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Development of New Therapeutic Approaches
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Epigenetics

Nature Reviews | Genetics

Classic Definition

The branch of biology which studies the
causal interactions between genes and their
products, which bring the phenotype into
being.

Modern Definition

The study of heritable changes (mitotic or meiotic) in
gene function which create a new phenotype without
a corresponding change in DNA sequence.

“Above” , but integral to, and informed by, the
genome —software for the hard drive of DNA

Cancer translation - the potential to reverse
abnormalities and reprogram tumor cells - think of
induced pluripotent stem cells ( iPS)!



Putative Therapeutic Target -The Epigenome
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The position of mutations and the abnormal epigenome in tumor progression

Cancer = disease of abnormal retention of self-renewal and defective lineage commitment
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Some Things We Need To Know

* Relationships and balance, during cancer initiation and
progression between DNA methylation and chromatin
changes in key genomic regions — enhancers,
promoters, gene bodies, and non-coding



Genome-Wide Studies of DNA Methylation and Chromatin
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Model for Molecular Progression to DNA
Hypermethylation of Many Genes in Cancer
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Breast Carcinoma _ Lung Adenocarcinoma
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Mutations in Genes Encoding Chromatin Regulatory Proteins
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Some Things We Need To Know

Relationships and balance, during cancer initiation and
progression between DNA methylation and chromatin
changes in key genomic regions — enhancers, promoters, gene
bodies, and non-coding

Above as these parameters relate to the DNA methylation
and chromatin events either created by and/or “inherited “
by the mutations in genes encoding for proteins regulating
the epigenome



The Nucleosome
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The Hallmarks of Cancer and Therapy Targets
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Some Things We Need To Know

Relationships and balance, during cancer initiation and
progression between DNA methylation and chromatin
changes in key genomic regions — enhancers, promoters, gene
bodies, and non-coding

Above as these parameters relate to the DNA methylation
and chromatin events either created by and/or “inherited “
by the mutations in genes encoding for proteins regulating
the epigenome

Above during effects of agents which are targeting the
epigenome for possibilities in cancer therapy
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Correlative Science and Biomarker Development Derivation
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Potential for Epigenetic Rx Priming to Immune Tolerance Therapy
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Study Design Figure
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Summary of Molecular Responses of NSCLC Lines to Low Dose 5AZA
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Concept of Tumor Immune Evasion
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Breakine Immune Tolerance

Innate (tumor cell intrinsic) resistance
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Target  DrugName  OtherNames Source Characteristics Clinical Testing Phase
PD-1 MEDIOGS0 AMP-514 Medimmune/ AstraZeneca  information not available  phase|
nivolumab Opaivo, BMS-936558,  Bristol-Myers Squibb, Ono  fully human 1gG4° approved, freaiment-
MDX-1106, ONO-4538  Phamaceuticals refractory unresectable
melanoma (Japan, United
States) and squamous
NSCLC (United States)
pembrolizumab  Keytruda, MK-3475,  Merck humanized [gG4 approved, freaiment-
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melanoma (United States)
pidiizumab  CT-011 CureTech humanized loG1 phase |-
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Isolation of RNA from AZA-treated cell lines and analysis via Agilent 44K Expression Array

A 4

GSEA analysis of mRNA expression data

A 4

|dentification of the most enriched GSEA gene sets (Up-regulated: NES > 2.15, FDR <
0.25; Down-regulated: NES < -2.15, FDE < 0.25) that are common to breast, colon and
ovarian cell lines

Focused analysis of the GSEA immune gene sets in cell lines and generation of an AZA
Inducible Immune Gene Set that is common to breast, colon and ovarian cancer cell lines

Characterization of the AZA inducible immune gene sets (AIMSs) in primary breast,
colon and ovarian tumors from public databases (TCGA and GEO)

|dentification of a subset of AlMs that are |dentification of a subset of AlMs that are
concordantly demethylated and re- up-regulated in breast and colon biopsies
expressed in breast, colon, and ovarian from patients that received AZA based
cancer cell lines

i, etal, 2014



Viral Defense - Nucleotide Sensing
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Structure of Endogenous Retroviruses ( ERV’s)
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Mutational Burden And Resonse To Immune Checkpoint Therapy

A Biochemical Response
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TCGA Melanoma
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Melanoma Trial —Anti-CTLA4 (MMSK)
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Model for the Hypothesis
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COMBINATION BIOMARKER
HYPOTHESIS

1. Mutation burden (RNA?)

2. Viral defense gene panel
3. ERV transcripts



