Data Aggregation Workshop Jun 5-6

- Deposit (almost) all sequence/exposure/phenot datasets in central database
- Limit (almost) all future sequence/phenot datasets to ppts consenting to broad use
- Public release of summary statistics (variant names, allele freq, OR) should be default
- Data access for dbGaP should be streamlined, including registered users having broad access

Data Aggregation Workshop Jun 5-6

- New governance procedures for central database should include public disclosure and participation, accountability and penalties
- Central processing of sequence data should be encouraged
- Analysis of aggregate datasets should be supported
- Retrospective harmonization encouraged and efforts captured; future projects include harmonization as part of application and sharing

Sequencing in Large Sample Collections Background

- Dramatic advances in sequencing technology and genomic understanding have made search for rare LoF variants in large samples achievable
- Very large numbers of cohort studies and other large samples available (http://www.genome.gov/27548522)
- Choosing among them challenging
- Convening workshop/think tank to address

Goal and Objectives

Goal:

Provide guidance to NIH and the scientific community on the utility of sequencing large sample collections to improve the understanding and treatment of complex diseases.

Objectives:

- Identify the key scientific questions that can be addressed by sequencing
- Define criteria for selecting samples to answer those questions

Workshop Topics

- Short- and long-term goals for sequencing in complex disease research
- Using genomic variants to guide treatment
- Finding rare variants of large effect related to complex diseases
- Scientific questions addressable by sequencing
 - Finding modifiers of known disease-related variants
 - Finding drug targets
 - Characterizing an individual's genomic risk of complex disease or drug response

Workshop Topics (continued)

- Informatic imperatives for sequencing in large-scale studies
- Cloud computing for large-scale sequencing
- Criteria for selecting samples to sequence
 - Consent, data access, ability to recontact
 - Breadth vs depth of phenotyping
 - Outcome data, links to electronic medical records
 - Ancestral diversity
 - Participant selection and study design

1. Fitting Tools to Job (R Wilson)

2. Perils and Promise (P Donnelly)

3. Short- and Long-Term Goals (E Boerwinkle)

4. Charge and Deliverables (S Chanock)

5. Charge and Deliverables (S Chanock)

6. Guiding Treatment (M Murray)

7. Rare Variants and Disease Risk (E Boerwin)

8. Modifiers of Known Variants (M Knowles)

9. Finding Drug Targets (J Cho)

10. Discussion and Prioritization (Chanock/Lehner)

11. Informatic Imperatives (D MacArthur)

12. Cloud Computing (N Cox)

13. Consent, Access, Re-Contact (G Jarvik)

14. Phenotyping (J Buring)

15. Outcome Data, EMRs (D Roden)

16. Ancestral Diversity (L Jorde)

17. Ppt Selection and Design (T Hartge)

18. Discussion/Prioritization (E Boerwinkle)

19. Key Lessons/Reactions (R Collins)

20. Key Lessons/Reactions (M Olson)

Guidance on Sequencing Large Collections

Questions Answerable by Sequencing

Criteria for Selection

Workshop Topics (continued)

- Informatic imperatives for sequencing in large-scale studies
- Cloud computing for large-scale sequencing
- Criteria for selecting samples to sequence
 - Consent, data access, ability to recontact
 - Breadth vs depth of phenotyping
 - Outcome data, links to electronic medical records
 - Ancestral diversity
 - Participant selection and study design