Mining the Genome to Understand Epigenetic Abnormalities in Cancer and Enhance Development of New Therapeutic Approaches

Stephen B. Baylin

Epigenetics

Classic Definition

The branch of biology which studies the causal interactions between genes and their products, which bring the phenotype into being.

Modern Definition

The study of heritable changes (mitotic or meiotic) in gene function which create a new phenotype without a corresponding change in DNA sequence.

"Above", but integral to, and informed by, the genome –software for the hard drive of DNA

Cancer translation – the potential to <u>reverse</u> abnormalities and reprogram tumor cells - think of induced pluripotent stem cells (iPS)!

Putative Therapeutic Target -The Epigenome

The position of mutations and the abnormal epigenome in tumor progression

Cancer = disease of abnormal retention of self-renewal and defective lineage commitment

Baylin & Jones, Cold Spring Harb Perspect Biol 2014

Some Things We Need To Know

 Relationships and balance, during cancer initiation and progression between DNA methylation and chromatin changes in key genomic regions – enhancers, promoters, gene bodies, and non-coding

Genome-Wide Studies of DNA Methylation and Chromatin

Hariharan Easwaran

Leander Van Neste

Sarah Johnstone

Model for Molecular Progression to DNA Hypermethylation of Many Genes in Cancer

TCGA Data

Breast Carcinoma

Lung Adenocarcinoma

Danilova, Cope, Weisenberger, Laird, and TCGA Consortium, Nature, 2014

Easwaran, Johnstone, Collison et al, 2012

Mutations in Genes Encoding Chromatin Regulatory Proteins

The epigenetic machinery

Some Things We Need To Know

- Relationships and balance, during cancer initiation and progression between DNA methylation and chromatin changes in key genomic regions – enhancers, promoters, gene bodies, and non-coding
- Above as these parameters relate to the DNA methylation and chromatin events either created by and/or "inherited " by the mutations in genes encoding for proteins regulating the epigenome

The Hallmarks of Cancer and Therapy Targets

Some Things We Need To Know

- Relationships and balance, during cancer initiation and progression between DNA methylation and chromatin changes in key genomic regions – enhancers, promoters, gene bodies, and non-coding
- Above as these parameters relate to the DNA methylation and chromatin events either created by and/or "inherited " by the mutations in genes encoding for proteins regulating the epigenome
- Above during effects of agents which are targeting the epigenome for possibilities in cancer therapy

Dream Team for Epigenetic Therapy

Anthony El-Khoueiry, Casey O'Connell **Barbara Gitlitz Debu Tripathy**

Leukemia Breast, Lung, & Colon **Ovarian Cancer**

Jean-Pierre Issa

Charles Rudin Ros Juergens Malcolm Brock Nita Ahuja

Nilo Azad Vered Stearns Roisin Connolly, M.B.

John Wrangle

Suzanne Topalian, **Drew Pardoll Immunotherapy Team**

Julie Brahmer

Correlative Science and Biomarker Development Derivation

Peter Jones Steve Baylin Cindy Zahnow Kate Chiappinelli

John Wrangle Huili Li Hsing Tsai Nita Ahuja

Potential for Epigenetic Rx Priming to Immune Tolerance Therapy

Wrangle, Wang, Easwaran et al, 2013

Study Design Figure

colon, leukemia, lung, and ovarian cancers

Tsai, Li et al, Cancer Cell, 2012

Summary of Molecular Responses of NSCLC Lines to Low Dose 5AZA

Wrangle, Wang, Easwaran, et al, 2013

Concept of Tumor Immune Evasion

Cancer Immunoediting

Breaking Immune Tolerance

Target	Drug Name	Other Names	Source	Isotype and Characteristics	Clinical Testing Phase
PD-1	MEDI0680	AMP-514	MedImmune/ AstraZeneca	information not available	phase I
	nivolumab	Opdivo, BMS-936558, MDX-1106, ONO-4538	Bristol-Myers Squibb, Ono Pharmaceuticals	fully human IgG4°	approved, treatment- refractory unresectable melanoma (Japan, United States) and squamous NSCLC (United States)
	pembrolizumab	Keytruda, MK-3475, lambrolizumab	Merck	humanized IgG4	approved, treatment- refractory unresectable melanoma (United States)
	pidilizumab	CT-011	CureTech	humanized IgG1	phase I-II
PD-L1	BMS-936559	MDX-1105	Bristol-Myers Squibb	fully human IgG4ª	phase I
	MEDI4736	none	MedImmune/ AstraZeneca	Fc-modified human IgG1 ^b	phase I-III
	MPDL3280A	RG7446	Genentech/ Roche	Fc-modified human IgG1 ^b	phase I-III
	MSB0010718C	none	EMD Serono	fully human IgG1 ^a	phase I-II

^bFc-modified mAbs were engineered to abrogate ADCC and complement-dependent cytotoxicity (CDC).

Isolation of RNA from AZA-treated cell lines and analysis via Agilent 44K Expression Array

GSEA analysis of mRNA expression data

Identification of the most enriched GSEA gene sets (Up-regulated: NES > 2.15, FDR < 0.25; Down-regulated: NES < -2.15, FDE < 0.25) that are common to breast, colon and ovarian cell lines

Focused analysis of the GSEA immune gene sets in cell lines and generation of an AZA <u>Inducible Immune Gene Set that is common to breast, colon and ovarian cancer cell lines</u>

Characterization of the AZA inducible immune gene sets (AIMs) in *primary breast,* colon and ovarian tumors from public databases (TCGA and GEO)

Identification of a subset of AIMs that are concordantly demethylated and reexpressed in breast, colon, and ovarian cancer cell lines

Identification of a subset of AIMs that are up-regulated in breast and colon biopsies from patients that received AZA based therapy

Li, Chiapinelli, et al, 2014

Viral Defense - Nucleotide Sensing

Cho K et al, Shock, 2008

Structure of Endogenous Retroviruses (ERV's)

Effects of ERV's KD on AZA Induction of ISG's in TYKNU Cells

TCGA RNA-seq

Mutational Burden And Resonse To Immune Checkpoint Therapy

TCGA Melanoma

Melanoma Trial -Anti-CTLA4 (MMSK)

Model for the Hypothesis

Chiapinelli, et al, Cell, in press, 2015

Clinical Trials!

COMBINATION BIOMARKER HYPOTHESIS

- 1. Mutation burden (RNA?)
- 2. Viral defense gene panel
- 3. ERV transcripts