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TCGA:   Driven by the Numbers 
But not yet validated in the laboratory…. 

Value of Frequency in Generating Hypotheses 
But, further laboratory work is needed… 



Evidence for Heritability of Cancer 

1866   Broca observed heritability based  
   on familial breast cancer 

Interim  Twin/Family/Sibling studies… 

1969  Li-Fraumeni observed familial              
  clustering (TP53) 

1971   Knudson postulated “two-hit”              
  hypothesis for retinoblastoma 

1991  Positional cloning of a familial  
   breast cancer gene (BRCA1) 
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TCGA:  Lessons Learned from the Data 
  Survival Analyses 

Impact of germline or somatic mutations 



Rahman Nature 2014 
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Abstract

Genome-wide association studies (GWAS) have revolutionized the field of cancer genetics, but the causal links between
increased genetic risk and onset/progression of disease processes remain to be identified. Here we report the first step in
such an endeavor for prostate cancer. We provide a comprehensive annotation of the 77 known risk loci, based upon highly
correlated variants in biologically relevant chromatin annotations— we identified 727 such potentially functional SNPs. We
also provide a detailed account of possible protein disruption, microRNA target sequence disruption and regulatory
response element disruption of all correlated SNPs at r2§0:5. 88% of the 727 SNPs fall within putative enhancers, and many
alter critical residues in the response elements of transcription factors known to be involved in prostate biology. We define
as risk enhancers those regions with enhancer chromatin biofeatures in prostate-derived cell lines with prostate-cancer
correlated SNPs. To aid the identification of these enhancers, we performed genomewide ChIP-seq for H3K27-acetylation, a
mark of actively engaged enhancers, as well as the transcription factor TCF7L2. We analyzed in depth three variants in risk
enhancers, two of which show significantly altered androgen sensitivity in LNCaP cells. This includes rs4907792, that is in
linkage disequilibrium (r2~0:91) with an eQTL for NUDT11 (on the X chromosome) in prostate tissue, and rs10486567, the
index SNP in intron 3 of the JAZF1 gene on chromosome 7. Rs4907792 is within a critical residue of a strong consensus
androgen response element that is interrupted in the protective allele, resulting in a 56% decrease in its androgen
sensitivity, whereas rs10486567 affects both NKX3-1 and FOXA-AR motifs where the risk allele results in a 39% increase in
basal activity and a 28% fold-increase in androgen stimulated enhancer activity. Identification of such enhancer variants and
their potential target genes represents a preliminary step in connecting risk to disease process.

Citation: Hazelett DJ, Rhie SK, Gaddis M, Yan C, Lakeland DL, et al. (2014) Comprehensive Functional Annotation of 77 Prostate Cancer Risk Loci. PLoS Genet 10(1):
e1004102. doi:10.1371/journal.pgen.1004102

Editor: Vivian G. Cheung, University of Michigan, United States of America

Received October 1, 2013; Accepted November 14, 2013; Published January 30, 2014

Copyright: ! 2014 Hazelett et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work reported here was funded by the National Institutes of Health (NIH) [CA109147, U19CA148537 and U19CA148107 to GAC; 5T32CA009320-27
to HN and NIDH/NHGRI U54HG006996 to PJF] and David Mazzone Awards Program (GAC) and 5T32GM067587 for MG. The scientific development and funding of
this project were in part supported by the Genetic Associations and Mechanisms in Oncology (GAME-ON): a NCI Cancer Post-GWAS Initiative. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hazelett@usc.edu (DJH); coetzee@usc.edu (GAC)

" Membership of the Ellipse/GAME-ON consortium and the Practical consortium is provided in the Acknowledgments.

Introduction

The basic goal of research into human genetics is to connect
variation at the genetic level with variation in organismal and
cellular phenotype. Until recently, inferences about such connec-
tions have been limited to the kind associated with heritable
disorders and developmental syndromes. Such variations often
turn out to be the result of disruptions to protein coding sequences
of critical enzymes for an affected pathway. Recent advances in

genomics and medicine have begun to illuminate a sea of variation
of a more subtle variety, not always the result of mutation of
protein coding sequences. In particular, genome-wide association
studies (GWAS) have identified thousands of variants associated
with hundreds of disease traits [1]. These variants, typically
encoded by single nucleotide polymorphisms (SNPs), are given
landmark status and called ‘index-SNPs’ (they are also frequently
referred to in the literature as ‘tag-SNPs’) as the reference for
disease or phenotype association in that region. The vast majority
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GPA: A Statistical Approach to Prioritizing GWAS Results
by Integrating Pleiotropy and Annotation
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Abstract

Results from Genome-Wide Association Studies (GWAS) have shown that complex diseases are often affected by many
genetic variants with small or moderate effects. Identifications of these risk variants remain a very challenging problem.
There is a need to develop more powerful statistical methods to leverage available information to improve upon traditional
approaches that focus on a single GWAS dataset without incorporating additional data. In this paper, we propose a novel
statistical approach, GPA (Genetic analysis incorporating Pleiotropy and Annotation), to increase statistical power to identify
risk variants through joint analysis of multiple GWAS data sets and annotation information because: (1) accumulating
evidence suggests that different complex diseases share common risk bases, i.e., pleiotropy; and (2) functionally annotated
variants have been consistently demonstrated to be enriched among GWAS hits. GPA can integrate multiple GWAS datasets
and functional annotations to seek association signals, and it can also perform hypothesis testing to test the presence of
pleiotropy and enrichment of functional annotation. Statistical inference of the model parameters and SNP ranking is
achieved through an EM algorithm that can handle genome-wide markers efficiently. When we applied GPA to jointly
analyze five psychiatric disorders with annotation information, not only did GPA identify many weak signals missed by the
traditional single phenotype analysis, but it also revealed relationships in the genetic architecture of these disorders. Using
our hypothesis testing framework, statistically significant pleiotropic effects were detected among these psychiatric
disorders, and the markers annotated in the central nervous system genes and eQTLs from the Genotype-Tissue Expression
(GTEx) database were significantly enriched. We also applied GPA to a bladder cancer GWAS data set with the ENCODE
DNase-seq data from 125 cell lines. GPA was able to detect cell lines that are biologically more relevant to bladder cancer.
The R implementation of GPA is currently available at http://dongjunchung.github.io/GPA/.
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Introduction

Hundreds of genome-wide association studies (GWAS) have
been conducted to study the genetic bases of complex human
traits. As of January, 2014, more than 12,000 single-nucleotide
polymorphisms (SNPs) have been reported to be significantly
associated with at least one complex trait (see the web resource of
GWAS catalog [1] http://www.genome.gov/gwastudies/). De-
spite of these successes, these significantly associated SNPs can
only explain a small portion of genetic contributions to complex
traits/diseases [2]. For example, human height is a highly heritable
trait whose heritability is estimated to be around 80%, i.e., 80% of
variation in height within the same population can be attributed to
genetic effects [3]. Based on large-scale GWAS, about 180 SNPs
have been reported to be significantly associated with human
height [4]. However, these loci together only explain about 5-10%

of variation in height [2,4,5]. This phenomenon is referred to as
the ‘‘missing heritability’’ [2,6,7].

Identifying the source of this missing heritability has drawn
much attention from researchers, and progress has been made
towards explaining the apparent discrepancy. The role of a much
greater-than-expected set of common variants (minor allele
frequency (MAF)§0.01) has been shown to be critical in
explaining the phenotypic variance [8]. Instead of only using
genome-wide significant SNPs, Yang et al. [9] reported that, by
using all genotyped common SNPs, 45% of the variance for
human height can be explained. This result suggests that a large
proportion of the heritability is not actually missing: given the
limited sample size, many individual effects of genetic markers are
too weak to pass the genome-wide significance, and thus those
variants remain undiscovered. So far, people have found similar
genetic architectures for many other complex traits [10], such as
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What Fraction of the Polygenic 
Component Contributes to Each Cancer? 

•  13 cancer GWAS 
•  49,492 cases 
•  34,131 controls (often used in > 1 study) 
 

•  Use genotyped SNPs  

•  Explains 10-50% of variability on the liability 
scale 

 



Across Cancer Types 

Sampson - under review 



Shared Heritability from GWAS 
13 Distinct Cancers  

(49,492 cases and 34,131 shared controls) 

Shared factors: 
Some expected 
• Testes & Kidney 
• CLL & DLBCL 
• Bladder & Lung (smoking) 
 Others not… 
•  DLBCL & Osteosarcoma 
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Genetic Predisposition to Breast Cancer 
European Population 
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> Doubled in 
2014….now 100 loci 
60 More with OncoArray 

Explain	
  ~35-­‐40%	
  
excess	
  familial	
  risk	
  

15%	
  +	
  35-­‐40%	
  
>	
  50%	
  FRR	
  



•  Total heritability corresponds to 2-fold sibling relative risk. 
•  GWAS Heritability: ~3000 SNPs explain 1.4 fold sibling relative risk  

2015 Projections 
For General 
Population  
 
 
So far, we explain 
~35-40% familial risk 
 
Change in Absolute Risk 
For Screening  

JuHyun Park 



Projected Distribution of Absolute Lifetime Risk (Age 30-80)  
of Breast Cancer for US Caucasian Women 

 

Average	
  Risk	
  =	
  11.2%	
  
	
  
Full	
  model	
  
	
  Risk	
  at	
  bo_om	
  decile=4.3%	
  
	
  Risk	
  at	
  top	
  decile=	
  23.7%	
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Genome-wide association studies 

Large chromosomal abnormalities, structural variation, aneuploidy in germline DNA 

Unexpected Findings 

Rodriguez-Santiago AJHG 2010 
Jacobs et al Nature Genetics 2012 
Laurie et al Nature Genetics 2012 



Nature	
  Gene*cs	
  44,	
  614–616	
  (2012)	
  doi:10.1038/ng.2311	
  

SomaBc	
  Mosaicism-­‐	
  the	
  Dynamic	
  Genome	
  



Rate of Mosaicism by Chromosome: 
Adjusted for Chromosomal Size 



Combined Sample Detected Events >2Mb 
(N=1,330 events in 127,417 individuals) 

Mosaic Gain 
Mosaic Copy Neutral 
Mosaic Loss 

* Combined GENEVA+TGSI+TGSII, N=127,417 
Mitch Machiela 

AJHG  2015 

Non-Heme Cancers 
Cancer-free Controls 



Breakpoint	
  Analysis	
  of	
  Large	
  Mosaic	
  
Regions	
  

•  688	
  IntersGGal	
  Events	
  
•  543	
  Telomeric	
  Copy	
  Neutral	
  Events	
  

•  Examined	
  	
  
– 200kb	
  Windows	
  	
  
– 500	
  PermutaGon	
  	
  

•  Enrichment	
  of	
  ENCODE	
  elements?	
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  Features	
  around	
  Breakpoint	
  Regions	
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Detectable Mosaicism: 
Tip of the Iceberg? 

Large events detected  
by SNP arrays/aCGH 
 
Detect smaller events 
with new algorithms  
for NGS (NEJM 2014) 
 
“U” shape curve 
Seen in very young & 
aging population 
 
Significance for aging  
diseases 

Xie et al Nat Med 2014 



Current	
  Challenges	
  of	
  Explaining	
  
SuscepGbility	
  

•  Tissue	
  Specificity	
  
•  Tissue	
  of	
  origin	
  
•  Adjacent	
  cells	
  
•  Immunological	
  ModulaGon	
  

•  Example:	
  SelecGve	
  Success	
  of	
  Immune	
  Blockade	
  (PD-­‐1)	
  

•  Timing	
  of	
  Effect	
  

•  InteracGon	
  with	
  environmental	
  sGmuli	
  



Immense	
  Value	
  of	
  ENCODE	
  

ScienCfic	
  	
  

•  Spectacular	
  Resource	
  for	
  
Understanding	
  the	
  FuncGonal	
  
Basis	
  of	
  SuscepGbility	
  
–  PrioriGzaGon	
  of	
  variants	
  

•  Opportunity	
  to	
  Explore	
  Novel	
  
Elements	
  
–  Individual	
  
–  InteracGons	
  

Cultural	
  	
  

•  Team	
  Science	
  
–  Short	
  Term	
  

–  Long	
  Term	
  

•  Establish	
  Thresholds	
  &	
  
Standards	
  
–  Driven	
  by	
  QuesCons	
  at	
  hand	
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