

Overview of Ongoing Projects: Success Stories and Lessons Learned

Exploiting Pharmacogenetic Discovery to Improve Patient Care: Why Aren't We There Yet?

Dan M. Roden, MD

Professor of Medicine, Pharmacology, and Biomedical Informatics
Senior Vice President for Personalized Medicine
Vanderbilt University Medical Center

The spectrum of pharmacogenetic research

Outline

- Principles of Clinical Pharmacology and PGx
- What have we learned and are learning from warfarin, abacavir, carbamazepine, azathioprine...
- A few implementation thoughts

The general problem of variable drug response

%Δ LDL cholesterol with simvastatin 40 mg

Rare serious adverse drug effects

Hemolytic anemia (antimalarials; more common with African ancestry)

MEDICAL CENTER

African American Pharmacogenomics

US mortality from adverse drug reactions

1998 estimate:

- 2.2 million adverse drug effects in hospitalized patients
- 106,000 deaths, the 4th 6th leading cause of death in the US

Lazarou et al

NAMUH 21 AAJ OT

Building a Safer Health System

Linda T. Kohn, Janet M. Corrigan, and Molla S. Donaldson, *Editors*

Committee on Quality of Health Care in America

INSTITUTE OF MEDICINE

NATIONAL ACADEMY PRESS Washington, D.C.

US mortality from adverse drug reactions

1998 estimate:

- 2.2 million adverse drug effects in hospitalized patients
- 106,000 deaths, the 4th 6th leading cause of death in the US

Lazarou et al

2010: no evidence of change over time

Landrigan et al

NAMUH SI AAJ OT

Building a Safer Health System

Linda T. Kohn, Janet M. Corrigan, and Molla S. Donaldson, Editors

Committee on Quality of Health Care in America

INSTITUTE OF MEDICINE

Washington, D.C.

Daily US mortality from adverse drug reactions

Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients

Munir Pirmohamed, Sally James, Shaun Meakin, Chris Green, Andrew K Scott, Thomas J Walley, Keith Farrar, B Kevin Park, Alasdair M Breckenridge

6.5% of all admissions associated with an ADR

NSAIDs Diuretics	?20	-30% r	nave a	emorrhagic npairment, lectrolyte
Warfarin ACE inhibitors/ All receptor anta	pron	ninent	genetic	k, haematoma lectrolyte tion, GI bleed,
β blockers Opiates		etiolog	ЗУ	sion, wheezing , urinary retention
Digoxin	30 (Z. 9)		Symptomatic toxic digoxin level	s
Prednisolone	31 (2.5)	_	Gastritis, GI bleeding, hyperglyc fracture	aemia, osteoporotio
Clopidogrel	29 (2.4)	_	GI bleeding	

A framework to analyze variable drug actions

Is there a consistent relationship among dose, concentrations, and effects? If not, why not?

Single pathway to bioactivation: High-risk pharmacokinetics

Pro-drug

Poor metabolizer, inhibiting drug

Active metabolite

- encainide
- clopidogrel
- tamoxifen
- codeine

Narrow therapeutic index + Single pathway to elimination: High-risk pharmacokinetics (2)

Multiple gene effect

The warfarin pathway

Mutations in *VKORC1* cause warfarin resistance and multiple coagulation factor deficiency type 2

Simone Rost^{1,2}*, Andreas Fregin¹*, Vytautas Ivaskevicius³, Ernst Conzelmann⁴, Konstanze Hörtnagel², Hans-Joachim Pelz⁵, Knut Lappegard⁶, Erhard Seifried³, Inge Scharrer⁷, Edward G. D. Tuddenham⁸, Clemens R. Müller¹, Tim M. Strom^{2,9} & Johannes Oldenburg^{1,3}

letters to nature

Multiple gene effect

The warfarin pathway

The International Warfarin Pharmacogenomics Consortium

Average weekly warfarin doses for stable INR

CYP2C9 and VKORC1 genotypes vary by ethnicity

Comparing dosing algorithms

For most patients, average dosing is OK

Warfarin: not so simple....

Rare variants in VKORC1 associated with high dose requirements

INR

RCTs comparing genotype-guided vs conventional dosing for warfarin

time in INR range during drug initiation

Kimmel et al, 2013

Pirmohamed et al, 2013

RCTs comparing genotype-guided vs conventional dosing for warfarin

time in INR range during drug initiation

Outcome	Genotype- Guided Group (N=514)	Clinically Guided Group (N=501)	Hazard Ratio (95% CI)*	P Value
	no.	(%)		
Any INR ≥4, major bleeding, or thromboembolism†	105 (20)	103 (21)	1.01 (0.77–1.33)	0.93
Any INR ≥4	100 (19)	92 (18)	1.08 (0.81-1.44)	0.59
Major bleeding:	4 (1)	10 (2)	0.41 (0.13-1.31)	0.13
Thromboembolism	5 (1)	4 (1)	1.27 (0.34-4.73)	0.72
Clinically relevant nonmajor bleeding	13 (3)	20 (4)	0.62 (0.30–1.27)∫	0.18
Death from any cause	2 (<1)	1 (<1)	2.09 (0.19-23.22)	0.55

Kimmel et al, 2013

Bleeding during long-term therapy

- Patient ≥18 years old
- Warfarin or coumadin mentioned in EMR with associated dose within 7 days of admission date
- Admitted after 01/01/2006

Table 4. Genotype and risk of major bleeding.			
Genotype	Simple model, OR (95% CI)	Full model, OR (95% CI)	
VKORC1 rs9923231	0.98 (0.75,1.29)	0.96 (0.72,1.27)	
CYP2C9*2 carrier	0.82 (0.57,1.20)	0.84 (0.57,1.24)	
CYP2C9*3 carrier	1.94 (1.08,3.49)	1.75 (0.95,3.21)	
CYP4F2	0.83 (0.63,1.10)	0.85 (0.64,1.14)	
CYP2C9 *2 +*3 [†]	1 07 (0 77 1 48)	1 02 (0 73 1 43)	

Simple model: Adjusted for age, sex, race, body surface area, log[time on warfarin].

Full model: Adjusted for the same covariates as in the simple model + VKORC1, CYP2C9*2, CYP2C9*3, CYP4F2 genotype, number of warfarin inhibitors, number of warfarin potentiators, use of antiplatelet agents and nonsteroidal anti-inflammatory drugs, previous bleeding without warfarin and atrial fibrillation and venous thromboembolism as indication for warfarin.

 † Additive model where 0 allele = 0, 1 allele = 1 and 2 allele = 2 (e.g., *1/*1 = 0, *1/*2 = 1, *1/*3 = 1, *2/*2 = 2, *2/*3 = 2, *3/*3 = 2). OR: Odds ratio.

Genetics Informatics warfarin Trial (GIFT): what we know

- 1650 patients post hip/knee surgery and receiving warfarin randomized to PGx or conventional guided therapy. INR targets randomized to 1.8 or 2.5 in each group.
- Composite primary outcome: Major bleeding at 30 days, INR≥4 at 30 days, death within 30 days, VTE within 60 days of surgery.
- Genetics beat conventional: 10.8% vs. 14.7%;
 RR = 0.73; 95% CI, 0.56-0.95

Added value of PGx (TPMT) for azathioprine in IBD

- conventional = 378; Intervention = 405
- Intervention: dose adjustment in heterozygous and homozygous variant carriers
- No difference in disease activity across groups

% with hematologic ADR

The Stevens-Johnson syndrome

A terrible adverse drug reaction

The Stevens-Johnson syndrome

A terrible and predictable adverse drug reaction

	Abacavir hypersensitive (n=18)	Abacavir tolerant (n=167)	Odds ratio (95% CI)	p _c
HLA-B*5701	14 (78%)	4 (2%)	117 (29–481)	<0.0001
HLA-DR7, HLA-DQ3	13 (72%)	6 (3%)	73 (20–268)	<0.0001
HLA-B*5701,	13 (72%)	O (0%)	822	<0.0001
HLA-DR7, HLA-DQ3			(43–15 675)	

Mallal et al., Lancet 2002

The Stevens-Johnson syndrome

A terrible and predictable and preventable adverse drug reaction

Hypersensitivity Reaction	Prospective Screening	Control	Odds Ratio (95% CI)*	P Value	
no. of patients/total no. (%)					
Clinically diagnosed					
Total population that could be evaluated	27/803 (3.4)	66/847 (7.8)	0.40 (0.25-0.62)	P<0.001	
White subgroup	24/679 (3.5)	61/718 (8.5)	0.38 (0.23-0.62)	P<0.001	
Immunologically confirmed					
Total population that could be evaluated	0/802	23/842 (2.7)	0.03 (0.00-0.18)	P<0.001	
White subgroup	0/679	22/713 (3.1)	0.03 (0.00-0.19)	P<0.001	

Mallal, Phillips et al., NEJM 2008

Distribution of HLA-B*15:02

Distribution of HLA-A*31:01

The Hong Kong carbamazepine experience after implementing a genetic testing policy

Chen et al., Neurology 2014

- New prescriptions for carbamazepine fell from 16.2% (10,077/62,056) to 2.6% (1,910/74,606) (p < 0.001)
- SJS/TEN related to carbamazepine fell from 0.24% (20/8,284) to 0% (0/1,076; p = 0.027)
- Prescriptions for other antiepileptic drugs increased.
- SJS/TEN induced by phenytoin <u>increased</u> (0.15% [18/11,839] vs 0.26% [33/12,618], p = 0.058)
- Overall incidence of SJS/TEN remained unchanged
 (0.09% [42/45,832] vs 0.07% [39/55,326], p = 0.238).
- Implementation requires education

Implementing pharmacogenetics

VANDERBILT WUNIVERSTE'S my sequence..."

MEDICAL CENTER New Yorker, 2000

Collins: Pharmacogenomics will undoubtedly become a very compelling part of medical practice. The limiting factor right now is that oftentimes, if you are ready to write a prescription, you do not want to wait a week to find out the genotype before you decide whether you've got the right dose

and the right drug. But if every-body's DNA sequence is already in their medical record and it is simply a click of the mouse to found out all the information you need, then there is going to be a much lower barrier to beginning to incorporate that information into drug prescribing. If you have the evidence, it will be hard, I think, to say that this is not a good thing. And once you've got

the sequence, it's not going to be terribly expensive. And it should improve outcomes and reduce adverse events.

Francis Collins, NEJM 9/16/2009

82 year old man on sotalol for paroxysmal AF develops renal failure and torsades

DOSAGE IN RENAL IMPAIRMENT

Adults

Because sotalol is excreted predominantly in urine and its terminal elimination half-life is prolonged in conditions of renal impairment, the dosing interval (time between divided doses) of sotalol should be modified (when creatinine clearance is lower than 60 mL/min) according to the following table.

There is no randomized clinical trial to support this recommendation

Genetic data, prediction, and "actionability"

Hulot et al., 2006

Mega et al., 2009

CYP2C19 genotypes in 13,423 patients in the Vanderbilt PREDICT program

Frequency of actionable genotypes in the first 10,000 PREDICT patients

PG4KDS: Clinical Implementation of

Pharmacogenetics

Original article

Preemptive Genotyping for Personalized Medicine: Design of the Right Drug, Right Dose, Right Time—Using Genomic Data to Individualize Treatment Protocol

Suzette J. Bielinski, PhD, MEd^{a, ▲, ™}, Janet E. Olson, PhD^a, Jyotishman Pathak, PhD^a, Richard M. Weinshilboum, MD^{b, c}, Liewei Wang, MD, PhD^b, Kelly J. Lyke^a, Euijung Ryu, PhD^a,

→ Show more

What do we need?

- Comprehensive biology
- Methods to identify, accumulate, and study outliers
- Accurate tests; functional genomics
- Guidelines on how to use test results

- IT infrastructure
- Data on efficacy of diverse approaches: point of care versus panel/preemptive
- Education
- Medical and economic outcomes
- Engaging multiple partners: patients, payers, users,

