

U.S.News

THIS DRUG'S

NEW TARGETED MEDICINES PROMISE BREAKTHROUGH CURES

Prescription for Disaster

very year, more than 100,000 people die in the U.S. because they arry "misspelled" ge ineffective Newsweek deadly. Now docto rescribing.

24 October 2003

Pages 517-728 510

Pharmacogenetic Testing in Psychiatry: Not (Quite) Ready for Primetime

Robert H. Howland, MD

Journal of Psychosocial Nursing and Mental Health Services

November 2014 - Volume 52 · Issue 11: 13-16

- COUNTERPOINT -

Pharmacogenetic-Based Initial Dosing of Warfarin: Not Ready for Prime Time

Charles S. Eby1*

Anesthesia and Pharmacogenomics: Not Ready for Prime Time

Keith Candiotti, MD

The age of interindividualize

The NEW ENGLAND JOURNAL of MEDICINE

Pharmacoeconomics. 2006;24(12):1173-7.

Do pharmacogenomic tests provide value to policy makers?

Shih YC, Pusztai L.

EDITORIAL

Pharmacogenomics — Ready for Prime Time?

Susan B. Shurin, M.D., and Elizabeth G. Nabel, M.D.

Clinical reviews in allergy and immunology

Pharmacogenomics and adverse drug reactions: Primetime and not ready for primetime tests

David A. Khan, MD Dallas, Tex

Perspectives

Pharmacogenetics in the Management of Coumarin Anticoagulant Therapy:
The Way Forward or an Expensive Diversion?

Mike Greaves

Zhou, J Pharmacogenom Pharmacoproteomics 2012, 3:5

Pharmacogenomics & Pharmacoproteomics

litorial Onen Access

Is Pharmacogenomics Ready for Prime Time?
Shu-Feng Zhou*

Actionable pharmacogenetic gene/drug pairs have been known for a long time.... use in the clinic still rare

GMX Objectives

- Survey national landscape of research programs in pharmacogenomics implementation
- Review current advances and clinical applications of pharmacogenomics implementation
- Discuss limitations and obstacles in pharmacogenomics clinical implementation
- Identify evidence gaps and studies that are needed to address them
- Design strategies for large-scale evaluation and implementation of pharmacogenomics in clinical care in the U.S.

Session 6: Role of NHGRI and the Genomic Medicine Community in PGx Implementation Research

Moderator: Laura Rodriguez

NIH/NHGRI

1:30 p.m.	Summary and Synthesis	Teri Manolio NIH/NHGRI
		Mary Relling St. Jude Children's Research Hospital
2:30 p.m.	Next Steps	
3:00 p.m.	Meeting Adjourn	

Summary of pre-GMX meeting survey

- Sent to CPIC implementers, eMERGE, ClinGen, IGNITE
- 36/73 (49%) responded
- 64% were university/academic/NIH
- Clinical vs research
 - 58% both clinical and research
 - 27% clinical only
 - 15% research only
- Reactive (51%) vs preemptive (49%)
- Many different genotyping platforms
- 63% have/are/will file for 3rd party reimbursement

Pre-GMX survey: External resources used by implementers

34	Clinical Pharmacogenetics Implementation Consortium (CPIC)
28	PharmGKB
7	IGNITE Spark
6	ClinVar
4	Dutch Pharmacogenetics Working Group
2	FDA
2	St Jude-PG4KDS webpage
2	PGRNSeq
1	Other resources mentioned once:

CDS-KB; BioVU; Medial Package Inserts and analysis of peer-reviewed journal articles; OneOme proprietary that integrates from CPIC, PharmGKB, ClinVar and primary literature; DIGITizE; YouScript; Vanderbilt webpage; Paid consultant from NorthShore in Chicago; TPMT alleles website; U of Illinois Website; CYP alleles website; UGT Alleles website; dbSNP; Medical College of Wisconsin Development lab; CBioportal; COSMIC; PUBMED; MYCANCER GENOME; OMIME EXOME Variant Server; Genetic Testing registry; EMA; SPCs; ACMG guidelines; EU Horizon 2020 Program; NCBI

Pre-GMX survey: Gene/drug pairs implemented

32 30	CYP2C19-clopidogrel SLCO1B1-simvastatin	Others: CYP2C9-phenytoin		
29 28	CYP2C9/VKORC1-warfarin TPMT-thiopurines	CYP2C19-PPIs		
26	CYP2D6-codeine Antidepressants and CYP2C19 &/or CYP2D6	CYP2C19-voriconazole CYP2D6-tramadol x 2		
25		CYP3A5-tacrolimus x 2 Proprietary multi-gene algorithm		
21	DPYD-fluorouracil, capecitabine	applies CYP to other known		
15	UGT1A1 and specific drugs (Irinotecan, belinostat, nilotinib, pazopanib, atazanavir, erlotinib, indacaterol, abacavir)	substrates; NUDT15 and selection of informative genes Somatic variations up to 313 gene drug pairs in cancer treatment IL28B, CYP3A5, CYPB26		
14	IFNL3-ribavarin, peginterferon	CYP2D6-other opiates beyond		
12	HLAB-abacavir	codeine		
11	HLA and other drugs (allopurinol, carbamazepine, phenytoin)	G6PD-rasburicase		
		NGS sequencing for somatic mutations (KRAS, BRAF, ALK, EGFR, ROS1, PD1) for oncology CYP2D6/Ondansetron		

Pre-GMX Survey Challenges/Obstacles

- LACK OF FUNDING, TEST REIMBURSEMENT
- LACK OF INSTITUTIONAL SUPPORT
- CHALLENGES WITH IT/EMR/CDS
- LABORATORY/GENOTYPING TECHNOLOGY
- LACK OF EDUCATION OF CLINICAL STAFF, PTS
- LACK OF CLINICIAN BUY-IN

Sessions addressing each of these issues over the next 1.5 days

Distinctions: research vs implementation

- Pharmacogenetic research
 - Test whether variants are related to phenotypic variation in drug activity or PK (in vitro, pre-clinical)
- Clinical pharmacogenetic research
 - Test whether variants are related to phenotypic variation in drug response in patients
- Clinical pharmacogenetic implementation research
 - Test questions related to processes related to clinical pharmacogenetic implementation (e.g. randomized studies of testing, education, EHR use, payment success, test types, clinician performance/adherence, cost effectiveness, etc)
- Clinical implementation of pharmacogenetics
 - For genetic variants/drugs that are already clinically validated, the "research" is "done" but the implementation still requires resources

The process to go from genotype to prescribing can be complicated

https://cpicpgx.org/guidelines/
https://www.pharmgkb.org/page/cyp2c19RefMaterials

GMX Objectives

- Survey national landscape of research programs in pharmacogenomics implementation
- Review current advances and clinical applications of pharmacogenomics implementation
- Discuss limitations and obstacles in pharmacogenomics clinical implementation
- Identify evidence gaps and studies that are needed to address them
- Design strategies for large-scale evaluation and implementation of pharmacogenomics in clinical care in the U.S.