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Complexity of Cancer
Susceptibility
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Cancer Genomics: 4 Spaces

>115 Cancer Syndromes
>25 Moderate Penetrant BRCA1/2
>475 GWAS Loci Lynch Syndrome
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What Happens When There is More
than One Genome?

Challenge of Cancer Genomics




TCGA: Driven by the Numbers

But not yet validated in the laboratory....
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Value of Frequency in Generating Hypotheses

But, further laboratory work is needed... The Cancer Genome Atlas @




Evidence for Heritability of Cancer

1866 Broca observed heritability based
on familial breast cancer

Interim  Twin/Family/Sibling studies...

1969 Li-Fraumeni observed familial
clustering (TP53)

1971 Knudson postulated “two-hit”
nypothesis for retinoblastoma

1991 Positional cloning of a familial
oreast cancer gene (BRCA1)




>115 Genes Mutated in Cancer Susceptibility Syndromes
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TCGA: Lessons Learned from the Data
Survival Analyses

Impact of germline or somatic mutations

BRCA altered cases, N = 103 (33%)
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High Penetrance Mutations & Somatic Alterations

Cancsr
genes with
somatic
driver
mutatons

Nearly 50%
“High Frequency”
Somatic Mutations

Cancer
pradispasition
genes with

mutatbons

Figure 3 | Overlap between somatically mutated cancer genes and cancer
predisposition genes (CPGs). 468 genes with somatic driver mutations in
cancers are recorded in the COSMIC database of which 49 are also included

within the 114 CPGs.

Rahman Nature 2014



Search for Common Variants in
Complex Diseases

Reproducible Technology

SNP Microarray Chip

>5 M genotyped SNPs across genome
>30 M imputed SNPs across genome
High Concordance > 99.5%/assay
‘Markers’ across the genome
Commitment to Mapping

Creates a multiple testing problem




Published Cancer GWAS Etiology Hits: July 2015
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>490 Disease Loci marked by SNPs
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Virtually none are associated with outcomes
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GWAS Signals & Somatic Mutations:
No Strong Correlation
Redundant Pathways- ‘NOT Drivers’

GWAS Genes Permutation Genes

Number of Mutations (per 100 individuals)
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Interpretation:

Correlation does not imply causation

GWAS designs provide no mechanism to distinguish
statistical association from causation

Linkage Indirect.. 0 > [Disease ]
association e henotype
GWAS ", phenotyp
o Direct Direct
| 4 association association
—Haplotype NGS
Typed marker locus Unobserved causal locus _

Balding, Nature Genetics Review 2006



Can we use ENCODE to prioritize SNPs
for follow-up?
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Bladder Cancer GWAS Discovery = Clinical Trial
Target Prostate Stem Cell Antigen (PSCA)
Pl: M Prokunina-Olsson
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Architecture of Genetic Susceptibility of Cancer
Defining Distinct Spaces
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What Fraction of the Polygenic
Component Contributes to Each Cancer?

« 13 cancer GWAS
¢ 49 492 cases
« 34,131 controls (often used in > 1 study)

» Use genotyped SNPs

« Explains 10-50% of variability on the liability
scale



Across Cancer Types

Table 2 Estimates of first-degree familial relative risk from familial registries and GWAS

Cancer

All 1* Degree
Relationships

Sweden
Parent/Child

Sibling

A
Iceland

Utah®

GWAS

Bladder
Breast (ER-)
Endometrium
Esophagus
Glioma
Kidney
Lung
European
Asian
Lymphoma
CLL
DLBCL
Osteosarcoma
Pancreas
Prostate
Stomach
Testes

1.69 (1.33-2.14)
3.02 (2.33-3.92)

1.67 (1.43-1.94)
1.78 (1.33-2.39)

1.70 (1.42-2.05)

8.5 (6.1-11.7)
9.8 (3.1-31.0)

2.75 (2.32-3.25)
1.99 (1.47-2.71)
7.07 (5.34-9.37)

1.53 (1.16-1.99)

2.85 (2.08-3.82)
2.14 (0.77-4.70)

1.52 (1.06-2.11)

1.64 (1.34-2.00)

1.68 (1.16-2.35)
2.71 (2.26-3.22)
1.72 (1.19-2.40)
4.31 (2.05-7.95)

3.30 (1.70-5.78)
3.97 (1.97-7.13)

3.31 (2.08-5.02)
4.52 (2.15-8.35)

2.61 (1.29-4.68)

4.91 (1.28-12.7)
8.82 (3.50-18.3)
8.50 (6.01-11.7)

1.68 (1.39-2.05)

1.86 (1.31-2.62)
2.09 (1.30-3.31)
1.41 (0.74-2.40)
2.30 (1.89-2.80)

2.00 (1.83-2.16)

2.33 (1.83-2.96)
1.89 (1.75-2.01)
1.90 (1.74-2.05)
3.52 (1.18-7.37)

1.8 (1.4-2.3)

1.4 (1.1-1.8)
1.3 (0.2-10.0)
2.3(0.99-4.5)
2.1(1.3-3.5)

2.4 (1.9-3.0)

6.1 (4.75-7.65)

2.1(1.3-3.2)
2.1(1.9-2.2)
2.0 (1.1-3.7)
1.8 (0.4-8.6)

1.37 (1.25-1.50)
1.28 (0.98-1.63)
1.56 (1.25-1.92)
1.63° (1.27-2.05)
1.19 (0.91-1.54)
1.54 (1.07-2.13)

1.42 (1.28-1.57)
1.31° (1.16-1.46)

2.28 (1.86-2.77)
1.40 (1.15-1.68)
12.7 (8.27-19.1)
1.35 (1.12-1.62)
1.51 (1.32-1.72)
1.94° (0.95-3.49)
3.09 (1.41-6.05)

Sampson - under review



Shared Heritability from GWAS

13 Distinct Cancers
(49,492 cases and 34,131 shared controls)

L - Cmelaﬂon. L . Shared factors:
o . l Some expected
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Josh Sampson
+ 280 co-authors




Prediction is difficult,
Especially about the future.

Yogi Berra
Dan Quayle
Niels Bohr



Genetic Predisposition to Breast Cancer

1994 European Population
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AUC for Breast Cancer

2015 Projections - -
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 Total heritability corresponds to 2-fold sibling relative risk.

« GWAS Heritability: ~3000 SNPs explain 1.4 fold sibling relative risk !
JuHyun Park



Projected Distribution of Absolute Lifetime Risk (Age 30-80)
of Breast Cancer for US Caucasian Women
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Predicted Prostate Cancer Risk by
SNP Profile Distribution (76 SNPs)
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/ Unexpected Findings )

Genome-wide association studies

- J

Large chromosomal abnormalities, structural variation, aneuploidy in germline DNA

Log Intensity Ratio (LRR)

40

B-Allele Frequency (BAF)

60 80 100 120 140 160
Chromosome Location (Mbps)

Rodriguez-Santiago AJHG 2010
Jacobs et al Nature Genetics 2012
Laurie et al Nature Genetics 2012



Somatic Mosaicism- the Dynamic Genome

Constitutive Mosaic Mosaic
Normal copy-loss CNV copy-loss CNV UPD




Rate of Mosaicism by Chromosome:
Adjusted for Chromosomal Size

Events per 100,000 Mb
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Combined Sample Detected Events >2Mb
(N=1,330 events in 127,417 individuals)
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AJHG 2015

Mitch Machiela



Breakpoint Analysis of Large Mosaic
Regions

688 Interstitial Events
543 Telomeric Copy Neutral Events

Examined
— 200kb Windows
— 500 Permutation

Enrichment of ENCODE elements?



ENCODE Features around Breakpoint Regions
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Repetitive Elements

ENCODE Features around Breakpoint Regions
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Gene-rich Regions

ENCODE Features around Breakpoint Regions
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ENCODE Features around Breakpoint Regions

Bl Telomeric Copy Neutral
Bl Interstitial Loss
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Detectable Mosaicism:
Tip of the Iceberg?

Large events detected
by SNP arrays/aCGH

Detect smaller events
with new algorithms
for NGS (NEJM 2014)

“U” shape curve
Seen in very young &
aging population

Significance for aging
diseases



Current Challenges of Explaining
Susceptibility
e Tissue Specificity

e Tissue of origin
* Adjacent cells
* Immunological Modulation
* Example: Selective Success of Immune Blockade (PD-1)

* Timing of Effect
* Interaction with environmental stimuli



Immense Value of ENCODE

Scientific Cultural

» Spectacular Resource for  Team Science
Understanding the Functional — Short Term
Basis of Susceptibility — Long Term
— Prioritization of variants e Establish Thresholds &

* Opportunity to Explore Novel Standards
Elements — Driven by Questions at hand
— Individual

— Interactions
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