowable paths of length $1,3,5$, and 7 is $0.05 \%, 2 \%, 18 \%$ and 61%. In particular the curve rises dramatically for path lengths exceeding four 一indicating that Fandom cannections dominate at these lengths. Interestingly, the proportion of cornected STSs at distances 5-10 cM, $10-20 \mathrm{cM}$, and $20-50 \mathrm{cM}$ was no higher than for STSs at distances $\geq 50 \mathrm{cM}$ This suggested that most paths connecting ST\$s at distances $\geq 5 \mathrm{cM}$ are also false.

To test whether these apparent paths were nothing تrore than would be expected in an equivalent random graph 44, we performed a simple randomization experiment: We left minchaged the genetic map, the STS content data, and the chromosomal assignment of Alu-PCR probes, but randomized the hybridization results of the Alu-PCR profes against the YAC library, preserving only the correct number of hits for each plobe. Consider, for example, an AluPCR probe that hybridized to chromosomes 3 and 7 and detected four YACs in the library. In the randomized data, it wod still assigned to the same chromosomes but the four YACs that it ditected were selected using a random number generator. With these random data, we again constructed minimum length paths between all intra-chromosomal pairs of STSs following the strategy of Cohen et al (Figure 1b). Paths of lengti 1 remain unchanged in the randomized data, since they depend only on the STS content data. However, longer paths are entirely spurious.

Interestingly, STS pais at $\geq 5 \mathrm{CM}$ show the same degree of connectivity in the random data as in the real data-confming our suspicion that spurious connections are the principal mechanism linking such STSs. By confrast, STS pairs at $<5 \mathrm{cM}$ show significantily higher connectivity for patin lengih ≤ 3 in the real data than in the randomized data, with the difference aftributable to valid short paths between rearby STSs.

Based on this analysis, it is possible to estimate the propertion of STSs connected by valid paths (Figure 2) and the probability that a path of a given length is valid (Figure 3). The results ind cate that paths of length ≤ 2 connecting STS at $<5 \mathrm{CM}$ are mostly valid, whereas paths having length ≥ 4 or joining STSs at $\geq 5 \mathrm{cM}$ are generally spurious. Considering only paths of length ≤ 2 conrecting STSs within 5 eM, the paths in the CEPFH-Genethon data cover about 36% of the genetic length of the human genome. (The percentage coverage is defined as the proporion of total centiMqrgans lying between connected STSs. This may somewhat overestimate the actual proportion of the physical length covered, inasmuch the covered genetic infervals of any given size would be expected to be biased to those with enhanked recombination relative to physical distance.)

In summary, the 'proposed data analysis stategy' of Cohen et aI. [1] works well when restricted to short paths, but is unreliable for longer paths. Restricting the physical map to analytically valid patits, the CEPFI-Genethon physical map is estimated to cover zbout one-third of the poman genome. To obtain reliable coverage of the entire human genome using the strategy of Cohen et al. [1], one would require many more genetically mapped (or otherwise ordered) STSs. Not withstanding this revised assessment, the EFPF-Genethon data represent a large and impressive resource of great value to the human genetics community. It will cleariy play an important role in the assentbly of a comprehensive physical map.

References and Notes

[1] D. Cohen, I Chumakov, and J. Weissenbach, Noture, 366, 698 (1993).
[2]]. Weissenbach et al, Nature, 359, 794 (1992).
[3] C Bellanne-Chantelot et al Cell, 70, 1059 (1992).
[4] B. Bollobas, Random Graphs. Farcount Brace Jovanovich, 1985.
[5] R. Ahuja, I. Magnanti and J. Orim, Network Flows. Prentice-Hall,1993.
[6] We thank Daniel Cohen, Iya Chumakov and Jean Weissenbach for sharing this valuable data with us and the scient fic community at large. We thank Eric Lander for suggesting the use of random graphs and for comments on the manuseript and David Page, Leonid Knullyak and Lincoln Stein for helpful discussions. This work was supported in part by NIFI grant HG00098.

Figure Iegends

Figure 1. Cumulative proportion of connected STS pairs, by inter-STS distance and path length, for (A) real data and (B) randomized data Minimal paths were constracted between all intra-chromosonal pairs of STSs. STSs hitting ro YACs were excluded, as these could never form paths.

Figure 2. Estimated cumulative proportion of valid SIS connections, by inter-SIS distance and path length The proportion of spuriously connected SIS pais for each path length was estimated based on the " $\geq 50 \mathrm{cM}^{\mathrm{cm}}$ " curve in Figure 1 a. This proportion was subtracted from the obsedved proportion of connected SIS pairs to yield the estimated proportion of truly comected pairs.

Figure 3. Estimated probability that a path connecting two STSs is valid, by interSTS distance and path length. The probablity a path is valid was approximated . by max[$\left.\left(p_{0}-p_{s}\right) / p_{0}, 0\right]$, where p_{0} is the observed proportion of connected SISs and p_{s} is the proportion of spuriousiy connected STSs estimated from the randomized data. The results are similar ff p s is estimated from the " $\geq 50 \mathrm{cM}$ " currein Figure 1a.

A

B

Human Physical Mapping Project Whitehead Institute/MIT Center for Genome Research

Phase 1- Primary Semi-automated YAC Screening
Goal: $\quad 3000$ STSsMethods: Rosys Runs (192 well plates, 8 head pipettor)Waffle Irons (192 well plates)6144-SpotterImage capture of Autoradiography
Results: 2555 markers to date
5.5 hit rate $4.7-6.5$
65% definite addresses
6\% apparent false positive rate
200 double-linked contigs, mostly with 2 STSs
Phase 2 - High Throughput YAC Screening
Goal: $\quad 10,000$ STSs (and beyond)
Methods: Genomatron
CCD capture of chemiluminescent signal
Computer Analysis of images
Radiation hybrid mapping of 5000 genome wide STSs
Phase 3 - Map Assembly and Validation
Goal: Closure
Methods: Verification of YAC addresses usingsemiautomated set-upRapid recovery of YAC ends for STS generation

TOOLS \& TECHNOLOGY

Supporting PCR, New Thermal Cyclers Find Diverse Laboratory Uses

byCarend.Potier

Thermal cyclers-or automatic temperature cyclers-have not been around very long, but, having ridden to popularity on the coattails of the polymerase chain reaction (PCR), they are fast becoming essential laboratory instruments for many biological researchers.

PCR is the DNA amplification process introduced in the 1980s that has revolutionized genetics-related research. PCR replicates a small amount of DNA in a series of heating and cooling steps and has been used in diverse research applications, including molecular biology, epidemiology, and paleontology. Reflecting the importance of the innovative process. PCR's inventor Kary Mullis was awarded this year's Nobel Prize in chemistry (see story on page 1). Thermal cyclers, for their part, have cut the time needed to run PCR by as much as two-thirds.
"In the $21 / 2$ years I've been in this industry, I've seen the uses for PCR and the market for thermal cyclers. expand dramatically," says Karen Studer-Rabeler, director of new product development at Coy Corp., a thermal cycler manufacturer located in Grass Lake, Mich. "PCR is used in anything from the study of fossil ambers to genetic engineering of com."

Thermal cyclers allow the PCR process to proceed automatically by subjecting the reagents-DNA nucleotides and a heat-tolerant polymerase, among others-10 a user-specified heating and cooling sequence. In PCR, a thermal cycler heats samples to open the double helices of DNA, lets the temperature drop to bind primers, increases the temperature somewhat to build new strands, then heats up again to begin a new cycle.

The development of thermal cyclers lagged behind that of PCR itself because the first enzymes used for PCR were thermolabile (unstable when heated, and therefore unusable after one cycle), explains Simon Foote, senior research scientist at the Whitehead Institute for Biomedical Research in Cambridge, Mass. PCR had to be done manually by placing sample tubes in water baths set at various temperatures, then adding new enzymes to the tubes after each heat cycle. "There was no way to automate the process with a device such as a thermal cycler until thermostable enzymes became available," Foote says.

Such enzymes are now available, making the use of thermal cyclers a significant improvement over the manual method. The most significant benefits of thermal cyclers are unattended operation, faster
throughput (since thermal cyclers are designed to reach target temperatures as quickly as possible), and enhanced temperature control to provide uniform heating and cooling over the entire body of samples.

Capaclty Range

One of the most striking ways in which the thermal cyclers now available differ from each other is in the number of samples they are designed to process at once. At one end of the spectrum is a small, lightweight model called the MiniCycler, from M.J. Research in Watertown, Mass., that has a capacity of $160.5-\mathrm{ml}$ tubes or $250.2-\mathrm{ml}$ tubes. At the other end is what is commonly known as "the waffle iron" because the honeycomb pattern of its large well plates resembles the surface of that appliance. The official name of this instrument is the TC 1600 Thermocycler, and it is made by IAS Products Inc. of Cambridge, Mass. Depending on the configuration chosen by the researcher, it can process simultaneously up to 3,072 samples (16 microtitration plates times 192 wells).
"The waffle iron was spun out of a custom project we did for the Whitehead Institute to help them automate their work on the Human Ge nome Project," says Steven Gordon, president of IAS Products. This thermal cycler is the most expensive on the market at $\$ 45,000$, but, as Gor-

TWIN USES: One virtue of the Ericomp TwinBlock thermal cycler, says David Brown of the cycler, says David Brown of the
University of Georgia, Atheris, is that it can run two experiment programs at once.
don says, "It's cost-effective if you need that kind of throughput." The MiniCycler, by contrast, sells for \$2,795.

Four waffle irons equipped with sixteen 96 -well plates are in constant use at the Whitehead Institute, supporting the institute's work of mapping the complete human genome. "We average three runs per waffle iron per day," says Foote. The Whitehead lab is in the process of converting to $\mathbf{1 9 2}$-well plates for

even greater capacity, he adds.
Some thermal cyclers, the waffle iron included, offer researchers the ability to divide the instrument's capacity into independently cycling sections. For example, the waffle iron can process four different heating and cooling profiles, one for each quadrant of the device. A smaller, more affordable model called the TwinBlock System from Ericomp Inc., San Diego, has the ability to run two different cycling programs simultaneously. David Brown, a research coordinator who works with a TwinBlock in a University of Georgia in Athens genetics lab, praises this feature.
"Aside from the confidence that the instrument reliably produces the temperatures you expect from a particular program, the ability to run two independent programs was a real selling point," he says. "Often two people in our lab run different programs on the TwinBlock. If you had another machine with the same capacity but only one cycling program, others would have to wait until the first person was finished."

Heating And Cooling

Thermal cyclers must reach appropriate temperatures quickly and provide a uniform temperature over ail samples. To achieve these objectives, manufacturers of thermal. cyclers have turned to different technologies for heating the samples and then cooling them down. Most, but not all, use an electrically heated element to deliver heat to a metal plate (usually aluminum) that surrounds the sample tubes.

For cooling, several approaches are used. Some models do not offer active control when it comes to cooling, they simply let excess heat escape into the ambient air. "These are the cheapest to manufacture, but they can have uniformity problems," says John Hansen, director of special projects at M.J. Research.

Another method of cooling is that used by Perkin-Elmer, the largest manufacturer of thermal cyclers. This approach relies on a vapor compression heat pumping, which is similar to a typical refrigeration unit. Other devices such as the waffle iron

WAFFLE IRON: The TC 1600
Thermocycler from IAS
Products-commonly called the
"waffile iron" because it resembles. that appliance-is capable ofprocessing 3,072 samples at once, says company president Steven Gordon.
use water for cooling the samples. "You can get much more efficient cooling out of water because there is a physical mass that absorbs the heat and pulls it away," says Gordon.

Efficient cooling is a must for a unit that generates as much heat as the waffle iron. Because it handles such a large number of samples, this device requires a tremendous amount of power. "When you start multiplying things by 16 the number of microtitration plates in the waffle iron, you start -geting to numbers like 200 volts times 70 amps," says Gordon. "This becomes a potentially dangerous device." (Compare this with the requirements
of a clothes dryer or oven, about 10 amps each.) IAS Products builh five redundant safety systems into the waffle iron, Gordon adds.

Another technology used in thermal cyclers is an electronic process called the Peltier effect. Depending on the direction of the electrical current in a Peltier unit-two ceramic outer layers sandwiching an inner layer of semiconductor material-it can actively transport heat either into or out of a sample block. As current passes through the semiconductor material, electrons migrate from one surface of the sandwich to the other. dragging a small amount of heat with them. This effect can cause a temperature differential between the top and bottom of the unit of as much as 70 degrees \mathbf{C}. Reversing the flow of the current reverses the flow of heat as well.

Discovered in 1834 by Jean Peltier of France, this electronic means of pumping heat remained a lab curiosity until the 1930s, when Maria Telkes, a solid-state physicist at Westinghouse Research Laboratories, discovered how to use a crystal instead of a bi-metallic junction in the device, according to Hansen of M.J. Research. "Telkes's findings increased the efficiency of Peltier units an order of magnitude." Today's Peltier units are efficient semiconductor heat pumps that involve no moving parts or chlorofluorocarbons.
MoJesternina Coy Corp-in troduced thermal cyclers based on the Peltier effect in 1988. Thermal cyclers from M.J. Research have bi-

Ceninued on Page 19

Thermal Cyclers

(Cominured from Page 17)
directional Peltier control (that is, the Peltier effect is used for both heating and cooling); models from Coy use the Peltier effect only for cooling.

Initially, the materials used in Peltier units proved problematic for thermal cycling applications. "They were designed for steady-state cionditions where the temperature doesn't vary," says Hansen. "If you put these modules into a thermal cycler they wouldn't last very long, which is why many manufacturers have shied away from them. We've devoted years of research to building better Peltier units specifically for a temperature cycling process."

Using the Peltier effect for both heating and cooling makes thermal cyclers from M.J. Research highly adaptable to field conditions. One research team took MiniCyclers to the McMurdo Sound region of Ant arctica to investigate genetic diversity in moss. "Preliminary isozyme and morphological studies gave no conclusive clues, but with our little MiniCyclers we were able to con duct DNA amplification at two sites in the field," says Dieter Adam, principal investigator from the University of Waikato in New Zealand. ".A little gas generator could run both a MiniCycler and a gel box simulta neously and the speed of the machine allowed us to run several amplifications a day."

In Situ Amplification

DNA amplification was, until re cently, always performed in tubes.

THERMAL CYCLER

 VENDORSThe following suppliers are among those offering thermal cyclers for use in PCR-related experiments.

Applled Blosystems

 Division of Perkin-Elmer Corp. 850 Lincoln Center Dr.Foster City, Callfi 9440 (415) 570-6567

Fax $572-2743$
(800) 545-7547 (f
mation and ordering)

Coy Corp.

14500 Coy Dt
Grass Lake, Mich. 49240
(313) 475-2200 F

Fax: (313) 475-1846

Ericomp Inc.
6044 Comerstona Court Yest
Sulte Ernkwtwhevi\%\%
San Diego, Callt, 92121
(619) 457-1888

Fax: (619) 4572037

AS Products Inc
142 Rogers. St.
Cambridge, Mass, 02142 (617) $354-3830$

Fax: (617) 547-9727

M.I. Research Inc

149 Grove St.
Watertown, Mass. 02172
(617) 9242266 .

Fax: (617) 924-2148

TOUGH IN THE FIELD: The rugged PTC-100 thermal cycler from M.J. Research was used on the battlefield in the Gulf War to periorm PCR testing for biological warfare agents, says special projects director John Hansen. It accepts tubes or microassay plates for in situ PCR.

Although this method is unquestionably a powerful tool for molecular biologists and related researchers, those who deal with whole organisms often need to know the location within the cell of the DNA sequence
of interest. With traditional DNA amplification procedures, they may know that there was at least one template in the tube when they started the process, but not where it came from.

With in situ DNA amplification sections of tissue are put on glass slides and the process is carried out while the DNA is still inside the cell. "This technique has not been perfected, and there are some whodoubt its ultimate validity, but others consider in situ DNA amplification to be the most significant breakthrough in molecular biology since the development of PCR," says Hansen.
Since in situ amplification still requires temperature cycling, thermal cyclers can automate the procedure in much the same way they automate the process when it takes place in tubes. Several vendors have already adapted their instruments to handle slides. With these devices, PCR can now be performed in mor-
phologicaly intact cells, making the process more useful in applications such as clmical diagnostics, particularly viroogy, histopathology, and detection of genetic mutations.

For a detailed protocol for in situ amplificaion, see O. Bagasra, et al., Joumal of Immunological Methods, 158:131-45, 1993. Also, Coy Corp. offers a technical brochure on the procedure. Even before these in situ units became available, innovative researchers were taking matters into their own hands and modifying their traditional tube thermal cyclers with aluminum foil to accommodate slides.
Caren D. Potter is a freelance science intier based in McKinleyville, Calif.

ADVERTISEMENT

ITi MJ Research Notebook

| Volume III...No. 5 A Bulletin of Technological Advance in Molecular Biology | Fall 1993 |
| :--- | :--- | :--- | :--- | :--- | :--- |

HOT BONNET" HEATED LIDS FOR THE PTC-100

No Need to Check Oill Under These Bonnets
Heated lids are now available to fit most PTC100 instruments, to allow the thermal cycling of aqueous solutions without an oiloverlay. Theselids main tain higher temperaturesintheupperparts of 0.2 ml or 0.5 ml reof 0.2 ml or 0.5 ml reactiontubes, theneby preyenting the cononcentrations water vapor in the tubes. Solution concentrations remain consistent through many thermal cycles-even A heated-lid apparatus minceral oll or wax. A heated-lid apparatus includes an independent power supply/electronic controller. The unitsenses the temperature of the sample block by plugging into the chart reconder output, and the controller adjusts lid temperature accordingly. Lids can be retrofitted by the user, and they are available for both PTC-100-96V \& PTC-100-60 instruments.

MJ Research Now

 Vends Disposables Too
It's Quality Stuff \& Economical

No longer is there need to shop around trying to find the right tube to fit this cycler or the proper microassay plate to fit that cycler. Now, all of the necessary vessels can be purchased directly from MJ Research, with the assurance that each tube and every plate will fit snugly into the precisely-milled block of an MI machine. One-stop shopping for economical hardware and plasticware is now available.
As MJ Research is primarily a manufacturer of electronic instruments, the disposables in question are purchased in quantity from high-quality suppliers, then resold at low mark-up. We do this to make our line of thermal cyclers more attractive to potential customers and more useful to existing patrons. Our engineers work closely with the plasticware manufacturers to assure the proper pees are met-we know exactly what mattersthen we procure our supply. For the end-user, this results in quality vessels that work well \& cost less.

AIISMJ Research, Inc.

Manufacturer of Peltier-effect Thermal Cyclers
149 Grove St. - Watertown, MA 02172 U.S.A. (800) 729-2165 • Fax (617) 923-8080

New Slide Griddlew Accessory Unleashes the Sizzle of In Situ

Thermal Cycler Alternatives

 for Using Glass SlidesIn the original protocol of Bagasra (see J.I.M. reference to right), an MJ RESEARCH PTC-100-60 with its block covered in aluminum foil was used. Subsequently,MJR developed the PTC-100-12MS machine-dedicated to slides-as well as the Slide Griddle $^{\text {TM }}$ adapter plate for PTC-100-60 cyclers.

Griddling Glass Slides: Performance Thru Fieedback
Engineers Hearken the Call of Science \& Use Feedback Control

For nearly two years, the engineers of MJ REsEARCH explored methods to thermally cycle glass slides. Working alongside several researchers developing in-situ amplification*, the MJR team built and tested a number of different designs: However, the need for precision denaturationwhole cells or tissues cannot withstand as much "cooking" as oligonucleotides-helped to focus engineering efforts. It soon became apparent that in-situ protocols require both accuracy and speed toachieve denaturation without degrading cells, as well as good uniformity so that amplification is consistent and glass cover slips do not crack. The only way to achieve these goals is through active thermal control-but that requires a feedback loop.

Fortunately, all PTC-100-60 thermal cyclers built since Dec. ' 89 already have an external feedback circuit, for use with the in-sample probe.

Circle No. 210 on Reader Service Card

> pioneer of in situ-O. Bagasta- is published in the Jour. of Immun. Methods, $15 \$$ (1993) $131-145$.

SINGLE COPIES OF DNA NOW DETECTABLE IN FIXED TISSUE

Actively-Controlled Plate Fits Existing PTC-100-60 Cyclers

MJ Research has introduced a new thermal cycler accessory to help researchers perform one ar biol lar biology. Called "in-situ amplification"", this new protocol synergically combines the extraordinary sensitivity of DNA amplification with the pinpointing precision of in-situ hybridization
With DNA amplification alone, it is often difficulttodetermine the exact origin of amplified gene products; with in-situ hybridization, it is offen mpossible todistinguish a weak hybridized signal from background noise. But the combination of these two techniques-atop glass slides which are subjected to thermal cycling-creates a new tool that is so powerful that it actually allows a re-
searcher to view in tissues or cells searcher to view in tissues or cells the signal from a single copy of DNA or RNA in sims.
This new technique has myriad applications in human pathology, in cytologic study, and indevelopmental biology. A detailed prbtocol of an early

The Stide GriddileTM Acccessory
Utilizing this feature, the MJR teeam designed an inexpensive four-slide adapter pllate for this standard thermal cycler. The plate has a range of 5° $96^{\circ} \mathrm{C}$, and it delivers the precisionn needed for insitu protocols. Better yet, this Slide Griddle ${ }^{\text {m }}$ fits a cycler that otherwise holds sixty' 0.5 ml tubes, and it makes a powerful new techniique available to thousands of labs that already owm a PTC-100-60.
-The polymerase chain reaction (PCCR) is covered by U.S. patents owned by Hoffmann--La Roche, Inc.

A Genetic Map of the Mouse Suitable for Typing Intraspecific Crosses

William Dietrich,*,† Hillary Katz,* Stephen E. Lincoln,* Hee-Sup Shin,*, ${ }^{*}$ Jeffrey Friedman, ${ }^{\ddagger}$ Nicholas C. Dracopoli ${ }^{\dagger}$ and Eric S. Lander** ${ }^{*}$
*Whitehead Institute for Biomedical Research, Cambridge Massachusetts 02142, ${ }^{\dagger}$ Center for Genome Research and Department of Biology, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, and ${ }^{\ddagger}$ The Rockefeller University, New York, New York 10021
Manuscript received December 3, 1991
Accepted for publication February 19, 1992

Abstract

We report the construction of a genetic linkage map of the mouse, consisting entirely of genetic markers that can be rapidly typed by polymerase chain reaction and that show a high degree of polymorphism among inbred laboratory strains. Specifically, the map contains 317 simple sequence length polymorphisms at an average spacing of 4.3 cM and is detectably linked to approximately 99% of the mouse genome. In typical crosses between inbred laboratory strains, about 50% of the markers are polymorphic, making it straightforward to follow inheritance in almost any cross.

THE mouse is a powerful genetic system for the study of mammalian biology: a century of work has yielded thousands of mutants defining single gene variation and scores of inbred strains defining polygenic variation affecting physiology, development and behavior (Green 1989; Festing 1979). Because most of these genes are known only by their phenotypic effect, detailed study requires cloning the genes based on their chromosomal position relative to a genetic map. The ideal genetic map for this purpose would consist of genetic markers that were (1) highly abundant and evenly distributed, so that the entire genome could be simultaneously followed in a cross; (2) highly polymorphic, so that one could study any cross between laboratory strains; (3) rapidly typed, so that scoring a cross would be short relative to generation time; and (4) easily disseminated, so that any laboratory would have ready access to them. Such a genetic map would allow initial localization of genes and then provide starting points for chromosomal walks to clone them.

The first genetic map of the mouse was based on visible mutant phenotypes. Given the difficulty of isolating large numbers of mutants and the considerable effort needed to map two mutations relative to one another, this work proceeded slowly. Although the first linkage group in the mouse was found (Haldane, Sprunt and Haldane 1915) soon after the notion of linkage was first elucidated in Drosophila (Sturtevant 1913), it took more than 60 years before linkage groups were found corresponding to all 20 mouse chromosomes in the mid-1970s (EICHER 1981; Davisson, Roderick and Doolittle 1989). Moreover, this map was tedious to apply in practice because at most a few visible markers could be used simultaneously in a cross.

The situation was transformed by the recognition that minor variations in DNA sequence provide a virtually inexhaustible supply of genetic markers that can be used to follow inheritance (Botstein et al. 1980). At the time, such variations could be most conveniently detected as restriction fragment length polymorphisms (RFLPs). In the mouse, the RFLP approach proved to be extremely powerful in interspecies crosses (Robert et al. 1985; Avner et al. 1988). Comparing the laboratory mouse Mus musculus and the exotic species Mus spretus, a typical DNA probe had greater than 90% probability of detecting an RFLP with only a handful of enzymes. Using such interspecific crosses, detailed genetic maps have been constructed showing the positions of hundreds of genes (Buchberg et al. 1989; Kingsley, Jenkins and Copeland 1989; Ceci et al. 1989, 1990a,b; Justice et al. 1990a,b; Siracusa et al. 1990; Bahary et al. 1991; Copeland and Jenkins 1991).
Notwithstanding the great utility of RFLPs, they still have several major limitations. (1) The rate of polymophism is considerably lower among inbred laboratory strains, making it difficult to type crosses between such strains. (2) Typing RFLPs is time-consuming and difficult to automate. (3) Disseminating RFLPs involves managing and distributing large numbers of DNA probes. The first limitation is especially serious. Although interspecies crosses are quite useful, there are many circumstances in which it is preferable to use crosses between two inbred laboratory strainsincluding mapping of many mutations whose phenotypes are affected by genetic background, mapping of modifier genes, and mapping of polygenic factors underiying physiological differences between strains. Ideally, crosses should be designed according to phe-

ttcgagatgtcgccttcgtg

...... (cacaca) aggaacctgaaactccceag n
B) Inbred Strains

C) F_{2} Cross Progeny

Figure 1.-Illustration of a simple sequence length polymorphism, D3Mit21. (A) Diagram of PCR primers flanking region containing CA-repeat; (B) characterization of SSLP alleles in I2 inbred strains (left to right: LP/J, NOD/MrkTacBr. NON/Lt, AKR/J, BALB/CJ, DBA/ $2 \mathrm{~J}, \mathrm{C} 3 \mathrm{H} / \mathrm{HeJ} . \quad \mathrm{C} 57 \mathrm{BL} / 6 \mathrm{~J}, \mathrm{~A} / \mathrm{J}$. SPRET/Ei, CAST/Ei, and C57BL/ $6 \mathrm{~J}-\mathrm{ob} / \mathrm{ob}$), showing four distinct allele sizes: (C) segregation of SSLP alleles in 21 progeny from the $\mathrm{OB} \times$ CAST intercross used for constructing the genetic map.
notypic and biological considerations, rather than to maximize polymorphism for mapping.

An alternative source of DNA polymorphism has recently been described (Weber and May 1989), based on variation in the length of simple sequence repeats (SSRs) (also called microsatellites) that occur frequently in most eukaryotic genomes (Hamada. Petrino and Takunaga 1982; Stallings et al. 1991). Such simple sequence length polymorphisms (SSLPs) can be easily typed by using the polymerase chain reaction (PCR) with primers flanking the SSR (Figure 1). Recent studies show that SSRs show extraordinarily high rates of polymorphism in both human (Weber and May 1989; Weber 1990) and mouse (Love et al. 1990; Cornall et al. 1991; Hearne et al. 1991). Moreover, the typing of SSRs is rapid and automatable and the genetic markers are easily disseminated simply by publishing the primer sequences.
Here, we report the construction of a complete genetic linkage map of the mouse consisting entirely of SSLPs. The map contains 317 SSLPs at an average spacing of 4.3 cm and is detectably linked to about 99% of the mouse genome. In typical crosses between inbred laboratory strains, about 50% of the markers are polymorphic, making it straightforward to follow inheritance throughout the genome in almost any cross.

MATERIALS AND METHODS

Overview: Briefly, the map was constructed as follows. (1) Random clones containing SSRs (specifically, (CA) ${ }_{n}$. (GT) repeats) were isolated from an M13 library of mouse genomic DNA containing small inserts and their DNA sequences were determined. (2) Public computer databanks were searched to find the sequence of known genes containing SSRs. (3) From each such DNA sequence, PCR primers were selected using a computer program to generate assays designed to work under a single uniform set of experimental conditions. (4) Each PCR assay was tested to determine whether it revealed an SSLP between the two parental
strains, OB and CAST (see below), used in the mapping cross and, if so, to measure the allele sizes generated in each of 12 inbred strains. (5) To construct a genetic linkage map, the SSLPs were used to genotype the progeny of an F_{2} intercross between OB and CAST and linkage analysis was carried out using a computer program. (6) The newly generated map was then anchored relative to the existing genetic map by two methods: those markers that were polymorphic between the strains C57BL/6J and DBA/2J were typed in the BXD recombinant inbred lines so as to compare them with known strain distribution patterns and those markers that were chosen from the DNA sequences of genes with known chromosomal positions were assigned accordingly.
Isolation of clones containing simple sequence repeats: Random genomic libraries were constructed by digesting male C57BL/6J DNA to completion with MboI (New England Biolabs), fractionating the DNA on a 4% NuSieve GTG Agarose gel (FMC Bioproducts), and cloning the fragments in the size range $250-500 \mathrm{bp}$ into the BamHI site of MI3 mp 19 (Boehringer Mannheim). (The use of male DNA was inadvertent: we had intended to use female DNA so that the X chromosome would have been equimolar with the autosomes, rather than half-molar.) The libraries were plated at low density of about 500 plaques per $150-\mathrm{mm}$ plate so that individual clones could be picked without the need for secondary purification. Duplicate plaque lifts (Colony/Plaque Screen, Du Pont) were prepared, simultaneously hybridized with end-labeled (CA) ${ }_{15}$ and (GT) ${ }_{15}$ oligonucleotides (T4 polynucleotide kinase, New England Biolabs; [γ ${ }^{32}$ P]ATP, $5000 \mathrm{Ci} /$ mmol, New England Nuclear) at 65° in hybridization solution as described by ChURCH and Gllbert (1984) and washed in $0.1 \times \mathrm{SSC} / 0.1 \%$ SDS at 65° four times for 5 min each. We screened for (CA) $)_{n}$ (GT) $)_{n}$ repeats because they are the most frequent simple sequence repeat in the mouse genome (Hamada. Petrino and Takunaga 1982; J. SeGre, personal communication). Strongly hybridizing plaques were picked into 1 ml Luria broth (LB).
Length screen of clones: Clones were screened prior to sequencing to determine the length of the insert. Using 5 μ l of the supernatant from the plaque picked into LB , phage DNA was amplified in a $50-\mu$ PCR reaction (Amplitaq DNA polymerase, Perkin Elmer Cetus) with the primers flanking the M13 cloning site (5°-TGTAAAACGACGCGGAGT- 3^{\prime} and 5^{\prime}-CAGGAAACAGCTATGACC- 3^{\prime}). Phage containing inserts greater than 500 bp were discarded, because they could not be sequenced in a single pass.

T: Sequencing: Phage DNA was prepared essentially as deFscribed (Sambrook, Fritsch and Maniatis 1989) and the DNA sequencing was carried out according to Applied Biosystem's Taq Cycle Sequencing protocol using an ABI 973A DNA sequencing apparatus. DNA sequences containing SSRs with at least 10 repeat units were used in subsequent steps.
Database searches: GenBank was searched to find DNA sequences containing SSRs, using a variety of computer programs including FASTN and BLAST (Altschul et al. 1990). Specifically, we searched for all occurrences of at least 10 repeats of a dimer, trimer or tetramer.

PCR primer selection: PCR primers flanking the SSRs were selected, using a computer program called PRIMER (M. J. Daly, S. E. Lincoln and E. S. Lander, unpublished). The primers were chosen to have a target melting temperature of 60° (Breslauer et al. 1986; Rychlik and Rhoads 1989) and a target length of 20 bases. In addition, primer pairs were chosen to avoid significant homology to one another or to the murine repeat elements L1, B1 and B2 (Krayev et al. I980, 1982; Loeb et al. 1986). Primer pairs were tested under a single set of PCR conditions; the use of the computer program greatly increased our success in creating PCR assays that satisfied this rigorous requirement. PCR primers were obtained commercially (Research Genetics, Huntsville, Alabama).

Mapping cross, recombinant inbred panel and mice: PCR assays were first tested to determine whether they revealed SSLPs between a $\mathrm{C} 57 \mathrm{BL} / 6 \mathrm{~J}-o b / o b(\mathrm{OB})$, a congenic line carrying the recessive obese mutation, and an inbred strain of M. musculus castaneus (CAST/Ei). If so, allele sizes were determined in female DNA from 12 inbred strains: OB, CAST, C57BL/6J, SPRET/Ei, DBA/2J, A/J, C ${ }^{3} \mathrm{H} / \mathrm{HeJ}$, BALB/cJ, AKR/J, LP/J, NOD/MrkTacBr and NON/Lt. To construct the genetic map, the assays revealing polymorphism between OB and CAST were then genotyped in 46 non-obese F_{2} progeny of an $\mathrm{OB} \times$ CAST cross; this mapping panel provides 92 informative meioses corresponding to about 1 crossover per 1.1 cM . To anchor the map using recombinant inbred (RI) strains, the BXD RI lines $2,5,6$, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27,28 and 29 were used. (The remaining four BXD RI lines were omitted in the interests of streamlining procedures: the 22 strains used together with the two parental controls correspond to one-quarter of a microtiter plate and thus permit four markers to be genotyped per microtiter plate.) All DNA was prepared according to standard protocols (Sambrook. Fritsch and Maniatis 1989).

Genotyping by PCR: To genotype F_{2} progeny for SSR polymorphisms, PCR reactions were performed with radioactively labeled primer and products were visualized on acrylamide gels. Primers were end-labeled with [$\gamma-{ }^{32} \mathrm{P}$]ATP (specific activity $6000 \mathrm{Ci} / \mathrm{mmol}$, Du Pont/NEN) using T4 kinase (NEB) according to standard protocols (Sambroor, Fritsch and Maniatis 1989). A 20 -ng aliquot of genomic DNA was amplified in a $10-\mu$ PCR reaction using AmpliTaq DNA polymerase (Perkin Elmer Cetus) according to manufacturer's specifications. The primer concentrations were: 100 nM of each of the two primers unlabeled and 20 nM of one primer end-labeled. The reactions were overlaid with 40μ l of light mineral oil. Reactions were amplified on either an MJ Research PTC96 Thermal Cycler (MJ Research) or the GeneMachine 2 (USA Scientific Products) using the following thermocycling protocol: initial denaturation at 94° for 3 min , followed by 25 cycles of 94° for $1 \mathrm{~min}, 55^{\circ}$ for 2 min and 72° for 3 min . (Recently, we have successfully used an alternative amplification protocol which may yield cleaner results for some markers: initial denaturation at 94°
for 3 min , followed by 25 cycles of 94° for $15 \mathrm{sec}, 55^{\circ}$ for 2 min and 72° for 2 min , and finally followed by a single cycle of 72° for 7 min .) PCR products were diluted twofold with loading buffer consisting of xylene cyanol and bromophenol blue dyes in 100% formamide, denatured for 5 min on a 100° heating block and electrophoresed on 7% denaturing polyacrylamide gels (SequaGel, National Diagnostics) for 3 hr at $20 \mathrm{~V} / \mathrm{cm}(120 \mathrm{~W})$. Gels were wrapped in Saran Wrap (Dow Chemical) and exposed directly to film for 416 hr at -80°. Autoradiographs were independently scored twice.

Streamlining of genotype analysis: Considerable attention was devoted to streamlining the procedures, so that a single person could process some 800 PCR samples each day. Reactions were set up in flexible 96-well plates (Becton Dickinson Labware) using a Biomek 1000 Workstation (Beckman Instruments). In some cases, we coamplified two SSLPs known to yield substantially different product sizes in the same reaction, thereby increasing efficiency. In other cases, we combined two SSLPs that gave substantially different products sizes after amplification but before gel analysis. Loading of the gels was streamlined by using an array of $1210-\mu 1$ syringes (Hamilton, Reno, Nevada) spaced to fit into 96 -well microtiter plates. The gel combs were handmade sharkstooth combs designed so that the syringe array loaded every other well (G. ChURCh, personal communication).

Linkage analysis: Linkage analysis was performed using the MAPMAKER computer package, essentially as described (Lander et al. 1987; Lincoln and Lander 1987; Donis-Keller et al. 1987; Chang et al. 1988). Markers were assigned into linkage groups based on pairwise LOD scores of at least 5.0. For each linkage group, a "framework" map was constructed consisting of a subset of markers that could be ordered with a LOD score of at least 3.0. Some 66% of the markers easily fell into framework maps. The remaining markers were then mapped relative to the framework maps. Some 92% of the markers could be ordered with a LOD score of at least 2.0 .

Error checking: To maximize the accuracy of our data, we developed a new mathematical method for identifying potentially erroneous genotypes. Briefly, the approach is as follows. Rather than assuming that the observed data represents the true genotype, we considered it a phenotype caused by the genotype, according to a penetrance function: phenotype reflected the true genotype with probability 1 ϵ, but differed from it (i.e., was erroneous) with probability ϵ. Genetic linkage analysis was then carried out under this assumption, which explicitly allows for the possibility of error throughout the data. For each typing (i.e., each observation of an individual at a locus), we calculated under this model the LOD score, LOD $_{\text {error }}=\log _{10}\left(P_{\text {error }} / P_{\text {correat }}\right)$, where $P_{\text {error }}$ is the probability of the overall data set arising if the given typing is erroneous and $P_{\text {correct }}$ is the probability of the overall data set arising if the given typing is correct. For the most part, the potential errors correspond to apparent double crossovers in a relatively small region and instances in which a single crossover apparently occurs in a small interval rather than in a much larger adjacent interval. For LOD scores ≥ 1.0, the autoradiograms were independently reread and, if there was any ambiguity, the typing was repeated. In our analysis, we used a value of $\epsilon=0.007$ based on empirical studies of our error rate (see results). This method will be described in more detail elsewhere (E. S. Lander and S. E. Lincoln, in preparation).

Recombinant inbred analysis: Data from the recombinant inbred strains were analyzed with the RI Manager
computer program (Manley and Elliot 1991) using the "find" function to detect linkage.

Mathematical analysis of distribution of interval sizes: To test whether the genetic markers were randomly distributed in the genome, we examined the observed distribution $L_{\text {obs }}$ of distances between adjacent markers and compared it to the expected distribution $L_{\text {exp }}$ under the assumption of random distribution of markers. We calculated the distribution $L_{\text {exp }}$ as follows. For a map with an average spacing of $d \mathrm{cM}$ and a cross with n informative meioses, the probability $P_{d, n}(k)$ that two adjacent markers will recombine in exactly k meioses was calculated as:

$$
p_{d . .}(k)=\int_{0}^{\infty}\left[\binom{n}{k} \theta(x)^{k}(1-\theta(x))^{n-k}\right] \frac{e^{-x / d}}{d} d x
$$

where $\theta(x)$ is an appropriate mapping function. We used Kosambi's mapping function for this calculation. (Although no simple mapping function perfectly fits the recombinational data from the mouse, the choice is adequate for the purpose inasmuch as the same mapping function was used in the construction of the map.) To understand the equation, observe that the last term in the integral is the probability density that the two adjacent markers lie at a distance of $x \mathrm{cM}$ apart while the preceding bracketed term is the probability that two markers at $x \mathrm{cM}$ will recombine in k of n meioses. Here, we have an average spacing of $d=4.3 \mathrm{cM}$ and the 46 animal F_{2} intercross provides $\boldsymbol{n}=92$ informative meioses.

Nomenclature: Loci defined by SSLPs are named according to standard convention-e.g., DIMit7 refers to a locus on chromosome I isolated at the MIT Center for Genome Research, with arbitrary reference number 7. We have used this nomenclature both for SSRs in anonymous sequence and also for SSRs occurring within known gene sequences. By distinguishing between a gene and a particular SSR within the gene, the nomenclature remains unambiguous even for situations in which a single gene contains multiple SSRs, as happens in a number of cases. J. Todn has concurred in this decision and has assigned such designation to SSLPs in genes previously published by his group; these names are given in the tables. Similarly, a single SSR might be studied with various different PCR assays. To avoid ambiguity, we also distinguish between the SSR locus (locus name) and the particular PCR assay (assay name) used to study the locus. This is especially useful in the case of the six SSLPs which were independently identified twice (see below). Several SSRs previously published by J. ToDD were renamed, with his permission, based on newly determined or revised chromosomal location: DONds 25 was renamed D2Nds2, D8Nds 1 was renamed $D 4 N d s 10, D 0 N d s 27$ was renamed D6Nds4, DONds 22 was renamed DIONds3, D4NdsI was renamed D6Nds5, D0Nds 19 was renamed D12Nds1, and DINds 3 was renamed $D 15 N d s 2$.

Finally, we refer for simplicity to laboratory mouse as M. musculus, although these strains represent a combination of genomes from M. musculus and Mus domesticus.

RESULTS

Screen for polymorphism: Primer pairs flanking SSRs were first tested to determine whether they revealed polymorphism between OB and CAST, the strains used for genetic mapping. These strains were chosen because they belong to different subspecies and thus were likely to show a high rate of polymorphism, but they are sufficiently closely related that F_{1}
progeny of both sexes are fertile (unlike hybrids with the distinct species M. spretus, in which males are sterile). This allowed us to use an F_{2} intercross rather than a backcross for genetic mapping-providing twice as many informative meioses per progeny.

Overall, we designed and tested 455 primer pairs, with 394 obtained from sequencing random clones containing CA- or GT-repeats and 61 obtained from searching GenBank for SSRs. Of these, 393 (86\%) produced working PCR products of the expected size under the single uniform set of PCR conditions employed. This success rate increased steadily over the course of the project as the PRIMER program was refined, so that the success rate near the end of the project exceeded 90%. Of these 393 assays, 303 (77\%) yielded SSLPs between OB and CAST. To this collection, we added 34 SSLPs previously described by J. Todd and colleagues (Love et al. 1990; Cornall et al. 1991; Hearne et al. 1991) for a total of 337 SSLPs. Of these, 18 produced patterns that we found difficult to interpret reliably. The remaining 319 produced easily scored polymorphisms (accompanied, in some cases, by background bands). These 319 SSLPs were used for genetic mapping; the primers are listed in Table 1.

To facilitate the use of these markers in other crosses, we determined the allele sizes in twelve commonly used inbred laboratory strains (Table 2). The typical rate of polymorphism between an inbred laboratory strain and either M. musculus castaneus or M. spretus was about 90% and, more remarkably, the typical rate of polymorphism between inbred laboratory strains was about 50% (Table 3). For relatively short CA-repeats, the length of the SSR is known to be correlated with its rate of polymorphism in humans (Weber 1990); we saw no such correlation in our data, however, probably because the vast majority of the SSRs used were very long (85% had more than 15 repeats).

Genetic map construction: To construct the genetic linkage map, we typed the 319 SSLP markers in 46 progeny from an $\mathrm{OB} \times \mathrm{CAST} \mathrm{F}_{2}$ intercross. The primary genetic data is available by request from the authors. Based on linkage analysis, 317 of the 319 markers fell into 20 linkage groups. These markers defined a genetic map of the mouse genome, with an average spacing of about 4.3 cM (Figure 2). The remaining two loci show no significant linkage to other markers in the map; these markers were retyped several times to confirm the data but no errors were found. We estimate that the map is linked to some 99% of the mouse genome.

Error checking: Given the large size of our data set (nearly 15,000 genotypes), some errors are bound to occur. Such errors pose problems for the construction of dense genetic maps: they spuriously inflate appar-
rimer sequences for simple sequence repeats

TABLE 1-Continued

Locus name	Gene name	Assay name	Left primer	Right primer
D3Mit 15		A55	AATTTGCATTCCAGGACCAC	AGGAAGTGACGTTGGGTTTG
D3Mit16		M159	TGCTTGTCCTGTGTTAATGA	TGAGAATGGAGGTGAACAGC
D3Mit17		M235	CATGGCTCCATGGTTCTTG	CCACGGAGAACAACTGAAGA
D3Mit18		A96	GAACAGTTCCCAGGTCCTCA	CTGCCITTAAATTCTGTCACCC
D3Mit19		M141	CAGCCAGAGAGGAGCTGTCT	GAACATTGGGGTGTTTGCTT
D3Mit21	Il-2	D31	AAGCTCTACAGCGGAAGCAC	CTGGGGAGTTTCAGGTTCCT
D3Mit22	Rp132-ps	D122	AAGGATTGAAGAATGGTTGGG	AATCAGCGATTTCAGCACG
D3Nds2		T21	ACACATTGGAGATGCACAGCG	TCTGCATGCCAGGGTTGTGAT
D4Mitl		A 73	ATGATGTACACTTAGGCATTGCA	AGAAATATGGCAAGCAAAATGG
D4Mit2		L67	GCACTCACACACTCACATGC	TGCACCAGTGACTITACCCC
D4Mit2		L6	GGATITCTTGGGCACTCACA	GCACCAGTGACTTTACCCCA
D4Mit4		M31	CGGAATAGGCAGCTATGCTC	TCCATAGACCCTGCATGTGA
D4Mit5		AI	CGCCTCTGTCTCTACCTCTCA	CCTAAAAAGTGTCTTCTGACCTCC
D4Mit6		M64	TGTGGGCAGTGTAAGCACTC	CTTTCCTCTGTGCTCGTGTG
D4Mit7		A71	CCGGGGATCATGTITAGAGA	AGAGGGATAATITTTGAATTGCC
D4Mit9		M241	GGCTITGGAATGCTATGCAT	TGGCAGGAGGTATGACAGAA
D4Mit11		M8	GGTTCACCAAAGGACTTCGA	CCTGTGACCCCTTGGAAGTA
D4Mitl2		M15	GCTTGCTTTAGGAGTGTGCC	TATITGCTCTCCATTTCCCC
D4Mit 3		M169	GCTGGTAGCTGGCITTTCTC	CAGATGTTCCTACTGCTTGG
D4Mit14		A69	TACAATAGTTAGCTCAGGCCAGC	GGGGTGAGGAGAGTGACTCA
D4Mit 15		A122	AGGAATACTGAATGTGGACTTTCC	TCCCTTGATTAACAGAAGACCTG
D4Mit 16		A65	GATCACCCAAGGCTGGC	TCCCCGTGAACTTCCATC
D4Mit 17	Orm-1	DI	TGGCCAACCTCTGTGCTTCC	ACAGTTGTCCTCTGACATCC
D4Mit205		M205	TGTGTGAACATGTCTACCCC	GGGGACCGAAGTAACAGTGA
D4Wsml	Jfa	FI	TCAGTATGTACATCCATGCC	TAAAAATGATAAGTTGTTTTATGAA
D4Nds2		T24	CTTCTGTCTGCTGAGGATACC	CCATGATGAGCCAAAATGAAT
- D4Nds 10		T29	TGTAAGCCATTCTAATAGATC	GAGGGAATAGAACTGACTGGT
DSMit 1		A82	AATAAAGCTGTGAGGTAAACCCC	GAAACAAATGATTGTTTTGAGCC
$\text { D5Mit } 3$		M197	AAGGGCAAGCCATTTAAGGT	GCCCCAATCTAGGAGGCTAC
D5Mit4		M189	CTAGTCATTGGCTCCAAGGG	ATGCACTGGGAGAGTGAAGG
DSMit5		All	TGAGTGAGGTGTGGTGATAACC	TGTGTCTTCCCCTTTCAACC
DSMit6		L42	CTCCAAATGGAACTATGGAA	CATGATATTAAGCAGCTGTG
DSMit7		M154	AAAGGGGGTCTTCTTTGGAA	TCTCCTGTAGTGGGTGGTIT
DSMit9		A9	TTCCTAGCATTTCCCTGGG	ATCTGGAGAGAATTGTAGTCTGGG
DSMit 10		M207	CGAGAAGTTGGAAAGACCCA	GGCACCCATGCCTCTATG
DSMit11		M97	GATCTTCCTACCTTCTTACCCAC	CATGATTTTATTTGGGGGG
DSMit12	Csnb	D128	TTAGGCAAGTGTTAGACTAAAAGGG	GGAAATCCTCTTAGACCTIAAATGC
DSNds2		T26	TAATCTATTGTITGTGGAAAG	GTATCAGGCAAACTGGACC
DSNds 4	A / P	T61	AGCAGGGCTACACAGAGAAAC	ATTCCCATATTTGCATCTCCA
D6MitI		A10	GGCACATTTGCCITTGTTTT	TCTCCTATCTCTCCACCTITTCC
D6Mit 3		L59	ATGGGTACCACCCTATCATACCTA	TTATACACTGATATCTTGATAGCC
D6Mit4		M239	ACTAGGAAACACACTGATTCATATG	GAGGTGACAAAATTTTCAAAAA
D6Mit5		M161	CACGGAGAGGACCTACATGC	AGCTGCTCGTCTCCACACTT
D6Mit6		M259	TTCTCTCAGTCTTGTCTGTGTACA	GTGAGGCTCAAAGAAAGGGC
D6Mit6		M227	GAGGCTCAAAGAAAGGGCTT	TTCTCTCAGTCTTGTCTGTGTACA
D6Mit8		M240	TGCACAGCAGCTCATTCTCT	GGAAGGAAGGAGTGGGGTAG
D6Mit9		L23	GTCTGTTTTGGCATATGGCA	TCTGGGTANCCAACCATGTT
D6Mit10		M78	TCAGAGGAACAAAGCAGCAT	CCTGTGGCTAACAGGTAAAA
D6Mit11		M170	ACTGGCCTCITITATGTGCA	TGTGAGTGTGAGTTCAGGGG
D6Mit12		M11	CCACATCCATGTAAAAGCTG	TGGITCAATGAAAGTTGCCA
D6Mit13	Prp	D34	TTTTGTTTCCTTTCAGCATG	GGGAGCCATTGTCCTATTCA
D6Mit14		M190	ATGCAGAAACATGAGTGGGG	CACAAGGCCTGATGACCTCT
D6Mitl5		M148	CACTGACCCTAGCACAGCAG	TCCTGGCTTCCACAGGTACT
D6Mit16	Ly2	D11	AGGCTITGATGCTGTATAGG	CACCAGGAACGTAAGTGAGC
D6RckI	Cpa	F3	CAGCTGAGTCATTAGAGCACTIACC	CTCAGACCTACTAGAGAAGTGCAGAGC
D6Rck2	Mirp	F2	GAACACCCCTGGACCGTATTCTCA	GATCGCTGGACACTTCTCTGAGTG
D6Rck3		F103	GACAAGAGGACGCATCTITTG	CTACGAAAAGTCAACCTCGAGG
D6Nds 4		T59	ACCTCAGCGGTTCTTTATGAG	TGGTCCACCCTGAATGAGTCC
D6Nds 5		T23	GGAATGTCTTATTTAAGTCAG	agtggagtantatitgancan
D7Mill		M208	GTCCCAGTGTGTATATATAATCCAG	GGATTATACACACAGATGTTGGG
D7Mit5		M187	TCGTGTCAAATTGCTTATGC	ACTGTGTGTGCCTGTGTITG
D7Mit7		LI 2	ACTCAAAGGTTGTCCTGGCA	TGGTAGTGGTGGCTNCGGTG
D7Mit8		M183	TTGGCCITTATAGGCACCTG	TAAGGCACCATGATATGGCA
D7Mit9		A89	GACAGGTGGTTCTITAATAATCCG	GGAGCTTTAAAGGACAATTTTCA
D7Mit10		L72	GTTGTTCGGGAAGGGAAGAT	CCTTGGCACGAGATGAACTG

Locus name	Gene name	Assay name	Left primer	Right primer
D7Mil10		L25	GAAGATTGGGCTGTCTGCAC	TGAAGCTGATGGAGCTGATG
D7Mill2		M23	GCTGGGTITATTCATTGCAA	TCCAGCTCATGGGTAGAAGA
D7Mil13		A113	ATGGGGAAAGTGACTGAGGA	ATTTITGTAGCTTGAAGGTATGGC
D7Mill 4		L79	TCCCTCCTCATGTTTTCATG	GATGATYGGGAGAAGCAAGG
D7Mil15		M47	GTGTGCACCCACATGGATAC	AGGGAAAGCACTTGACCATG
D7Mil16		A13	CTGGTCTCTGTCCTIGGAGC	AAAGAAAATATTCTTGITGCCAGC
D7Mil17		M91	CTGGCAITTATGTTGCTICA	AACTTGCCITCTGTCCTCCA
D7Mit18	Gas-2	D117	GGGAGCCCAGCTTCTACTG	TCCTAACACCCTTCCTGGTG
D7Mil19	Tyr	D108	GCTGCAGCTCTCTCTGGG	GATGGCTCTGATACAGCAAGC
D7Mit20	Mb-1	D103	GTGTAGCAATGGTGTCGGTG	AAGCCTGCCTCCAGATGTAA
D7Nds 1		T27	GAGATCTTCCATACTCATATT	TAGATAGTGTTAACAGTGACC
D7Nds2		T28	CAGACTTTCATITCTTTGGATAC	ATGCCATCATGTGTTGAAGCA
D7Nds4	Int-2	T63	GTGACAATACATTCCTGCTGT	CTCAGATCTTATCTCTAGCAC
D7Nds5	Ngfg	T62	CTCCACATGTGTATGTGTATG	ATGGAGGCCGAAGAAAGAATC
D8Mill		M 70	TTTTGCTGTCTAGGTCCTGACTC	CAGCCTCATTAGTAAGGGACCTT
D8Mit 3		M195	TCCCATTCTCGCATAAGTCC	GATGGGAAGACAGGGTAGCA
D8Mit4		M71	CCAACTCATCCCCAAAGGTA	GTATGTTCAAGGCTGGGCAT
D8Mit5		M176	TCCCTTITCCCTGTGCTATG	GCCGITCATTTAACCCTTCA
D8Mit6		M158	CAGGCAGCTTGCTAGGACTT	TACTGCCTTTAGCCCAGTGG
D8Mit7		M138	TTGGTGAACACCAGGTTCAA	ATGATGTTAGTGGTCTGGGG
D8Mit8		M257	GAGGGGCTGGAAGAAAGAAC	AGCCCAGACTGCTTCCTTTT
D8Mit9		A62	ATITGAATTGTGCAGACCTGG	CTGCTIGTITTTATCTCCTGGG
D8Mit11		A105	GCAGCAGTGGTAGCAAATAGC	CTTAATCAGCAATCCTTGACACC
D8Mill2		L.11	GATCTCTACATCAAAAGGGA	TTCAGTITTGTTTCTGAAAC
D8Mill 3		M77	CCTCTCTCCAGCCCTGTAAG	AACGITTGTGCTAAGTGGCC
D8Mit14		L34	TITTCACACTCACGTGTGCG	GTCTCTCCTTCCTGGCGCTG
D8Mit15	Mt2	D20	AGCTGAATTTGAGCTAGTCG	AAGCTTACGGTTTAATCCCC
D8Mil16	Polb	D100	GCCTGGATTTCCTCATTGAA	AGITGGTTATCCCTGAAAATATACA
D9Mill		M88	GAGCTGTAACACTGACAATGTGC	TATCTCAATGCACACTITTGTGC
D9Mit2		L.32	GTGGTCTGCCCTCTTCACAT	CAAAGCCAGTCCAACTCCAA
D9Mit4		M151	TGCTGAGCAAGCTATGAGGA	GACAGCCCATCACAGCTACA
D9Mit6		A78	GTACCCGGGGATCTGGTG	CTGAGAAATGGAAACGTTGTTG
D9Mit8		M211	GATGAAGACAATAAAGAACCTTAAA	AAGAGCTAACCCATTGCTGC
D9Mit9		A72	TACCCGGGGATCTTCTTTCT	AGAGCTTTCCCGCTACACAA
D9Mit10		M86	TAACCAACCCTTCAAGGCAC	AATCCTTGGCTGAAGGGAAT
D9Mit11		L60	GCCTTCATGTGTACCTGAATGCAC	GGCTCTGTAATCACTGAAGCTGGT
D9Mit12		M73	ATTCAAGGGGCAGTACACAT	TGGTCCTGGTAAAACTGCCT
D9Mit14		M236	CCAAAGGACTGCTATTTGCG	GTAATATTGCTACACTCATGCACA
D9Mit15		M 160	TTCAGTCCAGTCTGGGGGTA	CCCCCAGTTTTGTTGTTTTG
D9Mit 16		A5	TCTGTGCCTCTTGGAGTGTG	AGGATTGGGGCTITGITCIT
D9Mit17		L19	GCCAAGGCTGTCTCTTAGCC	GAGAGAAGGGTTCTGGGCAG
D9Mit18		M10	TCACTGTAGCCCAGAGCAGT	CCTGTTGTCAACACCTGATG
D9Mit19		M157	CCAAACACAACCCCTCAGAA	TCATGGCTTCAAGACTGCTI
D9Mit20		L64	CCCTTGCAGCCCATCGCCTA	TAGACACATAGCTGGAGGTITTCT
D9Mit2l	Cypla2	D15	CAGTCCCTGGTTAATAACAACAAC	TATAGTCCATTGTGGCAGAGGAGT
D9Mit22	Ncam	D134	ATTGCATAACACCCCCACAT	CAGTGCTIAACTGCTCAAATGC
D9Mit23	T3d	D4	AAGAAGTTTCCATGACATCATGAA	AGAAGAAAATTCITGACAGCTCTG
D9Mit24	$T r f$	D26	CCITCTAAACACAGGCTITTTGAG	CTGATGATCACCTCATITCCTGAG
D9Nds2		T30	TCCITGGAGTTAAAACTTGGA	AGATAAATTCAATGAGTCCTA
DIOMitI		M153	GGAGAAAACCAACTCCTGCA	AATGTGAAAATGTGGAGTGG
DIOMit2		M24	CTGCTCACAACCCATTCCTT	GTTCATITGAGGCACAAGCA
D10Mit3		A114	GTTGATAGTCCCACCTCACTCA	TGAGAAATTCCATCTGTGGC
D10Mit4		M139	TAGGATTACAACCTTGCCCC	CACAAGGGAAAGTCTCCAGC
D10Mit5		M67	AAGTGAAGGTGCTGGTCACC	GGGAATTTCACAAAGACAGC
D10Mit7		L62	GATCTATGTGAGTGCGAGGCTAGC	TCAAACCAGATGGCACTGAAGACT
DIOMit8		M3	AGTGTTAGTGGCTGGGGTTG	TGAACGTTTCAGTTGGTCCA
DIOMit9		A37	ATTTGGAGCACGCATCTICT	AGGCCCACCTTGTACTTGTG
D10Mil10		M7	CCAGTCTCAAAACAACAACAAAC	TTGCACCTAGATTGCCTGA
D10Milll		A88	GAGAAGTCACTGGGAGCTGG	TTGCCAGGITGCTCTICTIT
D10Mill2		M172	ATGTCCAAAACACCAGCCAG	GGAAGTGATGGAGCTCTGTT
D10Mil13		A63	GATGGAGCTTCTATGTCAACCC	TTATTTCCACTGAACTTCCTTTCC
D10Mill4.		M175	AGAGGGGACAAGGAGAGACC	AAGGTITGGGTTCAGTTCCC
D10Mills	Sqr 3	D30	ATGCGTACAGGCAAAACACC	GCTACATTGGTCTGTGACGC
DIONds1		T31	TGCACACCCACAGCACACATG	AAGGTTTAAGAAGGTCAAATCATA
DIONds2		T32	CTATITACTTAACTCACAATT	TGGTCTTTTGCTCCATAAACT
DIONds3		T54	TGACATTTTGCGATTTTCATTTGT	GACACATGGATCCTCACATGC

TABLE 1-Continued

Locus name	Gene name	Assay name	Left primer	Right primer
DIIMitI		M215	GGGTCTCTGAAGGCTITGTG	TGAATACAGAAGCCACGGTG
DIIMit2		L. 14	TCCCAGAGGTCTCCAAGACA	CCACAGTGTGTGATGTCTTC
DIIMit4		A124	CAGTGGGTCATCAGTACAGCA	AAGCCAGCCCAGTCTTCATA
DIIMit5		A2	TTCTGTGAGCCTGGAGGAGT	TACAGGACTAGTTTCCATTTGGG
DIIMit7		M119	AGGGTATTCTCTAGCCTCCACAC	TTTGAGGCAAGATGTCATGTATG
D1IMit8		M212	CTTTTCATGGAGGCACAGGT	TGTGAACAGAGACACACATTCA
DIIMitlo		M162	GAACCGCAAGTCATGAATCA	TGGTTTATTCCTGAAGCTGC
DIIMit11		M43	TATTCTCTCCTTCCCCCCAC	TAGAGTTGGGACACCCAAGC
DIIMit12		L3	AGGGTTATGCTCTTGGCTGC	GATITTCCTAGGCTGGCTGG
DIIMit13	Ace	DACE	ATAACACCAACATTACCATAGAGGG	ATACTAAGTTCAGACTITTCACCAATITT
DIIMitl4	AntP91a	D2	CCACTTAGTATATCTTGTCC	GCATGACTTGGCCTATCACC
DIIMit15	Glut-4	D5	TGACATTTGGCGGAGCTAAC	ACATGTACTTGCCAGGGTAC
DIIMit16	Lif	D133	CAGCTAGAAATGGCAATGAGG	CTTGTTCTACACCCAGCAAGC
DIINdsI		T33	TAAGAACCTTCTGTAGTTATT	ACCTTAGTTAGAGTTGGTCTC
DIINds7	Gfap	T12	AACTGTTCAAAGCCATTTCG	CTATGGACTCACAGCCAGGCT
DIINds9	/l-5	T14	CCTITCTGAAAGTATTAAGAGT	ACAACCATCTGCATATCCAGC
DI2Mitl		M50	TACCCGGGGATCTITTGTTT	AAGTGGACTGCCAGAGGATG
D12Mit2		M27	ACACAGGCTAAAACATGGGC	GCATCTGTATTCCACAGGCA
D12Mit3		L41	TAAAGGGGTTTGCTTAAACA	ATGCCACTGAATGTCAAATT
D12Mit4		A64	ACATCCCCAGCTCTTGTTTG	AAACCAAACCAAAGAAGCTTAGG
D12Mit5		L58	CACATAGACCAGACAGGCATGCGT	CAAGGTCACGTTGCTAGCTAGGAA
D12Mit6		L16	ATGCTCGACATCAACCTTGG	TATCTGTGTGGCTGGAACGA
D12Mit 7		M62	CCGGGGATCTAAAACTACAT	TCTAATCTCAGCCCAATGGT
D/2Mit8	Igh-C	D7	TTGCCTAACCCACTCACACC	TGGTGACTCCTTACAGAGGC
DI2NdsI		T51	AGTGATGTGATTACAGGTTTG	CACTCTATAAACCCACTGCAG
DI2Nds2	Igh \cdot V	T1	ACATGGTAATTTATGGGCAA	CTGGATACCTGCAATAGTAGA
DI2NdsII	Odc	T64	CATITGAGGACAGTCAGGATC	GGAACITTCATGCAGTACTAG
DI3MitI		A86	TCAACTCTTCTGTAAACCAGATGC	GTCTGTTTGATTCCTGACCTCC
D13Mit 3		M79	TCAGGCTCATCCCAGATACC	TIITGCAGAGAACACACACC
D13Mit4		M231	TGTGGGACAACTGTGACAAA	CACCCAAGGCCCACTTC
D13Mit5		M38	AGAAGCCAGCAGGTGTTTTC	CCAGGAAGTAACCCCAAACA
DI3Mit7		A68	CGGTACCCGGGGATCTAC	AGCCCAGCITGTGAAGTGTT
D13Mit8		M61	GCCCCATTTCTGAAGTTTCA	AATAGACTCTTCAGCCCCCC
D/3Mit9		M147	GGGTTCCAGATTGAGTGGAA	TTGCCAAAGTGTCAAAATCA
D13Mit10		L61	AGTCCTGCCATTTGTCCTCTGACC	ATGTCTTAGTCTCACATGCTGGGG
D13Mit1]		A91	CATGGCTCCTTTAACCTGTTT	CAATGATTAACCCTTGAAAAAACA
DI3Mitl3	Il-9	D24	CTGTGGTAAGTCCAGATTTG	GGAAAGAGTAGGAAGATGCC
DI3Mit 14	Sqr4	D29	GGAACAGCAAGCTCTAAGGG	CTACCAGGCCTCCCAAGATA
DI4Mit]		A103	GATCTATATGTCCCAACTATAAAG	ATITTGACTAGGATTGTTTGAGGG
D14Mit2		A24	TGTCTGACCCATTGGAATTATG	TGAAGAAGACACCTAACACTGACC
D14Mit 3		M32	GCAATTACACCTCCTCGGAG	CACAAGGGCATATGGTACCC
D14Mit4		M228	AGGCACCCCCTCACAGTAC	TTCATTCCTCCTGCTGACCT
D14Mit5		M214	CACATGAACAGAGGGGCAG	GTCATGAAGTGCCCACCITT
D14Mit6		Al19	GACAAACGCTITCATCTACAAGG	TGTGCACATTCATCCACATG
D14Mit7		L27	AATGTATGGGCATGTGCGIG	GAGATAGTCAACCAAAACAA
D/4Mit8		A44	TCACAGGTGCTCTCAGTCATG	GCAAATACTTCCCTTCTIGGG
D14Mit9		A93	AGGGGAAGGGAAGATGAAGA	GGTGTGACCACTGCCTAGGT
D14Nds1	Plau	T10	TGCTGGCTAGGAATAAACAGA	AGGGAATTCATGTTCAGGATA
DISMitI		L29	AACATGGTCCCACAGGTGTC	AGIAGAAGCTGCAGCCCTGG
D15Mit2		L10	AGAGCATGTCCTCACCCCTT	CCTGGAAAGGTCTCAGGGAA
DI5Mit 3		L78	TTTCCATITTGGAGCCAGAG	TATCCITGTCCTGCCATCGT
DI5Mit5		L1	CTTCCTAATTCCTGTCAAGCAAAT	GTTTCATTGGTCAATGGAAACTTA
D15Mit6		A59	CCTGGTCTGAAACACTTTTGC	CTTGTGAGTGCTCCATGCC
DISMit 7		M30	TITGCAGCTGTGTTCTGCAT	GATTAGGCCACGTGAGCTTC
DISMit8		A79	GGAAAAGGGAAAAAGATGTGC	TATATTACACTITCCITTGCTGCA
DISMit9		M232	CCATGAGTCCTTCATGCCTT	TGTATATGCAGAAGCAGGCA
D15Mit 10		M76	GATCTATAACCAGGGCAGGG	TTAATTCACGGAAATGTTTCAATTT
D15MitII		M237	TGTGAGAAAAATGACAGTAAGGC	TCACAGAAAGACAAGACAAAAGG
D15MitI2		M34	ATGGACACCTGACACTGCAA	AAGGGCTTTTACCTGGGAAT
D15Mit13		A36	GGAGACAAAAATGAACTCCTGG	TTGTAAGACAAGCATAGCTCAACA
D15Mit14	Gdc-1	D17	GAGGAAAACCATGTCAATCACTTC	CCTCCTCTTAAACCAAGATCTCTG
D15Mit15	Hox3.1	D6	AGCATACACTCTCTTGTTCCTGCT	AATAAATACCAGAGAAGCACCGTG
D15Mit 16	Hoxmaa	D131	AGACTCAGAGGGCAAAATAAAGC	TCGGCTITTGTCTGTCTGTC

5i－continued

H5 Locus name	Gene name	Assay name	Left primer	Right primer
EplSMil17	Myc	D22	GCGTCACTGATAGTAGGGAG	GTACCCCAATCCTGAACCAC
SISNds1		T35	GAGTAGGTTGGAATTTCTCTC	acanatatacactactggacan
\％DISNds2		T18	gcctattiatticanagatatgac	tgatatcgagccatacatgag
ED16Mill		A70	CGCCCTCTAAGGTGACTCAG	agagaggggitatggegtrg
\％D16Mit2		L80	CCAATGCCCTCTTATGACCT	tretagtecgicctacccag
CTLD16Mit3		M127	TCTAACGCCCTCTCTCTACC	CCAAATGTGATTGCACAAGG
－${ }^{\text {P }}$ D16Mi4		M203	AGTTCCAGGCTACTTGGGGT	Gagccctcattgcanatcat
		A38	CGGGGATCATCCCTAAAAAC	TCCCCAATTCCTCTTGTGTC
Wrev16Mit6		L7	CAGGTCCAAGAGGAGAACCA	tITGACCTGTGAGCCTGTGG
＋2\％D16Mit7		L39	CTGCCACCCCTGAACCATTA	CTACAAGATGTGGgGCatga
大星家 D16Nds2		T37	ATTGGTGAGCTTACAGAATAC	gTGgTCatGatattcgtagat
Whet D17Mit1		M124	TGCTTGAAATCCTGGGTTCA	TGCAAAAATGTATGTGCCTG
3䊩＇D17Mit2		A18	ACAAACATGTTGGCCTAATTCC	tTGAGTTTAAGCCCCTAGAATCC
4 等定 D17Mit3		L28	GATCTITTCTTATTCTGGTT	GCAAAGTCATGTACTCTGAG
＊ 6 Di7Mit4		M114	GCTGTGCTTCCACACTCAGT	TTTCTGAAAAAGCCTCTCAA
Sme D17Mit5		M92	TGGGAACTITCCAGACTTCC	СССТTTCCTCCAAACTCTCA
垔：D17Mit6		M254	GTACATGTAGAGAAATGGAGGTG	GCTTATGTTCTTTAACAAGAATGTG
Sta DI7Mit7		L4	ACTCCTINGGGACCTGCATT	ACCGCTCAGGGAGTGCACTT
Ste．D17Mit7		A23	TCTAATCCCATGTATATGTGGTGG	TTCCTCTGGACTCCTTGGG
36\％－D17Mit9		A51	TCAGCCCTTAAAAATTACTCTTGG	CCCCACCAACTGTCCTCTAA
		L36	TGCACTTGCATAAGGAAAAC	GACTTTGGGGCCTACTTATG
5ist DI7Mit11		M145	tGantitatgagggegcica	TGTCCCATATCTCTCTITATACACA
W\％D17Mil13		L57	gatccagaccacaccccctcacca	TCCTTTGAGAGCCAAGCTTGAAGG
D17Mit16		A25	CCAGAAGACAGCATTCCACA	gtatgtcagg ctagttgacagg
$\because \quad$ D17Mit18		M33	GCAGCTCATTCTTAGTCCCTAAT	TCATGAGTCCCCAAACTAGC
D17Mit19		M44	GAGCTGGTAAATGCTTTGGC	ttgagtaccicgiactigcc
D17Mit20	C3	D129	agancaggacaccgaicatc	TCATAAGTAGGCACACCAATGC
DI7Mit2I	Mhcab2	D21	taAcaccagacattgacctc	agtctagatatgtgictcce
D17Mit22	Mhceb2	D16	GGTAAGCATtagatagagag	TTATGATCTCCACACACGTG
D17Mit23	Piml	D106	TCGAGCTGGTTGAACGAAC	cgGganagcatggaitita
Fif D17Mit24	Thy 19	D12	ACCTCTCACCTCTCTCTGTG	tgGagagacgrcctatgat
F：DI7Nds2	Hsp68	T9	GTAATTGCGTTGACTGTTAAAT	AGTGCTGCTCCCAACATTACT
$\cdots \quad$ DI7Nds 3	Tnfb	T68	ttcctatgecgecctiatcag	agacantgggtancagaggca
－D18Mill		M42	tGagcanalatacattccatg	gggataccaggccagacata
D18Mit2		L9	TTCCCTATCCAGTTGTGTGC	CCCCTGTAGCTCAACCCACT
D18Mit 3		L76	TTCCCTATCCAGTTGTGTGC	AGCAGAGAATGCACCACCTC
D18Mil4		M51	ACTGTTGCTGGGGAATGG	CCAAGTTCAAAGCTGCTGG
D18Mit5		M57	ttgtccactgattgccacat	CGIatacccccaccatgitc
D18Mit6		A104	GATGAGCTAGGAGGAGATATGAGC	CATACTTACTACAGGGIITTGGGC
D18Mit7		M108	ACAGGAGAACGGGAACTCAG	GCCAGAGTGGACCAAGATGA
D18Mit8		L24	tITGGAATCTGGCATGTTAC	GTCTGAAATGAAGTGCCTGC
D18Mit9		M209	agaggcattgcacacacang	GCCCCTTGGAGAGTTGGT
D18Millo		Al00	TATCCACCCATTCCAACCTC	gGattgagctigctctigga
D18Mit12		A20	tTGTCAGTTTCTTGTGAGGGG	tGITTAATAAGCCTTTTCCTGAGG
D18Mi114		L13	GAGGTGATGTGGACACACTC	ACACAGCCTAGAATGCACGG
D18Mil15		L87	Cagacticatagcancaccctg	TAACATGAAAACAGAAACAGCCA
D18Mill 6		A35	TTCCCTTTGGAGACTGTGCT	tGganttacagcgcticctg
D18Mil7 7	Grl－1	D118	tcagccagattccaagcag	CTGTGGGTAGCCCAAGTCAT
DI8Nds 1	Mbp	Tll	Cagtacagccaggacacagai	ATGGCTGACCAACTCTCTAGC
D19Mill		A17	AATCCTTGTTCACTCTATCAAGGC	CATGAAGAGTCCAGTAGAAACCTC
D19Mil2		M109	tGTTGATAGTGCAAGGTGCG	CAAGGGGCCATACCTAGTGA
D19Mit ${ }^{\text {a }}$		M13	CTTCCCCTACTGCAGTGCTC	ttgcatagttgeccanagtg
D19Mit4		M230	CGGCTACCCGACACTCTAAA	ATTGGCTIGCCCTAACCC
D19Mit5		A75	TGTTTTGACCTATTTGTTTCATGG	GGTATCTCCTAGTTTTCCTGATTT
DXMitI		L43	CAAGCAACCGAGGAAGACAT	CAGGATGCTAATCACCCTGC
DXMit 3		M131	AAAAGGTCATGGCAAAAGGA	agGagaiagtgcaggeagg
DXMit4		M118	tgGacagtgcttgagcantg	GCAAAACAGCTACATTTGGG
DXMit5		A19	CAACCTCTGAGCTCTCCCAC	TGTTGTCTAATTCCTTCAGGCA
DXMit6	Zfx	D28	ACCATTCAAATTGGCAAGGC	GTGGCTCGAGTTGTTTGCAG
DXNds1	Hprt	T8	TGACAACTTCTGTCCTCAACA	atgccgicctitatctagaic
DXNds2	Plp	T4	TAATATAACAGATAACCAACCATT	Cattitgtangatgagtticta
Unmapped		A66	TCAGGGCTCTCTAAGGGACA	ACTATGCAGCCACCAAATCC
Unmapped		M25 1	TTCCTCAACTAAACGCTGGA	CATITTCCTGTATACCTGAATITT

The gene name given for SSLPs found in gene sequences from GenBank．The assay name refers to the specific assay used to genotype the locus；formal reference to the assay should be preceded by the symbol＇Mit－＂．The primer sequences are given from 5＇to 3＇．

TABLE 2
Allele sizes of simple sequence length polymorphisms in 12 inbred strains

Locus name	Gene name	Assay name	OB	CAST	B6	SPR	DBA	A	C3H	BALB	AKR	NON	NOD	LP
DIMitI		L.33	123	118	123	135	126	123	132	123	-	-	-	
DIMit2		A26	172	150	172	185	-	-	-	-	-	-	-	
DIMit3		M253	160	185	160	200	160	185	185	185	206	185	185	187
DIMit4		M46	200	168	200	170	200	200	200	200	200	197	195	210
D1Mit5		L20	148	126	148	150	152	152	152	148	150	150	152	152
D/Mit7		A80	108	156	108	125	125	125	125	108	108	125	108	108
DIMit8		L31	220	190	220	178	220	220	220	220	201	220	201	220
DIMit9		M111	160	140	160	162	160	160	160	160	147	160	147	160
DIMit10		Al17	140	152	140	125	140	140	147	140	135	140	140	135
DIMit11		M17	100	111	100	-	106	100	100	100	106	100	106	106
DIMit12		M93	133	129	133	170	133	133	133	126	133	133	133	106
DIMit13		L. 30	202	207	202	-	202	210	211	202	202	202	202	202
D/Mit14		M193	180	200	180	170	215	215	215	205	215	175	175	190
DIMit15		M146	160	188	160	154	160	186	183	160	183	183	183	183
DIMit 16		L46	190	185	190	195	201	185	190	190	190	164	185	190
DIMit17		M41	170	190	170	188	174	183	183	176	183	170	183	176
D/Mit18		A77	160	180	160	170	160	160	160	170	170	160	170	205
DIMit19		L86	113	148	113	123	120	121	121	113	113	113	108	103
DINds2		T17	180	167	180	123	180	158	159	158	190	178	159	158
D2MitI		M128	124	140	124	96	120	120	120	120	120	120	120	124
D2Mit2		M112	147	129	129	138	129	129	129	129	129	135	135	199
D2Mit 3		M116	160	194	160	158	160	160	160	160	160	160	160	160
D2Mit4		M52	190	166	190	176	190	190	190	190	190	190	190	190
D2Mit5		A41	141	180	-	-	139	137	139	141	141	141	141	139
D2Mit6		L. 18	135	147	135	110	126	126	135	135	126	135	135	135
D2Mit 7		L. 44	150	122	150	148	145	147	145	150	147	145	143	145
D2Mit8		M199	188	180	188	212	188	188	188	188	188	188	188	188
D2Mit9		M85	190	195	190	174	195	187	190	190	190	185	185	190
D2Mit10		M39	152	150	152	158	150	156	150	152	152	152	152	152
D2Mit 11		M134	226	932	226	264	226	232	226	232	232	226	232	232
D2Mit 12		M179	201	194	201	189	189	200	200	189	200	189	201	189
D2Mit13		M130	190	193	190	170	192	192	180	192	192	193	193	193
D2Mit 14		M163	142	152	142	198	130	130	130	130	130	142	130	130
D2Mil15		A61	145	178	145	160	145	162	160	145	160	145	145	145
D2Mit 16		M186	238	250	238	242	238	238	238	238	238	238	238	238
D2Mit17		M246	205	942	205	420	220	220	290	220	220	214	242	214
D2Mit19		A83	108	124	108	197	108	108	108	108	108	108	108	108
D2Mit2I		M184	260	250	258	250	250	260	258	258	258	258	256	256
D2Mit22		M167	190	162	190	112	190	190	190	190	190	147	147	-
D2Mit24		M75	180	183	180	180	180	180	180	180	180	180	180	180
D2Mit25		A67	118	140	118	126	118	118	118	118	118	118	-	118
D2Mit26		M37	195	210	195	190	195	195	195	195	195	210	210	210
D2Mit27		M106	180	238	180	250	180	-	180	-	-	-	-	-
D2Mit28	Snap	D25	130	142	130	123	130	130	130	130	130	-	-	-
D2Mit29	Sup-4	D115	115	120	115	110	115	115	115	115	115	115	115	115
D2Mit30	Trh-1	D111	320	340	320	80	137	137	137	137	137	121	121	121
D2Nds1		T19	178	158	178	182	185	182	182	185	182	152	188	185
D2Nds2		T57	122	88	122	114	122	122	122	122	122	122	122	122
D2Nds3	/l-IB	T15	280	190	280	140	280	280	280	400	270	270	280	270
D3MitI		M28	145	118	120	-	120	120	120	123	120	120	123	143
D3Mit 3		M250	108	200	108	88	108	109	104	109	108	104	108	109
D3Mit4		L40	140	150	140	147	140	140	140	140	140	140	140	140
D3Mit5		M123	188	182	182	178	188	188	188	188	188	188	188	182
D3Mit6		M149	145	133	147	125	136	136	136	136	136	136	136	147
D3Mit 7		M74	147	142	147	147	147	142	142	142	142	142	142	142
D3Mit9		A85	225	238	225	210	238	214	216	238	238	225	230	216
D3MitIO		A34	145	158	145	132	140	134	-	134	132	136	121	138
D3Mitl1		L38	147	204	147	152	147	165	165	165	165	163	147	147
D3Mitl2		A60	155	120	155	-	126	157	155	155	157	126	126	157
D3Mill3		L37	220	225	220	236	220	220	220	220	220	220	235	237
D3Mitl3		L. 8	220	238	220	240	220	-	220	220	220	220	238	240
D3Mil14		M206	170	127	170	132	198	198	198	198	198	198	198	170

-x dile 2-Continued

	Gene name	Assay name	OB	CAST	B6	SPR	DBA	A	C3H	BALB	AKR	NON	NOD	LP
		A55	145	185	145	175	212	145	145	145	145	145	145	-
		M159	188	194	188	220	-	186	186	186	-	186	186	186
Siximin D3Mil 7		M235	208	200	208	-	180	180	180	180	180	180	208	188
		A96	235	242	235	192	235	214	214	214	214	214	235	214
F-m D3Mil9		M141	160	176	160	147	176	176	176	176	176	160	176	158
mate D3Mit2I	Il-2	D31	236	216	236	208	218	218	218	236	218	236	218	218
D ${ }^{-1}$	Rp132-ps	D122	940	265	240	207	238	255	240	220	238	240	245	220
愛缶- D3Nds2		T21	115	147	115	133	122	115	115	115	115	115	115	115
D 4 Mitl		A73	120	93	120	120	120	115	120	112	112	120	112	112
Dis D4Mit2		L67	178	172	178	178	178	172	178	172	172	172	172	172
\therefore D4Mit2		L6	195	185	195	195	195	185	195	185	185	185	185	185
- D4Mit4		M31	165	169	165	158	165	163	167	163	163	165	163	163
E D4Mit5		A1	138	115	138	120	148	138	138	138	138	138	138	138
* D4Mit6		M64	80	60	80	58	78	62	62	62	80	80	62	83
D4Mit7		A71	151	147	151	160	151	151	151	151	151	151	151	149
\therefore D4Mit 9		M241	206	212	206	238	208	210	210	210	195	200	210	200
D4Mit 11		M8	144	170	144	183	144	178	144	144	144	144	149	144
D4Mit 12		M15	198	190	198	185	168	168	168	168	170	169	167	170
- D4Mit3		M169	92	88	92	106	97	92	108	92	111	108	108	92
D D4Mit14		A69	133	130	133	145	140	140	133	140	133	133	133	140
D Davitl5		A122	$\bigcirc 80$	315	280	-	280	330	330	330	280	330	330	318
		A65	220	245	220	226	239	239	239	239	220	239	220	239
- D4Mit17	Orm-1	D1	147	145	147	105	141	147	147	147	138	136	136	136
D4Mit205		M205	195	197	-	190	197	204	204	204	202	200	201	202
D4Wsml	$l f a$	Fl	160	185	-	-	-	-	-	-	-	-	-	-
D4Nds2		T24	97	95	97	98	97	91	97	97	93	89	93	97
DANds 10		T29	90	80	90	-	90	90	90	90	90	-	90	90
D5MitI		A82	137	145	137	149	129	137	137	137	129	137	137	129
D5Mit 3		M197	165	147	165	-	165	165	165	165	165	165	165	165
D5Mit4		M189	195	938	195	250	195	195	195	195	195	195	195	195
D5Mit5		A11	145	166	145	163	145	145	145	145	145	160	145	145
DSMit6		1.42	135	125	135	108	135	135	135	135	135	135	135	131
D5Mit 7		M154	160	147	160	160	147	160	147	147	147	147	147	147
DSMit9		A9	149	180	149	138	149	149	149	149	149	149	149	149
D5MitIO		M207	196	909	196	905	203	188	194	190	901	192	200	196
D5Mitll		M97	203	195	206	$\bigcirc 10$	188	188	188	199	188	188	188	203
D) 5ilit2	Cisnb	D128	120	85	120	115	115	120	115	120	120	115	115	110
1) 5iNds2		T26	168	175	168	129	178	168	178	168	168	178	178	168
D5Nds 4	$A f p$	T61	90	85	90	-	97	90	97	97	90	86	97	85
D6Mit I		Al0	917	939	$\underline{17}$	280	217	217	245	245	217	245	217	217
D6Mit 3		L59	308	$\underline{236}$	308	-	308	300	308	300	239	308	308	236
D6Mit4		M239	102	107	102	121	102	90	102	90	95	90	90	108
D6Mit5		M161	168	158	168	168	168	168	168	168	168	168	168	168
D6Mit6		M259	100	109	100	96	100	110	100	100	100	100	110	100
D6Mit6		M227	100	110	100	-	100	113	100	100	100	100	113	100
D6Mit8		M240	164	180	164	182	164	190	164	190	170	190	188	178
D6Mit9		L23	143	138	143	152	123	123	123	143	143	123	123	123
D6MitIO		M78	198	210	198	212	206	198	191	198	198	207	191	198
D6Mit II		M170	94	127	94	98	94	94	94	94	94	94	94	94
D6Mit 2		M11	123	147	123	170	123	123	123	123	123	123	123	123
D6MitI3	Prp	D34	158	170	158	-	152	152	156	152	152	160	155	152
D6Mit14		M190	160	172	160	174	149	156	149	152	149	174	174	168
D6Mit15		M148	260	$\underline{9} 0$	$\underline{260}$	260	195	195	195	195	260	260	150	195
D6Mit16	Ly2	DII	155	167	155	152	147	157	147	155	130	155	130	155
D6Rck1	Cpa	F3	250	230	-	234	250	-	-	-	-	-	-	-
D6Rck2	Mirp	F2	170	155	-	147	174	-	-	-	-	-	-	-
D6Rck3		F103	110	90	-	112	-	-	-	-	-	-	-	-
D6Nds 4		T59	91	114	91	112	91	91	91	91	91	91	91	91
D6Nds5		T23	98	108	98	118	-	105	-	105	-	105	98	105
D7MitI		M208	298	309	998	298	298	298	998	298	298	298	301	298
D7Mit5		M187	215	182	215	215	215	215	215	215	215	215	215	215
D7Mit7	-	1.12	80	90	80	-	90	77	90	77	80	80	80	90
D7Mit8		M183	150	153	150	165	148	151	148	148	146	146	146	-
D7Mit9		A89	130	145	130	-	130	130	130	130	128	128	128	130
D7Mit 10		L72	180	190	180	180	180	180	180	180	180	180	-	180

TABLE 2-Continued

Locus name	Gene name	Assay name	OB	CAST	B6	SPR	DBA	A	C3H	BALB	AKR	NON	NOD	LP
D7Mit10		L25	150	158	150	150	150	150	150	150	150	150	150	150
D7Mit12		M23	197	208	197	220	206	197	197	197	206	205	197	199
D7MitI3		A113	195	200	195	210	195	195	195	195	200	195	195	195
D7Mit14		179	147	142	147	147	147	147	147	137	147	147	147	147
D7Mit15		M47	138	127	138	129	138	138	138	123	123	138	138	$\cdot 34$
D7Mil16		A13	245	248	248	-	248	248	248	248	248	248	248	18
D7Mit17		M91	160	144	160	170	162	160	162	160	160	162	144	162
D7Mit18	Gas-2	D117	120	$\cdot 109$	120	112	120	120	120	120	120	120	120	120
D7Mit19	Tyr	D108	135	131	135	127	135	135	135	135	135	135	135	135
D7Mit20	Mb-1	D103	107	100	107	80	107	107	107	107	107	107	95	107
D7NdsI		T27	238	301	238	270	260	260	265	270	270	247	247	270
D7Nds2		T28	118	114	118	97	112	116	112	119	119	114	114	114
D7Nds4	Int-2	T63	168	145	166	175	160	160	160	166	166	166	166	160
D7Nds5	$N \mathrm{ffg}$	T62	145	150	145	-	157	142	143	140	145	143	143	143
D8MitI		M70	215	255	215	215	215	215	215	215	215	215	215	215
D8Mit3		M195	178	185	178	160	187	187	187	187	187	187	187	187
D8Mit4		M71	157	191	157	170	195	200	195	200	195	195	200	160
D8Mit5		M176	166	150	166	100	166	166	166	166	166	166	166	166
D8Mit6		M158	170	201	170	195	170	170	170	170	170	170	170	170
D8Mit7		M138	178	226	178	347	178	178	178	178	178	178	-	178
D8Mit8		M257	125	93	125	110	116	118	116	116	116	116	116	116
D8Mit9		A62	153	119	153	116	151	153	151	151	140	153	153	-
D8MitII		A105	215	203	215	195	213	215	213	217	215	214	213	210
D8Mit 12		LII	120	127	120	125	120	120	120	120	120	120	117	120
D8MitI3		M77	98	114	98	114	98	98	86	105	94	98	98	108
D8Mit14		L34	145	158	145	132	145	170	140	170	140	145	140	170
D8Mit15	Mt2	D20	180	187	180	160	180	180	180	180	178	180	185	178
D8Mit16	Polb	D100	310	315	310	325	300	310	300	310	300	310	310	310
D9Mitl		M88	110	132	110	110	110	110	110	110	110	110	110	110
D9Mit2		L32	177	161	177	161	177	185	185	185	176	170	185	160
D9Mit4		M151	124	131	124	120	138	138	140	138	124	138	138	136
D9Mit6		A78	144	136	142	-	140	140	140	142	140	140	140	140
D9Mit8		M211	185	180	185	210	193	195	-	193	193	193	193	178
D9Mit9		A72	126	116	126	112	126	138	138	138	126	138	126	130
D9Mit10		M86	150	178	150	156	147	150	150	150	150	147	150	150
D9MitII		L60	76	100	76	145	108	122	122	122	115	110	112	100
D9Mit12		M73	93	100	93	-	88	82	82	82	88	91	91	93
D9Mit14		M236	78	92	78	95	78	-	-	-	80	70	-	-
D9Mit15		M160	160	166	160	138	155	155	155	155	157	155	155	155
D9Mis16		A5	180	196	180	200	180	167	167	167	176	176	180	180
D9Mit17		L19	157	130	157	145	157	161	161	161	145	143	145	140
D9Mit18		M10	180	210	180	180	204	210	210	213	204	204	180	180
D9Mitis		M157	102	92	102	108	89	108	108	108	89	89	102	102
D9Mit20		L64	114	108	114	106	106	117	117.	117	114	106	106	123
D9Mit2l	Cypla 2	D15	187	210	187	168	180	187	187	187	189	187	180	180
D9Mit22	Ncam	D134	220	230	220	208	230	230	230	225	210	210	-	-
D9Mit23	T3d	D4	210	290	210	320	210	210	210	210	214	212	211	210
D9Mit24	Trf	D26	127	149	127	145	127	136	136	136	136	132	136	136
D9Nds2		T30	121	130	121	110	125	125	125	125	125	127	125	130
D10Mitl		M153	100	112	100	-	100	-	-	87	87	110	-	60
D10Mit2		M24	124	121	124	116	124	132	124	132	124	120	132	132
DIOMit3		A114	245	210	245	205	215	245	215	245	215	245	245	245
DIOMit4		M139	134	147	134	134	134	134	134	134	134	134	134	134
DIOMit5		M67	190	201	190	210	190	190	190	190	190	190	190	190
D10Mit7		L62	147	137	147	176	147	147	147	147	147	147	147	147
DIOMit8		M3	208	188	201	215	201	201	201	201	201	201	201	206
D10Mit9		A37	159	155	159	155	159	159	159	159	159	159	-	159
DIOMitio		M7	180	136	180	160	128	128	128	128	128	180	128	128
D10Mitll		A88	201	172	201	175	172	172	172	172	172	201	201	172
DIOMili2		M172	242	236	242	-	242	242	212	242	212	242	212	242
D10Mill 3		A63	130	113	130	-	130	130	130	130	130	130	130	130
DIOMit14		M175	192	174	192	199	182	182	194	182	188	192	182	182

空, Locus Fin): name	Gene name	Assay name	OB	CAST	B6	SPR	DBA	A	C3H	BALB	AKR	NON	NOD	LP
cticlomit15	Sqr 3	D30	185	140	185	124	189	185	185	175	185	185	187	-
		T31	130	132	130	-	130	152	152	152	152	130	145	152
4*DIONds2		T32	145	127	145	138	150	145	145	145	145	145	145	145
Stivionds3		T54	94	89	94	94	94	94	94	94	94	94	94	94
		M215	153	110	153	126	153	153	153	162	162	153	153	153
\bigcirc DIIMit2		L14	124	118	124	111	126	115	140	115	140	115	140	115
D. DllMil4		A124	250	246	246	238	300	307	242	242	307	242	244	306
- DllMils		A2	220	144	220	-	189	213	188	188	213	178	185	185
\cdots Dllmil7		M119	144	148	144	172	144	144	144	144	144	144	144	144
Dilmit8		M212	155	170	155	-	155	155	155	133	133	155	155	155
\cdots DIIMill0		M162	100	125	100	116	100	132	100	100	100	100	100	100
\% DIIMitll		M43	238	216	238	210	238	244	238	238	238	238	238	238
E D11Mit12		L3	140	150	140	140	140	150	147	145	140	140	142	140
DlIMil3	Ace	DACE	161	165	-	-	-	-	-	-	-	-	-	-
D11Mitl4	AntP91A	D2	158	148	158	146	161	158	167	158	139	161	158	161
\therefore Dllmills	Clut-4	D5	147	143	147	143	143	147	147	147	147	151	147	151
DIIMil16	Lif	D133	120	135	120	113	120	120	120	120	113	113	120	-
DIINds 1		T33	102	132	102	100	108	102	108	108	108	108	108	108
DIINds7	Gfap	T12	163	181	163	163	153	153	163	153	153	153	163	-
DIINds9	11.5	T14	306	309	306	-	306	306	306	306	306	302	302	306
* D12Mill		M50	255	230	255	250	244	244	244	244	244	244	244	270
$\because D 12 M H 2$		M27	132	178	132	132	149	132	132	132	132	149	149	132
- DI2Mit 3		L41	123	112	123	130	127	123	123	123	127	123	123	127
D12Mit4		A64	903	270	206	214	208	208	208	196	184	184	199	208
DI2Mit5		L58	180	163	180	144	163	163	163	163	163	182	180	163
D12Mit6		L16	108	125	108	110	108	108	108	108	108	108	108	121
D12Mil7		M62	108	130	108	-	121	108	108	123	123	106	123	123
D12Mit8	Igh-C	D7	172	180	172	148	181	148	174	174	185	174	170	170
DI2Nds1		T51	93	112	93	-	93	93	93	93	93	-	93	93
D12Nds2	Igh-V	T1	155	159	195	195	162	193	178	165	170	183	195	165
D12Nds 11	Odc	T64	170	178	170	158	175	178	178	178	178	-	178	-
DI3MitI		A86	149	151	149	153	149	149	149	149	140	153	149	153
D13Mit3		M79	159	196	159	178	196	188	196	188	164	188	164	163
D13Mit4		M231	185	209	185	209	185	185	185	185	185	185	185	185
DI3Mit5		M38	194	190	194	-	194	194	194	194	194	194	194	194
D13mit7		A68	140	137	140	121	140	145	140	142	140	142	142	142
D13.Mit8		M61	190	200	190	250	190	190	182	190	182	190	184	182
DI3Mit9		M147	126	116	126	132	145	126	145	126	126	126	145	126
DI3MitIO		L61	152	144	152	105	152	160	160	160	149	160	160	160
D13Mill		A91	147	162	147	162	158	158	158	158	158	158	160	162
D13Mit13	Il.9	D24	151	142	151	145	145	140	140	140	151	151	145	140
D13Mit14	Sqr 4	D29	150	120	150	156	150	146	146	146	150	143	150	146
DI4Mill		A 103	108	104	108	142	98	108	98	108	108	108	104	98
D14Mit2		A24	144	146	144	153	146	144	144	140	144	144	146	146
D14Mit 3		M32	236	225	236	245	236	236	236	236	236	236	236	240
D14Mil4		M228	196	200	196	186	194	196	196	196	196	196	200	198
D14Mit5		M214	178	182	178	156	164	178	164	178	164	178	178	178
D14Mit6		A119	150	157	150	185	155	155	155	155	155	150	155	155
D14Mit7		L27	109	91	109	107	99	99	99	99	99	112	109	112
D14Mit8		A44	203	210	203	190	203	203	203	203	203	205	203	195
D14Mit9		A93	238	245	238	-	238	238	238	245	245	238	238	238
DI4NdsI	Plau	T10	182	201	182	190	201	182	182	190	182	190	188	190
DISMitI		L29	185	180	185	-	190	190	190	190	190	-	183	190
D15Mit2		L10	94	109	94	-	89	89	89	89	89	89	89	89
D15Mit 3		L78	140	152	140	154	142	142	137	138	140	140	137	140
D15Mit5		L1	100	123	100	-	118	118	118	100	118	123	118	132
D15Mit6		A59	130	104	130	106	134	132	127	130	130	128	128	104
DI5Mil7		M30	109	115	109	126	100	109	100	109	109	109	109	129
D15Mit8		A79	117	123	117	119	125	117	125	117	117	117	117	120
D15Mit9		M232	138	153	138	300	138	138	138	138	138	138	138	138
D15Millo		M76	222	242	222	178	222	220	-	222	222	222	236	236
D15Mitll		M237	106	126	106	110	106	94	106	106	121	106	106	106
D15Mil12		M34	150	123	150	144	160	150	150	150	144	150	150	161
D15Mil13		A36	140	165	140	190	120	140	140	140	125	-	110	120
D15Mil14	Gdc-1	D17	190	270	190	188	190	183	183	195	190	188	190	230

TABLE 2-Continued

Locus name	Gene name	Assay name	ов	CAST	B6	SPR	DBA	A	C3H	BALB	AKR	NON	NOD	LP
D15Mit15	Hox 3.1	D6	159	164	159	168	145	159	166	159	145	-	-	
D15Mit16	Hoxmaa	D131	120	145	120	155	145	126	120	126	145	126	-	159
D15Mit17	Myc	D22	145	143	145	143	145	145	138	138	145	143	140	145
DISNdsI		T35	100	146	100	-	98	98	98	98	105	98	96	145
D15Nds2		T18	122	115	122	-	115	111	122	115	122		122	100
D16Mit1		A70	106	94	106	140	106	106	106	106	106	106		106
D16Mit2		L80	189	193	189	177	189	189	189	189	189	189	iss	189
D16Mit 3		M127	102	76	102	97	100	104	100	104	104	104	104	100
D16Mit4		M203	132	130	132	145	123	147	123	149	126	149	149	149
D16Mit5		A38	158	163	158	163	134	134	160	134	160	158	160	160
D16Mit6		L7	190	175	190	212	195	190	190	190	195	190	190	185
D16Mit7		L39	162	175	162	165	162	162	162	165	165	162	162	162
D16Nds2		T37	98	88	98	-	103	90	103	90	88	88	88	103
D17Mitl		M124	201	208	201	-	201	195	195	195	193	193	201	201
D17Mit2		Al8	230	250	230	-	230	220	230	230	225	230	230	230
D17Mit3		L28	130	128	130	120	123	132	123	130	130	128	130	
D17Mit4		M114	95	98	-	140	95	95	95	95	95	95	95	95
DI7Mits		M92	260	250	260	242	260	260	260	260	260	260	260	260
D17Mit6		M254	106	88	106	104	102	102	102	102	102	102	102	102
DI7Mit7		L4	200	214	200	178	204	204	204	204	204	200	204	204
D17Mit7		A23	145	170	145	-	152	152	152	152	154	146	154	152
D17Mit9		A51	117	134	117	100	117	117	117	117	117	117	117	115
D17Mit10		L36	159	133	159	165	150	150	150	159	159	150	148	
D17MitII		M145	176	192	176	178	150	160	176	150	176	150	178	
D17Mit13		L57	149	144	149	146	144	144	142	144	142	149	149	149
D17Mit16		A25	123	92	122	98	109	94	94	109	94	110	90	122
D17Mit18		M33	246	256	246	238	241	242	241	241	246	241	241	246
DI7Mit19		M44	185	158	185	180	185	185	185	185	185	180	174	185
DI7Mit20	C3	D129	180	198	185	212	178	178	178	178	178	185	185	185
D17Mit2I	.14cab2	D21	140	108	140	140	158	124	124	158	124	126	124	136
D17Mit22	.Whceb2	D16	160	178	160	164	185	162	162	185	160	-	160	158
D17Mit23	Piml	D106	138	140	138	-	140	145	145	140	145	138	138	140
DI7Mit24	Thy19	D12	145	140	145	120	130	145	147	130	147	145	145	130
DI7Nds2	Hsp68	T9	110	105	110	80	105	105	-	105	105	110	125	110
DI7Nds3	Tnfb	T68	145	120	145	90	126	126	160	126	160	132	132	145
DI8MitI		M42	154	140	154	147	154	154	154	154	154	154	154	136
D18Mit		A104	145	130	145	143	145	145	145	145	145	145	145	126
D18Mit2		L9	130	163	130	148	130	130	130	130	130	130	130	132
D18Mit 3		L76	216	158	189	213	207	207	189	218	189	-	216	918
D18Mit4		M51	212	180	210	188	195	188	195	195	195	170	180	175
D18Mit5		M57	189	200	189	208	189	189	189	189	189	189	189	200
D18Mit7		M108	93	123	93	152	123	93	123	93	93	100	93	132
D18Mit8		L24	77	90	77	88	80	74	80	74	80	-	-	80
D18Mit9		M209	170	172	170	145	160	160	160	160	170	168	160	160
D18Mit10		A100	108	117	109	109	108	108	108	108	108	108	108	108
DI8Mitil		A20	122	110	122	132	122	122	132	122	122	132	132	122
D18Mitl4		L13	108	130	108	103	103	103	110	103	103	110	110	108
D18Mit15		L87	162	147	162	-	164	164	173	162	160	173	173	158
D18Mit16		A35	207	201	207	199	207	207	207	207	207	207	207	207
D18Mit17	Grl-1	D118	212	203	214	210	190	190	190	190	190	190	190	190
DI8NdsI	. 1 bp	T11	146	190	146	162	146	146	146	146	146	146	146	-
D19Mit1		A17	123	138	123	162	145	145	145	145	145	143	145	147
D19Mit2		M109	185	163	-	188	-	185	185	185	185	-	196	185
D19Mit3		M13	200	218	200	206	200	200	200	200	205	200	200	215
D19Mit4		M230	200	242	200	190	200	200	200	200	200	200	200	200
D19Mit5		A75	214	195	214	205	214	214	214	214	214	214	214	214
DXMitl		L43	100	108	100	96	86	86	86	86	86	86	86	100
DXMit 3		M131	178	182	178	187	178	178	178	178	178	178	178	178
DXMit4		M118	108	100	108	102	108	108	108	108	108	108	108	108
DXMit5		A19	150	145	150	150	150	150	150	140	140	150	150	150
DXMit6	2fx	D28	208	204	208	204	208	208	208	208	208	-	-	208
DXNds 1	Hprt	T8	108	120	108	110	108	108	108	108	110	-	110	110
DXNds2	Plp	T4	178	181	178	-	178	178	178	178	178	-	178	
Unmapped		M251	95	120	95	160	95	100	95	95	95	95	-	-
Unmapped		A66	242	206	242	245	202	230	206	202	230	206	206	242

The strain designations are: $\mathrm{OB}=\mathrm{C} 57 \mathrm{BL} / 6 \mathrm{~J}-o b / o b, \mathrm{CAST}=\mathrm{CAST} / \mathrm{Ei}, \mathrm{B} 6=\mathrm{C} 57 \mathrm{BL} / 6 \mathrm{~J}, \mathrm{SPR}=\mathrm{SPRET} / \mathrm{Ei}, \mathrm{DBA}=\mathrm{DBA} / 2 \mathrm{~J}, \mathrm{~A}=\mathrm{A} / \mathrm{J}$, $\mathrm{C} 3 \mathrm{H}=\mathrm{C} 3 \mathrm{H} / \mathrm{HeJ}, \mathrm{BALB}=\mathrm{BALB} / \mathrm{cJ}, \mathrm{AKR}=\mathrm{AKR} / \mathrm{J}, \mathrm{NON}=\mathrm{NON} / \mathrm{Lt}, \mathrm{NOD}=\mathrm{NOD} / \mathrm{MrkTacBr}, \mathrm{LP}=\mathrm{LP} / \mathrm{J} . \mathrm{All}$ allele sizes are given in base pairs. Dashes indicate missing data. Allele sizes are determined relative to molecular weight standards run in another lane, and thus should be considered approximate.

TABLE 3
Polymorphism rates of simple sequence repeats

－\rightarrow mix	OB	CAST	B6	SPR	DBA	A	C3H	BALB	AKR	NON	NOD	LP
垁OB	－											
－CAST	100.0	－										
	6.5	98.6	－									
㖪家SPR	90.7	95.9	90.2	－								
	52.4	92.5	51.4	90.2	－							
to 1	53.2	94.4	52.7	92.8	45.8	－						
	52.1	95	50.5	91.2	34.8	35.1	－					
－2matB	50.6	94.1	49.3	93.2	45.2	31.6	38	－				
theme AKR	53.8	94.4	52.4	90.5	48.3	46.2	43.9	42.9	－			
$2 \times \sim$ NON	50.5	95.5	49.3	88.9	50.8	51.2	46.7	47.1	53.6	－		
NOD	55.4	92.9	54.5	90.9	53.6	51.2	48.1	51.0	51.0	43.9	－	
Whe LP	58.7	92.1	57.4	91.3	53.4	54.5	53.8	49.3	56.7	55.4	55.9	－

＊＂The polymorphism rates were determined for those SSRs that were variant between OB and CAST，thus the rate for that strain combination is necessarily 100% for the markers reported．Strain designations are： $\mathrm{OB}=\mathrm{C} 57 \mathrm{BL} / 6 \mathrm{~J}-o b / o b, \mathrm{CAST}=\mathrm{CAST} / \mathrm{Ei}, \mathrm{B} 6=\mathrm{C} 57 \mathrm{BL} /$ $6 \mathrm{~J}, \mathrm{SPR}=\mathrm{SPRET} / E \mathrm{E}, \mathrm{DBA}=\mathrm{DBA} / 2 \mathrm{~J}, \mathrm{~A}=\mathrm{A} / \mathrm{J}, \mathrm{C} 3 \mathrm{H}=\mathrm{C} 3 \mathrm{H} / \mathrm{HeJ}, \mathrm{BALB}=\mathrm{BALB} / \mathrm{cJ}, \mathrm{AKR}=\mathrm{AKR} / \mathrm{J}, \mathrm{NON}=\mathrm{NON} / \mathrm{Lt}, \mathrm{NOD}=\mathrm{NOD} /$ MrkTacBr，LP $=$ L．P／J．
ent map distances and can interfere with the ability to resolve genetic order accurately（Buetow 1991）．Ac－ cordingly，we developed a novel mathematical ap－ proach（see materials and methods）for identifying the potentially erroneous data，so that they could be checked with special care．
We first obtained an empirical estimate of the error rate in our data，by independently repeating the gen－ otyping of about 10% of the loci．Comparing the duplicate typings，we found a discrepancy rate of 1.4% corresponding to an error rate of $0.7 \pm 0.2 \%$ ．Using this estimate，we used a computer program to identify all typings that were at least 10 －fold more likely to have arisen if erroneous than if correct（i．e．，LOD ${ }_{\text {error }}$ ≥ 1.0 ）．Each such typing was checked by reinspecting the autoradiogram and，if there was any ambiguity． by repeating the typing from scratch．From among the typings identified as potential errors，actual errors were found in 72 cases or about 0.5% of the data． Simulation studies（not shown）showed that the ex－ pected number of actual errors that would fail to give rise to a $\mathrm{LOD}_{\text {error }} \geq 1.0$ was about 20 ．About half of these errors would be expected to occur at markers that were either at the ends of linkage groups or adjacent to large intervals（since the power to detect error by virtue of double crossovers is least in these cases）．Accordingly，we retyped all such markers from scratch．Overall，we estimate that approximately 10 errors may remain in the data－corresponding to a residual error rate of about 0.1% ．These data should provide a firm foundation on which to build an even denser map．

Anchoring of the map：It was important to anchor our map relative to the existing mouse genetic map， in order to increase its utility for genetic studies．We
used two methods．（1）Because 157 of the genetic markers are polymorphic in the BXD crosses，these markers could be mapped in the BXD recombinant inbred lines（Bailey 1971；Taylor，Heiniger and Meier 1973）．We typed a well spaced collection of 121 of these markers（Table 4），of which 100 could be unambiguously linked to known strain distribution patterns which then served as anchor points．Most anchors are indicated in Figure 2，although some are omitted when several anchors are present in the same region．（2）Because 32 of our SSLPs came from genes with previously known chromosomal positions，this provided a further collection of anchor points．［Con－ versely，our map provided chromosomal locations for 10 genes which were previously unmapped or incor－ rectly mapped（Table 5）．］

Further confirmation of our anchoring came from two sources：（1）W．Frankel and J．Coffin（personal communication）mapped a number of RFLPs corre－ sponding to endogenous retroviruses segregating in our cross，six of which are shown；and（2）our map included 30 SSLPs whose positions had been previ－ ously determined in crosses by J．Todd and colleagues （Love et al．1990；Cornall et al．1991：Hearne et al． 1991）．

Mutation rate：Studying the $B X D$ recombinant inbred lines provided an excellent opportunity to measure the average mutation rate of SSLPs per generation，by looking for the occurrence of individ－ ual RI lines fixed for a nonparental allele．We ob－ served nine such events，indicated in Table 4．Since we have typed 22 RI strains for 121 genetic markers and since the RI lines have been separated for about 75 generations（TAYLOR I989），we estimate that there were about 200,000 opportunities for mutational

Figure 2.-Genetic linkage map of the mouse. Chromosomes are represented by two diagrams, the left side being the map reported in this paper, and right side being taken from the consensus map reported in the October 1990 edition of the GBASE database. For the SSLP map, a length of five $\mathbf{c M}$ has been arbitrarily added to each end. For the GBASE map, map lengths are equal to the fractional cytogenetic length for the chromosome multiplied by 1600 cM (the estimated genetic length of the mouse genome). Centromeres are indicated by filled circles. SSLPs are defined in Table 2. Six retroviral markers (denoted by their usual locus names) were scored in the cross and are shown on the map. Symbols indicate the degree of support for the indicated genetic order. Markers whose order relative to the map is supported by a LOD score of at least 3 are shown in bold type; by a LOD score of between 2 and 3 in plain face type; and by a LOD score of between 1 and 2 are marked with an asterisk (see materials and methods). Markers listed on the same horizontal line did not recombine in the 46 animal F_{y} intercross studied here. Centimorgan distances between markers are indicated, except for those less than $\mathbf{2 c M}$. Centimorgans are based on Kosambi's map function. Although the appropriate mapping function for the mouse genome is not precisely known, this function should be adequate for the present purposes. In any case, the choice of mapping function only has a significant effect on the large intervals.

whose distances should necessarily be considered to be approximate. Maximum likelihood order for LOD 1 markers relative to flanking markers is indicated, but exact distances are not. Such markers are indicated by a horizontal tick mark that does not cross the chromosome. The lines connecting the two maps indicate anchor points: Lines with arrowheads indicate that identity between markers on the two maps. Lines without arrowheads indicate that an SSLP is genetically linked to the marker shown on the GBASE map, based on analysis of BXD recombinant inbred strains. Because lines with arrowheads indicate identity and lines without arrowheads simply imply linkage, two such lines may cross one another without implying inversion of gene order (as occurs on chromosome 8). (Figure 2 is concluded on page 440 .)
events. This corresponds to an average mutation rate of about $1 / 22,000$ per locus per generation.

Repeat occurrence of SSRs: In selecting SSRs from the genome, it is possible that some loci will be sampled more than once. Specifically, suppose that k objects are randomly chosen with replacement from a set of size N. For $k^{2}>N>k^{3 / 2}$, a simple Poisson approximation shows that about $k(k-1) / 2 N$ objects will be chosen twice and few or no objects will be chosen three times. In the present case, our 319 clones
containing CA-repeats were not selected at random from the genome, but rather from the set of CArepeats contained in Mbol fragments of between 250 and 500 bp and positioned within the fragment so that we would have sufficient flanking sequence to choose PCR primers. The proportion of such CArepeats can be estimated to be about 17% (calculations not shown). If the total number of CA-repeats in the genome is M, we would expect to see about ($319 \times$ $318) /(2 \times 0.17 \mathrm{M}) \approx 300,000 / \mathrm{M}$ duplicate clones

18

19

x

Figure 2.-Continued

效登？pame	Assay name	1	2	5	6	8	9	11	12	13	14	15	16	18	19	20	21	22	23	24	25	27	28	29	30	31	32
人atMal	L33	U	U	U	D	D	B	D	D	B	B	D	D	B	D	D	D	D	B	B	D	B	D	D	U	U	U
W7JMis5	L20	U	B	B	D	D	B	B	B	B	B	D	D	B	D	B	B	B	B	B	D	D	D	D	U	U	U
䓡p／Min	A80	U	B	B	D	D	B	U	B	D	B	D	B	B	B	U	B	B	D	B	D	D	D	B	U	U	U
	917	U	B	D	D	B	B	D	B	D	B	D	B	D	B	D	B	D	D	D	D	B	D	B	U	U	U
\rightarrow PlMil 16	L46	U	B	D	B	B	＊＊	D	B	D	B	D	B	B	B	B	B	D	D	D	D	D	D	D	U	U	U
－DlMit17	M41	U	B	D	D	D	D	B	B	D	D	D	B	B	B	B	D	D	D	D	B	D	B	D	U	U	U
－D1Mil19	L86	U	B	B	D	D	B	B	B	D	B	D	B	B	B	B	B	D	D	B	D	D	D	B	U	U	U
－$)^{\text {d } 2 M i 6 ~}$	L18	U	B	U	B	D	D	B	D	D	D	B	B	D	B	B	D	D	B	D	D	B	B	B	U	U	U
－$\square_{2} 2 \mathrm{Min} 7$	L44	U	B	D	B	B	D	B	B	D	D	B	B	B	D	B	D	D	B	D	D	B	B	B	U	U	U
－ 72 Mis 9	M85	U	D	D	B	B	D	B	B	D	D	B	B	B	D	D	D	B	D	B	B	B	B	B	U	U	U
14：D2Mil12	M179	U	D	D	B	D	B	D	B	D	D	B	D	D	D	D	D	B	D	D	B	D	D	D	U	U	U
－D2Mil14	M163	U	B	D	B	B	＊＊	D	D	D	D	B	D	D	D	D	D	B	D	D	B	B	B	D	U	U	U
－D2Mil17	M246	U	B	B	B	D	B	D	D	B	B	D	D	D	D	D	D	B	D	D	B	D	D	D	U	U	U
－ $32 \mathrm{Mit30}$	DIII	U	B	B	B	D	B	D	D	B	B	D	D	D	D	D	D	U	D	D	B	D	U	D	U	U	U
－D2NdsI	T19	U	D	D	B	B	D	D	D	D	D	B	B	D	D	D	D	B	D	D	B	D	B	D	U	U	U
GED3Mit5	M123	U	D	B	B	D	D	D	D	B	D	B	B	D	D	B	D	B	B	B	B	D	D	B	U	U	U
D3Mit9	A85	U	B	D	B	B	B	D	B	B	B	D	B	B	B	B	D	D	B	B	D	B	D	B	U	U	U
D ${ }^{\text {M Mit } 10}$	入34	U	B	B	B	D	B	D	B	B	B	D	B	B	B	B	D	D	B	B	D	B	D	B	U	U	U
\because DJMit12	A60	U	D	B	B	D	B	D	B	B	B	D	＊＊	B	B	B	D	D	B	B	D	B	D	B	U	U	U
D3Mit15	A55	U	D	B	B	D	B	D	D	D	B	B	B	D	D	D	D	B	D	B	D	B	D	B	U	U	U
－D3Mirl7	M235	U	B	B	D	D	D	D	B	D	B	B	B	D	D	D	D	B	B	B	D	B	D	B	U	U	U
\therefore D3Mit19	M141	U	D	B	D	B	B	D	D	D	B	D	B	D	B	D	B	D	B	B	D	B	D	B	U	U	U
Din D3it2I	D31	U	D	B	B	D	B	D	D	D	D	D	B	D	D	B	D	B	B	B	B	D	D	B	U	U	U
\％D3Mit22	D122	U	B	D	B	B	B	D	D	B	B	D	B	B	B	B	D	D	B	B	D	B	D	B	U	U	U
D3Nds2	T21	U	D	B	B	D	B	D	D	D	B	B	B	D	D	D	D	B	D	B	D	B	D	B	U	U	U
D4MitI2	M15	U	B	D	B	D	D	B	D	D	D	D	D	D	D	B	D	＊＊	D	B	D	D	D	D	U	U	U
5．D4Mitl3	M169	U	B	D	B	D	B	B	D	D	D	D	D	D	B	B	D	B	D	B	B	B	D	B	U	U	U
D4Mitl．	A69	U	B	D	B	D	B	B	D	D	D	B	D	D	B	B	D	B	B	B	B	B	D	B	U	U	U
\therefore D4Mil16	A65	U	B	D	B	D	D	B	D	D	D	B	D	D	B	B	D	B	D	B	D	D	D	B	U	U	U
D4Mit17	D1	U	B	B	B	B	B	B	B	D	B	D	B	B	B	B	D	D	B	D	D	D	B	B	U	U	U
DSMil／	A82	U	D	D	D	B	D	U	D	B	B	B	D	B	D	D	B	B	B	B	B	D	B	D	U	U	U
DSMit7	M154	U	D	D	B	B	B	B	D	B	D	B	D	B	B	B	D	D	B	D	B	B	B	D	U	U	U
－D5Mit10	M207	U	D	D	B	B	B	D	D	B	D	B	D	D	B	B	D	D	B	D	U	B	B	D	U	U	U
\because DSMill	M97	U	U	D	B	B	B	B	B	B	B	B	D	B	D	D	D	D	B	D	B	B	D	B	U	U	U
\therefore D6Mil9	1.23	U	B	D	B	D	D	D	B	D	B	B	B	B	D	B	D	D	B	D	B	D	B	B	U	U	U
D6MilO	M78	U	B	D	B	B	B	D	B	D	B	D	B	B	D	B	B	B	B	D	D	D	B	D	U	U	U
D6Mit13	D34	U	B	D	B	B	D	D	B	D	B	D	B	B	D	B	B	B	B	D	D	B	B	D	U	U	U
＊D6Mill ${ }^{\text {c }}$	M190	U	B	D	B	D	D	B	B	D	B	D	B	D	D	B	B	B	D	B	D	D	B	D	U	U	U
－D6Mit15	M148	U	B	D	B	D	D	B	B	D）	B	D	B	D	D	B	B	B	D	B	D	D	B	D	U	U	U
D6Mitl6	D11	U	B	D	D	D	B	D	B	D	B	B	U	B	U	B	D	D	B	D	D	D	B	B	U	U	U
\therefore－$\square^{-} \mathbf{M i L 7}$	L12	U	B	D	B	B	D	B	B	D	D	B	B	D	B	D	B	D	B	B	B	B	B	D	U	U	U
\cdots D7Mit12	M23	U	D	D	B	B	B	B	D	D	B	D	B	D	D	D	B	B	B	B	B	D	D	D	U	U	U
D7Mit17	M91	U	B	D	U	B	D	B	D	D	D	D	B	B	B	B	B	B	U	U	D	U	D	U	U	U	U
D7Nds2	T28	U	＊＊	D	B	B	D	B	D	＊＊	D	B	B	B	B	B	B	D	B	B	D	B	B	B	U	U	U
D8Mit4	M71	U	B	B	B	B	B	D	B	D	B	B	D	D	B	B	B	D	B	D	B	B	B	D	U	U	U
D8Mits	M257	U	B	D	B	B	D	D	B	1）	B	B	D	D	D	B	B	B	B	D	B	B	B	B	U	U	U
D8Mit9	A62	U	B	B	B	D	D	D	B	D）	B	B	D）	D	D	B	B	D	B	D	B	U	B	B	U	U	U
D8：Mill	A105	U	B	D	D	D	D）	1）	B	1）	B	B	D	D	B	D	B	B	B	D	B	D	D	B	U	U	U
D9：Mit	M151	U	D	B	D	D	D	B	D	B	D	B	D	D	D	B	D	B	D	D	D	B	B	D	U	U	U
D9Mits	M211	U	B	D	D	D	D	B	D	B	B	B	D	D	D	B	D	D	B	B	D	B	B	D	U	U	U
D9MitII	L60	U	B	B	D	D	B	B	D	B	B	B	D）	D	B	B	D	D	B	B	D	B	B	B	U	U	U
D9MitI2	\＄173	U	B	B	D	D	B	B	D	B	B	B	B	D	B	D	D	D	B	B	D	B	B	B	U	U	U
D9Mitls	11160	U	D	B	B	D	B	B	B	B	B	B	B	D	B	D	B	D	D	B	D	D	B	B	U	U	U
D9Mit18	M10	U	D	B	D	B	B	B	B	B	B	B	D	B	B	B	D	D	D	B	B	B	B	B	U	U	U
D9Mit19	M157	U	D	B	D	B	B	B	B	B	B	B	D	B	B	B	D	D	D	B	B	B	B	B	U	U	U
D9Mit20	1.64	U	D	B	B	D	B	B	B	B	B	B	B	D	B	D	D	D	B	B	D	B	B	B	U	U	U
D9Mit2I	D15	U	D	D	D	D	D	B	D	B	D	B	D	D	D	B	D	B	D	B	D	B	B	D	U	U	U
D9Nds2	T30	U	B	B	D	D	D	B	D	B	B	B	D	D	D	B	D	D	B	B	D	B	B	D	U	U	U
DIOMit 3	1114	U	D	D	B	B	B	B	B	B	D	D	B	B	B	B	D	B	D	D	D	B	D	B	U	U	U
D10MitIO	M7	U	D	D	D	D	B	D	B	B	D	B	D	D	B	B	D	B	D	D	D	D	D	B	U	U	U
Dlomilll	A88	U	D	D	D	D	B	D	B	B	D	B	D	D	B	B	D	B	D	D	D	D	D	B	U	U	U
Dlomill4	M175	U	D	B	D	B	B	B	B	B	B	B	D	D	D	D	D	B	D	D	D	D	D	B	U	U	U
Dlomils	D30	U	D	D	B	D	B	B	B	＊＊	D	B	D	D	B	B	D	B	D	D	B	B	D	B	U	U	U
DIlMit2	1.14	U	B	B	D	B	D	B	B	D	D	B	U	D	B	D	B	B	D	D	B	D	D	D）	U	U	U
DIMMit4	A124	U	D	B	D	B	B	B	B	D	B	B	D	B	D	B	D	B	B	B	B	B	D	D	U	U	U
DIlMit／4	1）2	U	D	D	D	D	D	B	B	B	1）	D	D	B	D	D	D	D	B	D	B	B	B	D	U	U	U
D11MitIS	D5	U	D	B	D	B	B	B	B	D	B	D	D	B	D	U	D	B	B	B	B	B	D	D	U	U	U
112Mil	M50	U	D	B	B	D	D	B	D	D	D	B	B	B	B	D	D	D	D	D	B	D	B	B	U	U	U
D）12Mit2	M27	U	D	B	B	B	D	B	B	B	B	D	B	B	D	D	D	D	D	D	B	D	B	D	U	U	U
1）12Mit 3	1.41	U	B	B	B	D	D	B	D	B	B	D	B	B	B	D	B	B	D	D	D	D	D	D	U	U	U
D12Mits	1.58	U	B	B	B	D	B	B	D	D	B	D	B	B	B	D	B	B	B	D	D	D	D	B	U	U	U
1）12Mit 7	M62	U	B	B	D	D	D	D	B	B	B	D	D	B	D	D	B	B	B	D	D	D	D	B	U	U	U
D12Mit8	1）7	U	B	B	D	B	D	D	D	B	B	D	D	D	B	D	B	B	B	D	B	D	D	B	U	U	U
II2Nds2	TI	U	B	B	D	B	D	D	D	B	B	D	D	D	B	D	B	B	B	D	B	B	D	B	U	U	U
D13Mit 3	M79	U	B	B	B	B	B	B	D	D	D	B	B	D	B	U	B	B	D	B	D	D	B	D	U	U	U
D13Mir9	M147	U	D	B	B	B	D	D	D	D	D	D	D	B	B	D	D	B	D	D	B	D	D	B	U	U	U
D13Mitll	人91	U	D	B	D	B	D	D	D	D	D	D	D	B	B	D	D	B	D	D	B	D	B	B	U	U	U
1／3Mitl3	D24	U	D	B	D	B	D	B	D	D	D	B	D	B	B	D	D	B	B	D	D	D	D	B	U	U	U
1）14Mil］	A103	U	D	B	D	B	D	D	B	B	B	D	D	D	D	B	D	D	B	D	B	B	B	D	U	U	U
D14Mit2	入24	U	D	B	D	B	D	D	B	B	B	D	B	D	D	B	D	D	B	B	B	B	B	D	U	U	U
D14Mits	M214	U	D	B	D	D	D	D	B	B	D	D	D	D	D	B	B	D	B	B	B	B	B	D	U	U	U
D14Mit6	A119	U	D	B	D	D	D	D	B	B	D	D	D	B	D	B	B	D	B	B	D	B	B	D	U	U	U

TABLE 4-Continued

Locus name	Assay name	1	2	5	6	8	9	11	12	13	14	15	16	18	19	20	21	22	23	24	25	27	28	29	30	31	39
D/4Mit 7	L27	U	D	B	D	D	D	D	B	B	D	D	U	B	D	B	B	B	D	B	D	B	B	D	U	U	1
DI4Nds]	T10	U	D	B	D	B	D	D	B	B	B	D	B	D	D	B	D	D	B	B	B	B	B	D	\mathbf{U}	U	U
DISMit]	L29	U	B	D	B	D	D	B	B	D	D	D	B	D	B	D	D	D	B	D	B	D	D	B	U	U	U
DISMit2	L10	U	D	D	B	D	D	B	B	D	D	D	B	D	D	D	D	D	B	D	B	D	D	B	\mathbf{U}	U	U
DISMit ${ }^{\text {d }}$	L78	U	B	B	B	D	D	B	B	D	D	B	B	D	D	B	D	B	B	D	B	D	D	B	\mathbf{U}	U	U
D15Mit5	L]	U	D	B	B	B	D	B	B	B	D	B	B	D	B	B	D	B	B	D	B	D	D	B	U	!	U
DISMit6	A59	U	D	B	B	B	D	B	B	B	D	B	B	D	B	B	D	B	B	**	B	D	D	B	L		U
DISMit7	M30	U	D	B	B	B	D	B	B	B	D	B	B	D	B	B	D	B	B	D	B	D	D	B	U		U
DISMit8	A79	U	D	B	B	B	D	B	B	B	D	B	B	D	B	B	D	B	B	D	B	D	D	B	U		U
DISMill2	M34	U	D	B	B	B	D	B	B	B	D	B	B	D	B	B	D	B	B	D	D	D	**	B	U	U	U
D15Mitl3	A36	U	D	B	B	B	D	B	B	B	D	B	B	D	B	B	D	B	B	D	D	D	D	B	\mathbf{U}	U	U
DISMil15	D6	U	B	D	B	D	D	B	D	D	B	B	B	D	B	D	D	B	B	D	B	D	B	D	U	U	U
DISNds2	T18	U	D	D	B	B	D	B	B	B	D	B	B	D	B	B	D	B	B	D	D	D	D	B	U	U	U
D/6Mit 3	M127	U	B	B	B	D	B	D	B	B	B	B	D	B	D	D	B	B	U	U	D	U	B	D	U	U	U
D/6Mit4	M203	U	B	B	B	D	B	D	B	B	B	B	D	B	D	D	B	B	D	D	D	D	B	D	U	U	U
D/6Mit	A38	U	B	B	B	D	B	D	B	B	B	D	D	B	B	D	D	B	B	D	D	D	B	U	U	U	U
D/6Mit6	L7	U	B	B	B	B	D	D	B	B	D	D	B	B	D	D	B	B	B	D	D	D	B	D	U	U	U
DI7Mit 3	L. 28	U	U	D	B	B	B	D	B	D	D	B	B	D	B	D	B	D	D	D	B	D	D	B	U	U	U
DI7Mit6	M254	U	D	D	D	B	B	D	B	D	B	B	D	D	B	B	B	D	B	D	D	D	D	B	U	U	U
DI7Mit7	L4	U	D	D	D	B	B	D	B	D	B	B	D	D	B	B	B	D	D	D	B	D	D	B	U	U	U
DI7Mit 7	A23	U	D	D	D	B	B	D	B	D	B	B	D	D	B	B	B	D	D	D	B	D	D	B	U	U	U
DI7Mitio	L36	U	D	D	D	B	B	D	B	D	B	B	D	D	B	B	B	D	B	D	D	D	D	B	U	U	U
DI7Mill	M145	U	B	D	D	B	U	D	B	B	B	B	D	D	B	B	D	D	B	D	D	D	D	B	U	U	U
DI7Mitl3	L57	U	B	D	D	B	D	D	D	B	B	B	D	D	B	B	D	D	B	D	D	D	D	B	U	U	U
DI7Mill6	A25	U	B	D	D	B	D	D	D	B	B	B	D	D	B	B	D	D	B	D	D	D	D	B	U	U	U
DI7Mit2I	D21	U	B	D	D	B	D	D	D	B	B	B	D	D	B	B	D	D	B	D	D	D	D	B	U	U	U
DI7Mit22	D16	U	B	D	D	B	D	D	D	B	B	B	D	D	B	B	D	D	B	D	D	D	D	B	U	U	U
DI7Mit24	D12	U	B	D	D	B	D	D	D	B	B	B	D	D	B	B	D	D	B	D	D	D	D	B	U	L	I!
DI7Nds2	T9	U	B	D	D	B	D	D	D	B	B	B	D	D	B	B	D	D	B	D	D	D	D	B	U	L	
DI8Mit 4	M51	U	B	D	D	B	U	B	D	B	B	D	D	D	B	B	B	D	B	B	B	B	D	B	U	U	
D/8Mit 7	M108	U	B	B	D	B	D	B	D	B	B	D	D	D	B	D	B	D	B	D	B	B	B	B	U	U	'
D18Mit8	L24	U	D	B	D	B	D	B	D	B	B	D	D	D	B	D	B	D	D	D	B	B	B	B	U	U	L'
DI8Mit9	M209	U	D	B	D	B	D	B	D	D	D	D	D	D	B	B	B	D	D	D	B	B	B	B	U	U	U
DI8Mit/0	A100	U	D	D	D	D	D	D	D	B	D	D	D	D	B	D	D	D	B	B	B	B	B	B	U	U	U
DI8Mill4	L. 13	U	D	B	D	B	D	D	D	D	D	B	B	D	B	D	B	D	B	B	B	B	B	B	U	U	U
D/8Mit 15	187	U	D	B	D	B	D	D	D	D	B	D	B	B	B	D	B	D	B	B	B	B	B	B	U	U	U
J/8Mit 17	D118	U	D	B	D	B	D	D	D	D	D	B	D	D	B	D	B	D	B	B	B	B	B	B	U	U	U
DI9Mitl	A17	U	B	B	D	D	B	D	B	B	B	B	B	B	D	B	B	B	D	B	B	B	B	B	U	U	U
DXMitI	L43	U	B	B	D	B	D	B	B	B	B	B	B	B	B	D	B	B	B	B	B	B	D	B	U	U	U

The strains carrying the C57BL/6J allele are denoted by B and those carrying the DBA/2J allele are denoted by D. Strains whose allele was not determined are denoted by U. Mutant alleles, differing from both B and D, are denoted by **.

TABLE 5
Locations for previously unmapped genes

Name	Sequence	Chromosome	Reference
Trh-1 (D2Mit 30)	His-t-RNA	2	Morry and Harding (1986)
Ace (DIIMit13)	Angiotensin converting enzyme	11	Bernstein et al. (1989); Howard et al. (1990)
Snap (D2Mit28)	Synaptosomal associated protein 25	2	Oyler et al. (1991)
Rpl-32ps (D3Mit22)	Ribosomal protein L32' (pseudogene)	3	Jacks, Powaser and Hackett (1988)
Sqr-3(D10Mit15)	Simple quadruplet repeat. pmic3	10	Schafer et al. (1986)
Lif(DIlMit16)	Leukemia inhibitory factor	11	Stahl et al. (1990)
Antp91a (DIMMit14)	Tum ${ }^{\text {P91 }}$ A antigen	11	Lurquin et al. (1989)
Sqr-4 (D13Mit14)	Simple quadruplet repeat. pmlc4	13	Schafer et al. (1986)
Sup-4 (D2Mit29)	Seminal vesicle secretory protein IV	2	Chen et al. (1991)
Mb-l (D7Mit20)	Murine b-cell 1	7	Kashiwamura et al. (1990)

arising. (Actually, a small proportion of the clones were selected from GenBank and thus could not duplicate one another. However, this affects the estimate only slightly.)

After completing the map, we examined our data and found, in fact, six duplicate SSRs, defining the loci: D3Mit13, D4Mit2, D6Mit6, D7Mit10, D17Mit7 and D18Mit1. In at least three of these cases, we can be certain that the clones were independent-either because they arose in libraries constructed at different times or because their sequences were from complementary strands. As should be the case, the independent typings of the duplicate loci showed no recombi-
nation. The number of duplicates is consistent with the genome containing about 50,000 distinct CA-repeat-containing SSLPs, which broadly agrees with previous estimates of the total number of CA-repeats in the genome (Hamada and Takunaga 1982). Although the number of duplicates is quite small, we plan to adjust our protocol in further work to check for duplicates immediately after sequencing and to use randomly sheared DNA inserts to decrease their frequency.

DISCUSSION

Utility of maps based on SSLPs: Simple sequence length polymorphisms are rapidly becoming a method

Figure 3.-Illustration of high polymorphism rate in different crosses. For chromosome I, the diagrams shows those SSLPs that are Tolymorphic in four typical crosses.
of choice for genetic mapping in human, mouse and rat, due to their exceptionally high rate of polymorphism and their relative ease of use. In humans, the high degree of polymorphism helps overcome the difficulties inherent in studying families in randomly breeding populations. In mouse and rat, the markers make it feasible to map the entire genome in any cross between laboratory strains; this has begun to allow genetic dissection of polygenic traits such as type I diabetes (TODD et al. 1991) and hypertension (JАСОв et al. 1991; Hilbert et al. 1991).

We have developed a genetic map of the mouse \because consisting of 317 SSLP markers, with an average spacing of about 4.3 cm . Although the map was constructed in a cross between two divergent subspecies of M. musculus ($\mathrm{OB} \times \mathrm{CAST}$), it can now be applied to map genes in most intraspecific crosses. Some 50% of the markers are polymorphic in a typical cross between two inbred laboratory strains, providing a genetic map with an average spacing of less than 9 cM. This is illustrated in Figure 3, showing the coverage of chromosome 1 in various crosses.

We hope that the map will prove useful to mouse geneticists. Because our map is anchored relative to the existing mouse map, it should be straightforward to identify the SSLPs in specific regions of interest. Additional anchor points will be added over time, by our laboratory and others. Because we have developed a dense collection of highly polymorphic SSLPs that work under a single set of PCR conditions, it should be possible to choose a relatively small subset of markers that are informative in any cross of interest and span the genome. In this fashion, it should be feasible for mouse geneticists rapidly to map any monogenic
trait, as well as to undertake genetic dissection of polygenic traits. Indeed, all the laboratory work involved in constructing the map reported here was accomplished by two of us (W. Dietrich and H. Katz) in less than 18 months, and we have been able to apply it to genotype new crosses for the entire genome in a few weeks per cross (W. Dietrich, unpublished results).

In addition to their utility in genetic mapping, the SSLPs should be valuable for studies of loss of heterozygosity (LOH) in murine tumors. Apart from the fact that DNA polymorphisms are generally useful in recognizing LOH, SSLPs offer the advantage that only a small tissue sample is required for PCR typing. This may be especially valuable in the case of tumors that must be dissected carefully from surrounding tissue.

Also, SSLPs may be useful in population genetic and evolutionary studies. For example, we note that the rate of polymorphism ranges from a low of about 32% for closely related strains such as DBA/2J and $\mathrm{C} 3 \mathrm{H} / \mathrm{HeJ}, \mathrm{A} / \mathrm{J}$ and $\mathrm{C} 3 \mathrm{H} / \mathrm{HeJ}$, or A / J and Balb/cJ, to more than 50% for more distantly related strains such as C57BL/6J and AKR/J, or LP/J and A/J, to about $\mathbf{9 0 \%}$ for intersubspecific and interspecific comparisons. This suggests that SSLPs may offer considerable power in tracing gene flow in closely related populations and may also offer advantages over simple nucleotide substitutions in reconstructing phylogenies (Atchley and Fitch 1991) because they mutate more rapidly.

Coverage of the genome: The map appears to cover the vast majority of the mouse genome. One way to assess the coverage of the map is simply to observe

TABLE 6
Genetic length of mouse chromosomes

Chromosome	Consensus genetic length (cM)	Map repored in this paper (cM)
1	98	111
2	101	90
3	100	61
4	81	67
5	84	38
6	74	71
7	89	77
8	81	67
9	70	73
10	78	71
11	78	89
12	73	73
13	72	65
14	49	69
15	56	82
16	58	37
17	36	50
18	57	32
19	36	23
X	88	33
Total	1459	1267

The lengths represent genetic distance between most proximal and most distal markers. The consensus genetic length is from consensus map in Encyclopedia of the Mouse Genome, 1990. See text for description.
that only 2 of 319 markers failed to show linkage to our map. Another way is to compare our map to the consensus map reported in the GBASE database (Table 6). Of course, the two maps would not be expected to agree perfectly because genetic distance is known to be affected by strain background: our map is constructed in a single cross between two subspecies, while the GBASE consensus map represents a complex weighted average of a variety of different crosses. Nonetheless, the maps are colinear and the correspondence between them is good: our map shows a genetic length of 1267 cM contained between the most terminal markers, compared to a length of 1459 cM between the most terminal markers in the GBASE map. The difference amounts to an average of 5 cM lying beyond the most terminal marker at each end of the 20 mouse chromosomes.

A few specific features deserve mention.
The map has a few large intervals. Chromosome 15 contains the largest interval, of about 34 cM . Interestingly, the genetic length of this interval in the GBASE map appears to be only about 17 cM , suggesting enhanced recombination in this interval in our cross. The next largest interval is about 28 cM on chromosome 11. Mathematically, an interval of this size would be expected by chance assuming a random distribution of markers.

Comparison with the GBASE map suggests that the terminal regions of most chromosomes are well cov-
ered, with the exception of the distal $20-25 \mathrm{cM}$ on chromosome 5 and the distal $15-20 \mathrm{cM}$ on chromo some 13. These intervals are not significantly larger than would be expected by chance.
Although the total length of chromosome 3 agrees well between our map and the GBASE consensus map, the region from II-2 to Xmmv-65 seems to he compressed. Our map shows about 15 cM betwec: . hese markers, compared to 40 cM on the GBASE map. This might be due to structural heterogeneity between OB and CAST chromosomes such as one or more inversions, although there is no large block of recombinationally inseparable markers as might be expected from a single large inversion. Additional anchors will be needed to resolve this.

Chromosome 18 shows an unusually large cluster of recombinationally unseparated markers. This might be due to an inversion or to a heterogeneity in the distribution of SSRs. The anchoring information suggests that the entire chromosome is represented in the map.
Random distribution of markers: Broadly sp... ing, the genetic markers appear to be randomly cistributed throughout the genome. One way to assess this is to compare to the number of markers that would be expected to fall on each chromosome based on its physical size (estimated by cytogenetic length) to the number actually observed. (In this calculation, we must account for the fact that the genomic library used to isolated SSRs was made from a male mouse. We thus expect a twofold underrepresentation of the X chromosome.) The agreement is excellent (Table 7). Only chromosome 17 shows a significant deviation from expectation. In fact, the deviation is explained by the disproportionate number of SSLPs derive: from cloned genes in GenBank on chromosome 17 (specifically, 7 of the 54 SSLPs derived from GenBank sequences in our map) owing to the extensive study of this chromosome, which is the site of the major histocompatibility complex and the t complex.
Another way to assess whether the markers are randomly distributed is to compare the observed distribution of distances between adjacent markers to that expected under the assumption that SSRs are randomly distributed across the genetic map (see mAterials and methods). The distributions agree quite well (Figure 4). There appears to be a slight excess of zero distances-the proportion of pairs of adjacent loci that showed no recombination in our cross was $\mathbf{2 5 . 1 \%}$ compared to an expectation of $20.3 \% \pm 2.4 \%$-but the deviation is just at the edge of statistical significance. This might hint at slight clustering of SSRs with respect to genetic distance, which could be due to uneven spacing of either SSRs or recombination along the physical map.
In short, the assumption of random distribution of

TABLE 7
Number of markers on each chromosome

Percent of genome based on physical map $^{\text {a }}$	No. markers expected ± 1 so 6	Markers in this paper	Z-score ${ }^{c}$
7.20	23.6 ± 4.7	19	-0.98
6.95	22.8 ± 4.6	30	1.58
5.99	19.6 ± 4.3	21	0.32
5.89	19.3 ± 4.3	19	-0.07
5.68	18.6 ± 4.2	12	-1.58
5.53	18.1 ± 4.1	20	0.46
5.19	17.0 ± 4.0	20	0.75
4.97	16.3 ± 3.9	14	-0.58
4.79	15.7 ± 3.9	21	1.38
4.74	15.5 ± 3.8	17	0.39
4.72	15.5 ± 3.8	16	0.14
4.88	16.0 ± 3.9	11	-1.28
4.38	14.3 ± 3.7	11	-0.90
4.46	14.6 ± 3.7	10	-1.23
4.05	13.3 ± 3.6	18	1.33
3.81	12.5 ± 3.5	8	-1.29
3.86	12.6 ± 3.5	92	2.69
3.88	12.7 ± 3.5	16	0.94
2.73	8.9 ± 2.9	5	-1.34
6.23	10.2 ± 3.1	7	-1.02

${ }^{a}$ Based on cytogenetic length Evans (1989).
${ }^{6}$ Based on proportional size of each chromosome, adjusted for $\underset{\sim}{7}$ the X chromosome being at half-molar representation (since the vast majority of markers were isolated from a genomic library from imale DNA).
: ${ }^{\text {c }}$ Z-score $=($ observed-expected $) /$ standard deviation.
SSRs fits the data reasonably well at this level of resolution, although there may hints of clustering. Of course, significant inhomogeneity may become apparent at higher resolution. These findings bode well for the general usefulness of SSRs in the construction of genetic maps in other organisms, including the human.
Toward a dense genetic map of the mouse: The approach described here should allow the construction of much denser maps consisting of thousands of SSLPs. Indeed, SSLPs appear to be in abundant supply and to be randomly distributed throughout the genome-at least at the level of resolution examined here. With a genetic linkage map of 3000 SSLPs, one would have genetic landmarks at an average spacing of 1 million basepairs. Coupled with high quality yeast artificial chromosome libraries, such a dense collection of landmarks would permit rapid and straightforward cloning of the region containing any gene of interest and should greatly advance the genetic understanding of mammalian biology.

We thank George Church, Mark Daly. Nat Goodman, Howard Jacob, Yi-Pei Mao, Mary Pat Reeve and Julia Segre for valuable advice and assistance at various stages of the project: JOHN Coffin, Wayne Frankel. Danika Metallinos, Joe Nadeau. John Todd. Michael Seldin, Ben Taylor and Roger Wiseman for sharing information and resources and for helpful discussions: and JIm Hudson and the staff of Research Genetics, Inc. for consistent

Figure 4.-Cumulative probability distribution of interval sizes in the genetic map. Points show observed cumulative distribution for intervals in our map. The solid line represents the expected distribution, assuming that SSLPs are randomly distributed with respect to centimorgans (see MATERIAL AND METHODS for formula). Note that the distributions of interval sizes is expected to show discrete jumps, because only a finite number N of meioses are studied and thus recombination fractions will be approximately integral nultiples of $1 / N$.
and reliable supply of a large number of oligonucleotides. This work was supported in part by grants to from the National Institutes of Health (P50HG00098 and R01HG00126 to E.S.L. and R01HG00316 to J.F. and E.S.L.), the National Science Foundation (D1R8611317 to E.S.L.), and the Markey Foundation (to E.S.L.).

Note added in proof: The locus D18Mit6 was omitted in Figure 2. It did not recombine with D18Mitl.

LITERATURE CITED

Altschul. S. F., W. Gish, W. Miller, E. Myers and D. J. Lipman, 1990 A basic local alignment search tool. J. Mol. Biol. 215: 403-410.
Atchley, W. R., and W. M. Fitch, 1991 Gene trees and the origins of inbred strains of mice. Science 254: 554-558.
Avner, P., L. Amar, L. Dandolo and J. L. Guenet, 1988 Genetic analysis of the mouse using interspecific crosses. Trend Genet. 4: 18-23.
Bahary. N., G. Zorich. J. E. Pachter. R. L. Leibel and J. M. Friedman, 1991 Molecular Genetic linkage maps of mouse chromosomes 4 and 6. Genomics 11:33-47.
Bailey, D. W., 1971 Recombinant inbred strains. An aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation 11: 325-327.
Bernstein, K. E., B. M. Martin, A. S. Edwards and E. A. BERNSTEIN, 1989 Mouse angiotensin-converting enzyme is a protein composed of two homologous domains. J. Cell Biol. 264: 11949-11951.
Botstein, D., R. L. White, M. Skolnick and R. W. Davis, 1980 Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am. J. Hum. Genet. 32: 314-331.
Breslauer, K. J.. R. Frank, H. Blocker and L. A. Marky, 1986 Predicting DNA duplex stability from the base se-
quence. Proc. Natl. Acad. Sci. USA 83: 3746-3750.
Buchberg, A. M., E. Brownell, S. Nagata, N. A. Jenkins and N. G. Copeland, 1989 A comprehensive genetic map of murine chromosome $1 /$ reveals extensive linkage conservation between mouse and human. Genetics 122: 153-161.
Buetow, K., 1991 Influence of aberrant outcomes on high-resoIution linkage outcomes. Am. J. Hum. Genet. 49: 985-994.
Ceci, J. D., L. D. Siracusa, N. A Jenkins and N. G. Copeland, 1989 A molecular genetic linkage map of mouse chromosome 4 including the localization of several proto-oncogenes. Genomics 5: 699-709.
Ceci, J. D., M. J. Justice, L. F. Lock, N. A. Jenkins and N. G. COPELAND, 1990a An interspecific backcross linkage map of mouse chromosome 8. Genomics 6: 72-79.
Ceci, J. D., D. M. Kingsley, C. M. Silan, N. G. Copeland and N. A. Jenkins, 1990b An interspecific backcross linkage map of the proximal half of mouse chromosome 14. Genomics 6: 673678.

Chang, C., J. L. Bowman, A. W. Dejohn, E. S. Lander and E. Meyerowitz, 1988 An RFLP linkage map that facilitates gene cloning in Arabidopsis thaliane. Proc. Natl. Acad. Sci. USA 85: 6856-6860.
Chen, Y. H., B. T. Pentecost, J. A. Mclachlan and C. T. Teng, 1991 The androgen-dependent mouse seminal vesicle secretory protein IV: Characterization and complementary deoxyribonucleic acid cloning. Mol. Endocrinol. 1: 707-716.
Church, G., and W. Gilbert, 1984 Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1991-1995.
Copeland, N. G., and N. A. Jenkins, 1991 Development and applications of a molecular genetic linkage map of the mouse genome. Trends Genet. 7: 113-118.
Cornall, R. J., T. J. Aitman, C. M. Hearne and J. A. Todd, 1991 The generation of a library of PCR-analyzed microsatellite variants for genetic mapping of the mouse genome. Genomics 10: 874-881.
Davisson, M. T., T. H. Roderick and D. P. Doolittre, 1989 Recombination percentages and chromosomal assignments. Pp. 432-505 in Genetic Variants and Strains of the Laboratory Mouse, Ed. 2, edited by M. F. Lyon and A. Searle. Oxford University Press, New York.
Donis-Keller, H., P. Green, C. Helms, S. Cartinhour, B. Weiffenbach, K. Stephens, T. P. Ketth, D. W. Bowden, D. R. Smith, E. S. Lander, D. Botstein, G. Akots, K. S. Rediker, T. Gravius, V. A. Brown, M. B. Rising. C. Parker. J. A. Powers. D. E. Watt, E. R. Kauffman, A. Bricker, P. Phipps, H. Muller-Kahle, T. R. Fulton, S. Ng, J. W. Schumm, J. C. Braman, R. G. Knowlton, D. F. Barker, S. M. Crooks, S. E. Lincoln, M. J. Daly and J. Abrahamson, 1987 A genetic linkage map of the human genome. Cell 51: 319-337.
E.ICHER, E., 1981 Foundation for the future: Formal genetics of the mouse, PP. 7-49 in Mammalian Genetics and Cancer: The Jackson Laboratory Fiftieth Anniversary Symposium. Alan R. Liss, New York.
Evans, E., 1989 Standard normal chromosomes: standard idiogram, pp. 576-578 in Genetic Variants and Strains of the Laboratory Mouse, Ed. 2, edited by M. F. Lyon and A. Searle. Oxford University Press, New York.
Festing, M. F. W., 1979 Inbred Strains in Biomedical Research. Oxford University Press, New York.
Frankel, W. N., J. P. Stoye, B. A. Taylor and J. M. Coffin, 1990 A genetic linkage map of endogenous murine leukemia proviruses. Genetics 124: 221-236.
Green, M. C., 1989 Catalog of mutant genes and polymorphic loci, pp. 12-403 in Genetic Variants and Strains of the Laboratory Mouse, Ed. 2, edited by M. F. Lyon and A. Searle. Oxford University Press, New York.
Haldane. J. B. S., A. D. Sprunt and N. M. Haldane, 1915 Reduplication in mice. Science 5: 133-135.

Hamada, H., and T. Takunaga, 1982 Potential z-DNA formine sequences are highly dispersed in the human genome. Nature 298: 396-398.
Hamada, H., M. G. Petrino and T. Takunaga, 1982 a nove repeated element with z-DNA-forming potential is widely found in evolutionary diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 79: 6465-6469.
Hearne, C. M., M. A. McAleer, J. M. Love, T. J. Aitman. R. J. Cornall, S. Ghosh, A. M. Knight, J.-B. Prins ari: I. A. TODD, 1991 Additional microsatellite markers for mores genome mapping. Mamm. Genome 1: 273-282.
Hilbert, P., K. Lindpaintner, J. S. Beckmann, T. Serikawa, F. Soubrier, C. Dubay, P. Cartwright, B. De Gouyon, C. Julier, S. Takahasi, M. Vincent, D. Ganten, M. Georges and G. M. Lathrop, 1991 Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353: 521-529.
Howard, T. E., S. Shai, K. G. Langford, B. M. Martin and K. E. Bernstein, 1990 Transcription of testicular angiotensinconverting enzyme (ACE) is initiated within the 12 th intron of the somatic ACE gene. Mol. Cell. Biol. 10: 4294-4302.
Jacks, C. M., C. B. Powaser and P. B. Hackett, 1988 Sequence analysis of a processed gene coding for mouse ribosomal protein L32. Gene 74: 565-570.
Jacob, H. J., K. Lindpaintner, S. E. Lincolnn, K. Kusumi. R. K. Bunker, Y.-P. Mao. D. Ganten, V. J. Dzau and E. S. Laine: 1991 Genetic mapping of a gene causing hypertension in tice stroke-prone spontaneously hypertensive rat. Cell 67: 213-224.
Justice, M. J., C. M. Silan, J. D. Ceci, A. M. Buchberg, N. G. Copland and N. A. Jenkins, 1990a A molecular genetic linkage map of mouse chromosome 13 anchored by the beige (bg) and satin (sa) loci. Genomics 6: 341-351.
Justice M. J., L. D. Siracusa, D. J. Gilbert, N. Heisterkamp, J. Groffen, K. Chada, C. M. Silan, N. G. Copeland and N. A. JENKINS, 1990b A genetic linkage map of mouse chromosome 10: localization of eighteen molecular markers using a single interspecific backcross. Genetics 125: 855-866.
Kashiwamura, S.-I., T. Koyama, T. Matsuo, M. Steinmetz, M. Kimoto and N. Sakaguchi, 1990 Structure of the murine $m b-I$ gene encoding a putative sIgM-associated molecule. J. Immunol. 145: 337-343.
Kingsley, D. M., N. A. Jenkins and N. G. Copeland, 1989 A molecular genetic linkage map of mouse chromosome 9 with regional localizations for the Gsta, T3g, Ets-1: and Ldlr loci. Genetics 123: 165-172.
Krayev, A. S., D. A. Kramerov, K, G. Skryabin, A. P. Ryskov, A. A. Bayev and G. P. Georgiev, 1980 The nucleotide sequence of the ubiquitous repetitive DNA sequence B1 complementary to the most abundant class of mouse fold-back RNA. Nucleic Acids. Res. 8: 1201-1215.
Krayev, A. S., T. V. Markusheva, D. A. Kramerov, A. P. Ryskov, K. G. Skryabin, A. A. Bayev and G. P. Georgiev, 1982 Ubiquitous transposon-like repeats BI and B2 of the mouse genome: B2 sequencing. Nucleic Acids Res. 10: 74617475.

Lander, E. S., P. Green, J. Abrahamson, A. Barlow, M. Daly, S. Lincoln and L. Newburg, 1987 MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174-181.
Lincoln, S. E., and E. S. Lander, 1987 Constructing genetic linkage maps with MAPMAKER: a tutorial and reference manual. Technical Report, Whitehead Institute, Cambridge, Mass.
Loeb, D. D., R. W. Padgett, S. C. Hardies, W. R. Shehee, M. B. Comer, M. H. Edgell and C. A. Hutchison III, 1986 The sequence of a large L 1 Md element reveals a tandemly repeated

5 5^{\prime} end and several features found in retrotransposons. Mol. Cell. Biol. 6: 168-182.
Nz. J. M., A. M. Knight, M. A. McAleer and J. A. Todd, 1990 Towards construction of a high resolution map of the mouse genome using PCR analysed microsatellites. Nucleic Acids Res. 18: 4123-4130.
quin, C., A. Van Pel, B. Mariame, E. De Plaen, J.-P. Szikora, C. Janssens, M. J. Reddehase, J. Lejeune and T. Boon, 1989 Structure of the gene of Tum ${ }^{-}$transplantation antigen P91A' :'e mutated exon encodes a peptide recognized with L^{d} by cytolytic T cells. Cell 58: 293-303.
nley, K. F., and R. W. Elliort, 1991 R1 Manager, a computer program for analysis of data from recombinant inbred strains. Mamm. Genome 1: 123-126.
Morry, M., and J. D. Harding, 1986 Modulation of transcriptional activity and stable complex formation by 5 '-flanking regions of mouse tRNA ${ }^{\text {his }}$ genes. Mol. Cell. Biol. 6: 105-115.
Oyier, G. A., J. W. Polli, M. C. Wilson and M. L. Billingsley, 1991 Developmental expression of the 25-kDa synaptosomalassociated protein (SNAP-25) in rat brain. Proc. Natl. Acad. Sci. USA 88: 5247-5251.
Robert, B., P. Barton, A. Minty, P. Daubas, A. Weydert, F. bonhomme, J. Catalan, D. Chazottes, J. L. Guenet and M. BUCKINGHAM, 1985 Investigation of genetic linkage between mvosin and actin genes using an interspecific mouse back-cross. Niture 314: 181-183.
Rychlik, W., and R. E. Rhoads, 1989 A computer program for choosing optimal oligonucleotides for filter hybridization. sequencing, and in vitro amplification of DNA. Nucleic Acids Res. 17: 8543-8551.
Sambrook, J., E. F. Fritsch and T. Maniatis, 1989 Molecular Cloning: A Laboratory Manual. Ed. 2. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
Schaefer, R., E. Boltz, A. Becker, F. Bartels and J. T. Epplen, 1986 The expression of the evolutionarily conserved GATA/

GACA repeats in mouse tissues. Chromosoma 93: 496-501.
Siracusa, L. D., C. M. Silan, M. J. Justice. J. A. Mercer, A. R. Bauskin, Y. Ben-Nariah, D. Duboule, N. D. Hastie, N. G. Copeland and N. A. Jenkins, 1990 A molecular genetic linkage map of mouse chromosome 2. Genomics 6: 491-504.
Stahl, J., D. P. Gearing, T. A. Wilison, M. A. Brown, J. A. King and N. M. Gough, 1990 Structural organization of the genes for murine and human leukemia inhibitory factor. J. Biol. Chem. 265: 8833-8841.
Staliings, R. L., A. F. Ford, D. Nelson, D. C. Torney, C. E. Hildebrand and R. K. Moyzis, 1991 Evolution and distribution of (GT), repetitive sequences in mammalian genomes. Genomics 10: 807-815.
Sturtevant, A. H., 1913 The linear arrangement of six sexlinked factors in Drosophila, as shown by their mode of association. J. Exp. Zool. 14: 43-59.
Taylor. B. A., 1989 Recombinant inbred strains, pp. 773-796 in Genetic Variants and Strains of the Laboratory Mouse, Ed. 2, edited by M. F. Lyon and A. Searle. Oxford University Press. New York.
Taylor, B. A., H. J. Heiniger and H. Meier, 1973 Genetic analysis of resistance to cadmium-induced testicular damage in mice. Proc. Soc. Exp. Biol. Med. 143: 629-633.
Todd, J. A., T. J. Aitman, R. J. Cornall. S. Ghosh, J. R. S. Hall, C. M. Hearne, A. M. Knight, J. M. Love, M. A. McAleer, J. Prins, N. Rodrigues, M. Lathrop, A. Pressey, N. H. Delarato, L. B. Peterson and L. S. Wicker, 1991 Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 351: 542-547.
Weber, J. L., 1990 Informativeness of human (dC-dA) (dG-dT)n polymorphisms. Genomics 7: 524-530.
Weber, J. L., and P. E. May, 1989 Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388-396.

[^0]: *To whom correspondence should be addressed
 Present addresses: ${ }^{+}$Walter and Eliza Hall Institute of Medical Research, PO Royal Melboume Hospital, Parkville 3050, Australia and ${ }^{\text {s }}$ Genetic Disease Research NCHGRNIH, 9000 Rockville Pike, 49/4A72, Bethesda, MD 20892, USA

[^1]: Contig assembly
 Contig assembly was performed using a new software package written for use on SPARCstation Unix workstations (Sun Microsystems, Mountain View CA) in a combination of ' C ', the logic programming language Prolog (SICStus Prolog, Swedish Institute of Computer Science. PO Box 1263, S-164 28 KISTA, Sweden), and the graphical user interface language Tel/Tk (71). The algorithm is based on the technique of simulated annealing, used by a number of others for contig assembly (52,72); our implementation in particular is similar in broad outline to one developed by CEPH for this purpose (53). Briefly, in this technique a search space of probe (STS) order permutations, which would be intractable to explore exhaustively, is randomly reordered by selecting from a set of operations such as movement of single probes, swapping of probes, moving of clusters, and inversion of clusters. Any ordering is assigned a notional 'energy' that reflects its fit to the YAC-STS

[^2]: *To whom correspondence should be addressed
 Present addresses: ${ }^{+}$Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Parkville 3050, Australia and ${ }^{\text {TG Genetic Disease Research }}$ NCHGRNIH, 9000 Rockville Pike, 49/4A72, Bethesda, MD 20892, USA

[^3]: ${ }^{\text {a }}$ The bins defined by the somatic cell hybrid panel are indicated on the left. Loci localized to bins or ranges of bins are shown in boxes. The verical extent of each box indicates the bin interval to which the loci were mapped. In parentheses are the numbers of YACs detected at each locus.
 **GGTI-like sequences are found in bins 7,9 and 12.

[^4]: Received 29 September 1994; revised 6 Juty 1995; accepted 17 July 1995.

 1. McKusick, V. A. Mendellan Inheritance In Man 5th edn. John Hopkins Univ. Press, Batitmore, 1978)
 2. Burke, D. T., Carte, G. F. \& Olson, M. V. Science 236, 806-812 (1987).
 3. Chumakov, l. et al. Nature 359, 380-386 (1992).
 4. Foote, S., Vollrath. D.. Hitton, A. \& Page. D. Science 258, 60-66 (1992).
 5. Miki, Y. et al. Sclence 268, 66-71 (1994).
 6. The Huntingion Disease Collaboration Research Group Cell 72, 971-983 (1993).
 7. Collins, F. S. Nature Genet. 1, 3-6 (1992).
 8. Gyapay, G. et al. Nature Genet. 7, 248-339 (1994).
 9. Lit. M. \& Luty, J. A. Am. J. hum. Genet. 44, 397-401 (1989).
 10. Weber, J. L. \& May, P. E. Am. J. hum. Genet. 44, 388-396 (1989).
 11. Green, E. D., Riethman, H. C., Dutchik, J. E. \& Olson, M. V. Genomics 11, 658-659 (1991)
 12. Olson, M. V., Hood, L. Cantor, C. R. \& Botstein, D. Science 245, 1434-1435 (1989),
 13. Bellanne-Chantelot C. et al. Cell 70, 1059-1068 (1992).
 14. Cohen, D., Chumakov, I. \& Weissenbach, J. Nature 366, 698-701 (1993).
 15. Yang, S. Y. in immunoblology of HLA, Vol. 1 (Springer, New York, 1989).
 16. Albertsen, H. et al. Proc. natn. Acad. Scl. U.S.A. 87, 4256-4260 (1990).
 17. Albertsen, H. et al. Proc. natn. Acsd. Sci. U.S.A.
 18. Haldi, M. et al. Genomics 24, 478-484 (1994).
 19. Carte. G. F. Franck, M. \& Olson, M. V. Science 232, 65-68 (1986).
[^5]: * Polymorphism survey was based on visual comparisons of fragments across large acrylamide gels and was thus subject to mobility differences among lanes. To assess the accuracy of data in our database, 3,000 individual pairwise compansons were repeated. Some 6% of reported polymorphic pairs tum out to be monomorphic upon careful comparison, while 4% of reported monomorphic pairs tum out to be polymorphic. The data are thus accurate enough to allow selection of markers for crosses, but genetjcists wishing to know every polymorphic marker in a narrow region (for fine-structure genetic mapping and positional cloning, for example) are advised to recheck each locus.
 \dagger Based on 'consensus' genetic map in Encyclopedia of the Mouse Genome, htup//www.informatics.jax.org.encyclo.html (1993).
 \ddagger Distance between most proximal and most distal markers in the map reported here.
 \& Pairwise comparisons of OB, B6, DBA, A, C3H, BALB, AKR, NON, NOD and LP.
 II Standard error of the mean for each chromosome depends on number of markers studied, but is $<1 \%$ in all cases.
 ID Distance is shorter than in previously published versions of this map (ref. 6) because final error checking reduced the number of apparent crossovers.

[^6]: * Polymorphism suwey was based on visual comparisons of fragments across large acylamide gels and was thus subject to mobility differences among lanes. To assess the accuracy of data in our database, 3,000 individual pairwise companisons were repeated. Some 6% of reported polymorphic pairs tum out to be monomorphic upon careful comparison, while 4% of reported monomorphic pairs tum out to be polymorphic. The data are thus accurate enough to allow selection of markers for crosses, but geneticists wishing to know every polymorphic marker in a narrow region (for fine-structure genetic mapping and positional cloning, for example) are advised to recheck each locus.
 \dagger Based on 'consensus' genetic map in Encyclopedia of the Mouse Genome, http://www.informatics.jax.org.encyclo.html (1993).
 \ddagger Distance between most proximal and most distal markers in the map reported here.
 \& Pairwise comparisons of OB, B6, DBA, A, C3H, BALB, AKR, NON, NOD and LP.
 $\|$ Standard error of the mean for each chromosome depends on number of markers studied, but is $<1 \%$ in all cases.
 Distance is shorter than in previously published versions of this map (ref. 6) because final error checking reduced the number of apparent crossovers.

[^7]: * Cytogenetic length taken from previous measurements ${ }^{19}$. Standard error of the mean was calculated directly from the raw data on chromosome measurements, generously provided by E. Evans.
 † Only random markers are considered to avoid biases in chromosomal distribution of known genes.
 \ddagger Mean \pm standard deviation. Standard deviation in number of markers expected combines both standard error in the measurement of chromosome length and sampling error given to the total number of loci examined. Uncertainty in the precise length of chromosomes was not included in previous analyses ${ }^{\mathbf{B}}$, owing to its small magnitude, but it becomes relevant as the number of loci increases and sampling error correspondingly decreases. For comparison of autosomes to X chromosome, the expectation reflects the fact that 5% of the random markers were derived from male DNA (thus underrepresenting the X chromosome by a factor of two) and 95% from fernale DNA.
 $\S Z$-score $=($ observed - expected)/standard deviation. For the autosomes, all of the Z-scores are significant at the $P=0.05$ level after Bonferroni correction for multiple testing. For the comparison of autosomes to X chromosome, the Z-score is significant at $P<10^{-14}$.

[^8]: *To whom correspondence should be addressed

[^9]: *T. L. Hawkins, S. R. Banerjee, C. Brodowski, C. A. Evans, D. Levinson, and K. Ingalls are with Whitehead Institute/MIT Center for Genome Research, One Kendall Square, Bldg. 300, Cambridge, MA 02139. F. Days is with Tecan US, Research Triangle Park, NC 27709.
 ${ }^{\dagger}$ Author to whom correspondence should be addressed.

[^10]: ${ }^{1}$ To whom correspondence should be addressed. Telephone: (44) 1223333986 . Fax: (44) 1223333992.
 ${ }^{2}$ Current address: Whitehead Institute/MIT, Center for Genome Research, Cambridge, MA 02139.

[^11]: ${ }^{1}$ Present address: Collaborative Research, Inc., 2 Oak Park, Bedford, MA 01730.
 ${ }^{2}$ To whom correspondence should be addressed.

[^12]: a The relative chromosomal length was obtained from Ott (1985).
 ${ }^{b}$ Calculated assuming that the frequency of (CA) $)_{n}$ repeats is proportional to chromosome length.
 ${ }^{c} z$-score, (observed - expected)/standard deviation.

