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The Problem




End Stage Kidney Disease
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ESRD care is ~ $30 billion/year ~10% of Medicare budget



Why do people develop Kidney Disease ?



Chronic kidney disease; typical gene
environmental disease
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GWAS for CKD in EUR population
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TTS 3'UTR exon

88% non-coding regions

How do they lead to kidney disease development ?

Causal SNP
Target cell type
Target gene
Mode of dysregulation

Nat Genet. 2009 Jun;41(6):712-7.

Nat Genet. 2010 May;42(5):373-5.

Hum Mol Genet. 2012 Dec 15;21(24):5373-84
Nat Genet. 2011 Jun;43(6):513-8.

PNAS 2009 Jun 9;106(23):9362-7



Our framework to understand the genetics of

kidney disease

1. The causal variant is localized to a regulatory region in a disease relevant cell

type (kidney)

2. The variant alters target expression in disease relevant cell type (the kidney) via
altering transcription factor binding

3. The target is expressed in disease relevant tissue (kidney)

4. The expression of target changes in kidney disease

5. Alterations in target expression causes kidney disease. The target is functional

in the kidney



Integrated translational approach for target identification
for chronic kidney disease

Real time updated
linical data
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Transcriptome:
Microdissected glomeruli, tubuli
-RNAsequencing (n=500)

\

Genotyping:
-Affymetrix Axiom Biobank Chips

Epigenome analysis: \

-Cytosine _methylation (Infinium

arrays)
-500 blood samples
-150 dissected tubule samples

-Histone modification
-Cell type ChlPs (podocytes, endo,
mesangial cells, fibroblasts,

tubule cells)
\-\Control vs. CKD tissue samples/




1. The causal variant is localized to a regulatory region in a
disease relevant cell type (kidney)

H3K4me1/2,

H3K27ac
CTCF

. H3K4me3

H3K36me3
H4K20me1




CKD SNPs are enriched on kidney-specific enhancers in

comparison to non-kidney cell lines
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CKD SNPs are enriched on tubule cell specific enhancers
when comparing kidney cell lines
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Experimental validation
The causal variant is expressed on disease relevant cell type
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Our framework to understand the genetics of

kidney disease

1. The causal variant is localized to a regulatory region in a disease relevant cell

type (kidney)

2. The variant alters target expression in disease relevant cell type (the kidney) via

altering transcription factor binding

3. The target is expressed in disease relevant tissue (kidney)
4. The expression of target changes in kidney disease
5. Alterations in target expression causes kidney disease. The target is functional

in the kidney



The variant alters target expression in disease relevant tissue

(the kidney)
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expression quantitative trait locus (eQTL)



Genotype driven gene expression changes (99 CEU kidneys)
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Which gene is the target of the polymorphism?
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Our framework to understand the genetics of

kidney disease

1. The causal variant is localized to a regulatory region in a disease relevant cell
type (kidney)
2. The variant alters target expression in disease relevant cell type (the kidney) via

altering transcription factor binding

3. The target is expressed in disease relevant tissue (kidney)

4. The expression of target changes in kidney disease
5. Alterations in target expression causes kidney disease. The target is functional

in the kidney



Which gene is expressed in the kidney ?
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Our framework to understand the genetics of

kidney disease

1. The causal variant is localized to a regulatory region in a disease relevant cell
type (kidney)

2. The variant alters target expression in disease relevant cell type (the kidney) via
altering transcription factor binding

3. The target is expressed in disease relevant tissue (kidney)

4. Target expression changes in kidney disease

5. Alterations in target expression causes kidney disease. The target is functional

in the kidney



Expression of the target correlates with kidney function
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(acyl-CoA synthetase medium chain family member
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Pearson R = 0.526
R2=10.2768
Pcorr =2.45x 106




Our framework to understand the genetics of

kidney disease

1. The causal variant is localized to a regulatory region in a disease relevant cell
type (kidney)

2. The variant alters target expression in disease relevant cell type (the kidney) via
altering transcription factor binding

3. The target is expressed in disease relevant tissue (kidney)

4. The expression of target changes in kidney disease

5. Alterations in target expression causes kidney disease. The target is functional

in the kidney




Functional studies in model organism

Pericardial edema

Acsm3 200 uM / (sign of kidney damage)

=7 3 - -
e — v >
. v  cy
~

- e i—— g,

Morpholino knock down
in zebrafish embryo



Functional studies in model organism

ATP+CoA - AMP+ PPi




CONCLUSION 1.

Our Roadmap to understand GWAS associated hits
-Human tissue samples are needed

-Epigenome maps to identify regulatory DNA
-Model organisms to validate validate causal variant

-eQTL maps to identify target genes
-Examine kidney expression, correlation with kidney function
-Model organisms to validate gene function (zfish to mouse)

Our analysis indicate that ACSM gene family are likely targets
of a common CKD GWAS hit on Chr16

Fatty acid metabolism might be the target of common CKD
associated GWAS variant



These variants explain small fraction of heritability

Can be explained by sequence variants (SNP)

Inherited but we can not identify DNA sequence
variation

Inherited 30-70%

Missing heritability

Larger sample size
Different ethnic groups
Deeper sequencing
Epigenetics

Environment 30-70%



Different ethnic groups...

...admixture study in YRB for kidney disease...
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Association of Trypanolytic Apol1
Variants with Kidney Disease in
African Americans

Giulio Genovese,'?* David ]. Friedman,'3* Michael D. Ross,? Laurence Lecordier,®
Pierrick Uzureau,’ Barry I. Freedman,® Donald W. Bowden,”-® Carl D. Langefeld,?°
Taras K. Oleksyk,*® Andrea L. Uscinski Knob,* Andrea J. Bernhardy,* Pamela ]. Hicks,”-3
George W. Nelson,* Benoit Vanhollebeke,® Cheryl A. Winkler,*? Jeffrey B. Kopp,**
Etienne Pays,’t Martin R. Pollak™*3+

E ETat1.2R

G1 ‘7./'

G2



APOL1 variants cause kidney disease in mice

Gt : ‘s:‘ & 2 :-

Beckerman, Park and Susztak unpublished



These variants explain small fraction of heritability

Can be explained by sequence variants (SNP)

Inherited but we can not identify DNA sequence
variation

Inherited 30-70%

Missing heritability

En\{_i_[_(_)__r_! ment 30-70%



Epigenetic studies in patients with kidney disease

Demographics of the research participants

Characteristics Control Hypertension
n 23 23
Age (years) Mean + SD
Ethnicity

Asian, Pacific Islander
White, non-Hispanic
Black, non-Hispanic
Hispanic
Other&Unknown
BMI (kg/m2) Mean + SD
Diabetes
Hypertension
Proteinuria (dipstick) . .
Serum BUN (mg/dL) Mean + SD 15. 30 + 5 38 15. 56 + 7 23
Serum creatinine (mg/dL) Mean i{,2.§,& (Y e

!c,/
») 7

eGFR (ml/min/1.73 m?) Mean + \/’\N
Histology
Tubular atrophy (%)
Interstitial fibrosis (%)
Glomerulosclerosis (%)

DM DKD
20 21
65.3+12.1 65.8+ 12.3
1 0
2 5
6 7
2 3
9 6
28.9+5.53, 32.5+7.76
20 21
17 19

074119 3.0+1.7
1aenoMe wide 35 20+ 15.82

oGgtosine methydatien apalysis

7aMRETIEBED  3032+17.21
[llumina 450K

4.5 +4.02 31.8+22.2
5.5+4.18 29.6 £19.2
7.13+7.52 31.11£32.25
0.32+£0.40 1.38+1.18
1.0+0.7 2.0+£0.8



Distinct Cytosine Methylation Profiles tubule cells obtained from
patients with Diabetic kidney Disease

healthy Disease (CKD)
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Kidney specific epigenome

Ratio DMR(%)/Array (%)

Differential methylation occurs on kidney specific
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Differentially methylated regions affect kidney specific
transcription factor binding

Motif Name

SIX2 binding site

. cGCTATCA .

TTTAAATTTTGGTAG

Kidney specific epigenome

Insulator
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AéééAéﬁ 33% FOXPl

CCT Ca— iaros/ikzr
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- e

P-VALUL
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Cytosine methylation differences correlate with
transcript level changes

DMR
(HELP)

Differentially methylated regions

4,751

2 /
Unique nearby genes 1,092
[ ]intergenic
B Gene body Differentially expressed
[ Promoter transcripts 414
-log p-value

0 05 1 15 2 25 3 35 4 45

developmental process —

cellular process
multicellular organismal
cellular component
biological adhesion
localization

biological regulation
establishment of localization
immune system process




Are there differences in histone tail modifications in CKD ?

¥ = H3K4mel
2 =active enhancer
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Term

% P-Value Corrected

developmental process 23.4 3.50E-20, 7.60E-19
biological adhesion 6.4 1.80E-11 2.00E-10
multicellular organismal process | 27.2] 3.50E-08 2.50E-07
cellular process o9 1.70E-04f 9.60E-04
reproduction o 1.90E-02 8.20E-02
reproductive process 49 2.10E-020 7.60E-02
cellular component organization 14.7] 2.60E-02 8.00E-02




Maternal calorie restriction in rats causes low nephron
number, HTN, albuminuria and distinct epigenetic changes

Hypermethylation
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Conclusion



N J/CONCLUSION 2.

Small but highly consistent cytosine methylation changes in CKD
tubule samples

Methylation changes are enriched on kidney specific enhancer
regions

Fibrosis and developmental genes are more affected by
methylation changes

Kidney disease might have a “developmental” origin
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