PharmCAT: A Tool for Pharmacogenomics Implementation Marylyn D. Ritchie, PhD Director, Biomedical and Translational Informatics Institute Geisinger Health System May 2, 2017 Geisinger PharmGKB Stanford ## 28 CPIC guideline publications* (including updates) - Genetic information should be used to change prescribing of affected drug - Preponderance of evidence is high or moderate in favor of changing prescribing - At least one moderate or strong action (change in prescribing) recommended # Motivation for PharmCAT To automate the annotation of .vcf files with the appropriate haplotypes or diplotypes from the CPIC guideline genes, and generate a report with the corresponding CPIC guideline prescribing recommendations # Motivation for PharmCAT - #1 95-96% of individuals have one or more genetic variants in important PGx genes ## Genetic Variation Among 82 Pharmacogenes: The PGRNseq Data From the eMERGE Network WS Bush¹, DR Crosslin², A Owusu-Obeng³, J Wallace⁴, B Almoguera⁵, MA Basford⁶, SJ Bielinski⁷, DS Carrell⁸, JJ Connolly⁵, D Crawford¹, KF Doheny⁹, CJ Gallego², AS Gordon², B Keating⁵, J Kirby⁶, T Kitchner¹⁰, S Manzi¹¹, AR Mejia³, V Pan¹², CL Perry¹¹, JF Peterson⁶, CA Prows¹³, J Ralston⁸, SA Scott³, A Scrol⁸, M Smith¹², SC Stallings⁶, T Veldhuizen⁷, W Wolf¹¹, S Volpi¹⁴, K Wiley¹⁴, R Li¹⁴, T Manolio¹⁴, E Bottinger³, MH Brilliant¹⁰, D Carey¹⁵, RL Chisholm¹², CG Chute⁹, JL Haines¹, H Hakonarson⁵, JB Harley¹⁶, IA Holm¹⁷, IJ Kullo⁷, GP Jarvik², EB Larson⁸, CA McCarty¹⁰, MS Williams¹⁵, JC Denny⁶, LJ Rasmussen-Torvik¹², DM Roden⁶ and MD Ritchie¹⁵ The first two authors contributed equally to this work. ¹Case Western Reserve University, Cleveland, Ohio, USA; ²University of Washington, Seattle, Washington, USA; ³Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; ⁴Pennsylvania State University, University Park, Pennsylvania, USA; ⁵Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; ⁶Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ⁷Mayo Clinic, Rochester, Minnesota, USA; ⁸Group Health Research Institute, Seattle, Washington, USA; ⁹Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; ¹⁰Marshfield Clinic, Marshfield, Wisconsin, USA; ¹¹Boston Children's Hospital, Boston, Massachusetts, USA; ¹²Northwestern University Feinberg School of Medicine, Evanston, Illinois, USA; ¹³Children's Hospital Medical Center, Cincinnati, Ohio, USA; ¹⁴National Human Genome Research Institute, Bethesda, Maryland, USA; ¹⁵Geisinger Health System, Danville, Pennsylvania, USA; ¹⁶University of Cincinnati, US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA; ¹⁷Department of Pediatrics, Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston, Massachusetts, USA. Correspondence: MD Ritchie (marylyn.ritchie@psu.edu) Received 6 October 2015; accepted 4 February 2016; advance online publication 00 Month 2016. doi:10.1002/cpt.350 Figure 1 Allelic spectrum of eMERGE-PGx variants. Counts of genomic variants mapping to the canonical transcript of PGRNseq captured genes are plotted by frequency class (over all samples) by gene (x-axis) in ascending order. Gold horizontal lines indicate the size of the canonical transcript in basepairs. The inset line plot is a percentile rank of genic intolerance (RVIS) scores computed using the ExAC dataset. ~96% of the 5000 subjects has one or more variants in CPIC level-A genes Geisinger ## Motivation for PharmCAT - #2 Extracting genomic variants and assigning haplotypes (including star-alleles) from genetic data is challenging # PharmCAT – a Community Effort - Community stake-holders - PGRN, CPIC, ClinGen, eMERGE, P-STAR, PharmGKB - Rules of engagement - MPL 2.0 license - Code posted in github updates need to be contributed - Several collaborative meetings - Meeting 1 March, 2016: think tank - Meeting 2 April, 2016: Hackathon for programmers - Meeting 3 May, 2016: dissemination, future planning - Meeting 4 January, 2017: evaluation, coding, planning # PharmCAT Workflow ## **CPIC** Guidelines ## PharmCAT version 1 - These genes are in process for release in PharmCAT version 1.0 - CFTR, CYP2C19, CYP2C9, CYP2D6, CYP3A5, CYP4F2, DPYD, IFNL3, SLCO1B1, TPMT, UGT1A1, VKORC1 - These genes are more difficult and require more work: G6PD, HLA-B, CYP2D6* - CYP2D6 haplotype calls are coming from Astrolabe - Integrated into PharmCAT - Will require user license to Astrolabe - JSON calls join Data Reporter for PharmCAT report # CPIC Haplotype Table – *CYP2C19* example | GENE: CYP2C19 | 5/27/16 | | | | | | | | | | | | | | | | |----------------|--|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------| | | Nucleotide change to
gene from
http://www.cypalleles.
ki.se/cyp2c19.htm | -2030C>T | -2020C>A | -1439T>C | -1041G>A | -806C>T | -13G>A | 1A>G | 7C>T | 10T>C | 50T>C | 55A>C | 83A>T | 151A>G | 12401C>T | 12416C | | | Effect on protein
(NP_000760.1) | 5' region | M1V | P3S | F4L | L17P | I19L | K28I | S51G | R73C | H78Y | | | Position at
NC_000010.11 (Homo
sapiens chromosome
10, GRCh38.p2) | g.94760676C
>T | g.94760686C
>A | g.94761267T
>C | g.94761665
G>A | g.94761900C
>T | g.94762693
G>A | g.94762706A
>G | g.94762712C
>T | g.94762715T
>C | g.94762755T
>C | g.94762760
A>C | g.94762788
A>T | g.94762856
A>G | g.94775106C>
T | g.9477512
T | | | Position at
NG_008384.2
(CYP2C19 RefSeqGene;
forward relative to
chromosome) | g.2971C>T | g.2981C>A | g.3562T>C | g.3960G>A | g.4195C>T | g.4988G>A | g.5001A>G | g.5007C>T | g.5010T>C | g.5050T>C | g.5055A>C | g.5083A>T | g.5151A>G | g.17401C>T | g.17416C | | | rsID | rs113164681 | rs111490789 | rs17878739 | rs7902257 | rs12248560 | rs367543001 | rs28399504 | rs367543002 | rs367543003 | rs55752064 | rs17882687 | | | rs145328984 | | | CYP2C19 Allele | Allele Functional
Status | | | | | | | | | | | | | | | | | *1 | Normal function | С | С | Т | G | С | G | Α | С | Т | Т | Α | Α | Α | С | С | | *2 | No function | | | | | | | | | | | | | | | | | *3 | No function | | | | | | | | | | | | | | | | | *4A | No function | | | | | | | G | | | | | | | | | | *4B | No function | | | | | T | | G | | | | | | | | | | *5 | No function | | | | | | | | | | | | | | | | | *6 | No function | | | | | | | | | | | | | | | | | *7 | No function | | | | | | | | | | | | | | | | | *8 | No function | | | | | | | | | | | | | | | | | *9 | Decreased function | | | | | | | | | | | | | | | | | *10 | Decreased function | | | | | | | | | | | | | | | | | *11 | Normal function | | | | | | | | | | | | | | | | | *12 | Unknown function | | | | | | | | | | | | | | | | | *13 | Normal function | | | | | | | | | | | | | | | | | *14 | Unknown function | | | | | | | | | | С | | | | | | | *15 | Normal function | | | | | | | | | | | С | | | | | | *16 | Decreased function | | | | | _ | | | | | | | | | | | | *17 | Increased function | | | | | T | | | | | | | | | | - | | *18 | Normal function | - | | | | | | | | | | | | | | | | *19 | Decreased function | | | | | | | | | | | | | G | | | | *22 | No function | | | | | | | | | | | | | | | | # CPIC Guideline – *CYP2C19* example ### CPIC Guideline for sertraline and CYP2C19 The CPIC Dosing Guideline for the selective serotonin reuptake inhibitor sertraline recommends to consider a 50% reduction of recommended starting dose and titrate to response or select alternative drug not predominantly metabolized by CYP2C19 for CYP2C19 poor metabolizers. ### Annotations for CYP2C19:*1/*2 | Туре | Annotation | |-------------------------------------|--| | Implications | Reduced metabolism when compared to extensive metabolizers. | | Metabolizer Status | Intermediate metabolizer (~18-45% of patients) | | Phenotype
(Genotype) | An individual carrying one normal function allele or one increased function allele and one no function allele. The predicted metabolizer phenotype for the*2/*17 genotypes is a provisional classification. The currently available evidence indicates that the CYP2C19*17 increased function allele is unable to completely compensate for the no function CYP2C19*2. | | Recommendations | Initiate therapy with recommended starting dose. | | Classification of
Recommendation | Strong | ## For full guideline see https://cpicpgx.org # Haplotyper- CYP2C19 example | CYP2C | 19 |-----------------|-------------|-------------|--------------|-----------|------------|-------------|------------|-------------|-------------|-------------|------------|------------|----------|-------------|----------|-------------|----------|------------|------------|------------|------------|-----| | • *1/*2 | Definition | 94760676 | 94760686 | 94761267 | 94761665 | 94761900 | 94762693 | 94762706 | 94762712 | 94762715 | 94762755 | 94762760 | 94762788 | 94762856 | 94775106 | 94775121 | 94775160 | 94775185 | 94775367 | 94775416 | 94775453 | 94775489 | 94 | | Position | | 2110000 | J.,, C., 20, | 2 | | | | | | J.,, 02, 00 | 7.1.02.00 | J., 02, 00 | 21,02000 | | | | | | | | | - | | | rs113164681 | rs111490789 | rs17878739 | rs7902257 | rs12248560 | rs367543001 | rs28399504 | rs367543002 | rs367543003 | rs55752064 | rs17882687 | • | | rs145328984 | | rs118203756 | | rs12769205 | rs41291556 | rs72552267 | rs17884712 | rs5 | | VCF
Position | 94760676 | 94760686 | 94761267 | 94761665 | 94761900 | 94762693 | 94762706 | 94762712 | 94762715 | 94762755 | 94762760 | 94762788 | 94762856 | 94775106 | 94775121 | 94775160 | 94775185 | 94775367 | 94775416 | 94775453 | 94775489 | 94 | | VCF
REF,ALTs | С | С | т | G | С | G | Α | С | т | т | Α | Α | A | С | С | G | Α | Α | т | G | G | | | VCF Call | clc | clc | тјт | GIG | clc | G G | AIA | c c | TĮT | TĮT | A A | AIA | AJA | c c | clc | G G | A A | AJA | TIT | G G | G G | | | *1 | С | С | т | G | С | G | Α | С | т | т | Α | Α | Α | С | С | G | Α | Α | т | G | G | | | | С | С | T | G | С | G | Α | С | T | T | Α | Α | Α | С | C | G | Α | Α | Т | G | G | | | *2 | С | С | т | G | С | G | Α | С | т | т | Α | Α | Α | С | С | G | Α | [AG] | т | G | G | - PharmCAT takes the .vcf and the CPIC tables into the Haplotyper - Combines with the CPIC guidelines to generate reports - Intermediate - Final ## Intermediate report – *CYP2C19* example Gene: CYP2C19 **Matching Allele Call** All variant positions present so all haplotypes considered in analysis. Diplotype call: CYP2C19:*1/*2 Warnings (none) **Calls at Positions** | Position | RSID | Call | |----------|-------------|------| | 94760676 | rs113164681 | C C | | 94760686 | rs111490789 | C C | | 94761267 | rs17878739 | T T | | 94761665 | rs7902257 | G G | | 94761900 | rs12248560 | C C | | 94762693 | rs367543001 | G G | | 94762706 | rs28399504 | A A | | 94762712 | rs367543002 | C C | | 94762715 | rs367543003 | T T | | 94762755 | rs55752064 | T T | | 94762760 | rs17882687 | A A | | 94762788 | None | A A | | 94762856 | None | A A | | 94775106 | rs145328984 | C C | | 94775121 | None | C C | | 94775160 | rs118203756 | G G | | 94775185 | None | A A | | 94775367 | rs12769205 | A A | | 94775416 | rs41291556 | T T | | 94775453 | rs72552267 | G G | | 94775489 | rs17884712 | G G | | 94775507 | rs58973490 | G G | | 94780574 | rs140278421 | G G | | 94780579 | rs370803989 | G G | | 94780653 | rs4986893 | G G | | 94781858 | rs6413438 | CIC | - Generates genotype calls at every relevant position - Includes missing data calls/no calls # PharmCAT report example ## PharmCAT Report [test.cftr.reg_inc] ### Sections - Diplotype / Genotype Summary - II. CPIC Recommendations - III. Allele Call Details - IV. Disclaimers ### Diplotype / Genotype Summary Genotypes called: 12 / 12 | Drugs <u>a</u> | Gene | Diplotype or Genotype | Allele Functionality b | Phenotype <u>b</u> | Uncallable
Alleles ^C | |---|-----------------|-----------------------|--------------------------------|--------------------|------------------------------------| | ivacaftor | CFTR | F508del(TCT)/G542X | N/A | N/A | yes | | amitriptyline escitalopram citalopram clomipramine clopidogrel doxepin imipramine sertraline trimipramine voriconazole | <u>CYP2C19</u> | *2/*2 | Two no function alleles | Poor Metabolizer | no | | phenytoin
warfarin | CYP2C9 | *2 *3 | Two decreased function alleles | Poor Metabolizer | по | | amitriptyline clomipramine codeine desipramine doxepin fluvoxamine imipramine nortriptyline ondansetron paroxetine trimipramine tropisetron | <u>сүргде</u> † | *3/*4 | Two no function alleles | Poor Metabolizer | по | ## PharmCAT Report [test.cftr.reg_inc] #### Sections - I. Diplotype / Genotype Summary - II. CPIC Recommendations - III. Allele Call Details - IV. Disclaimers ### Diplotype / Genotype Summary Genotypes called: 12 / 12 | ⁸ The drugs highlighted in red indicate a CPIC recommendation prescribing change based on the person's listed diplotype/genotype | |--| | (highlighting is not based on CPIC strength of recommendation). See CPIC recommendation section for the classification of the | | recommendation and further details. Please note, warfarin and peginterferon alpha/ribavirin are highlighted in blue, see CPIC recommendation | | section for specific prescribing information. The drug is highlighted when multiple diplotypes are presented if any is assocated with a | | prescribing change. Please see recommendation section for detailed information. | b Allele functionality and phenotype terms are based on the CPIC term standardization project, PMID:27441996. Guidelines published prior use the term 'extensive' instead of 'normal' metabolizer. CYP2C19*1/*17 is now classified as rapid metabolizer. Guidelines published prior grouped CYP2C19*1/*17 together with *17/*17 as ultrarapid metabolizer. For a full list of disclaimers and limitations see the Disclaimer section. | Drugs <u>a</u> | Gene | Diplotype or Genotype | Allele Functionality b | Phenotype ^b | Uncallable
Alleles ^C | |---|----------------------------|-------------------------|---|--------------------------|------------------------------------| | tacrolimus | <u>CYP3A5</u> † | *1/*7 | One normal function
allele and one no
function allele | Intermediate Metabolizer | по | | <u>warfarin</u> | CYP4F2 | *1/*1 | Two normal function alleles | N/A | по | | capecitabine
fluorouracil
tegafur | <u>DPYD</u> | *1/*1 | Two normal function alleles | Normal Metabolizer | yes | | peginterferon alfa-2a
peginterferon alfa-2b
ribavirin | IFNL3 [†] | rs12979860C/rs12979860C | N/A | N/A | по | | simvastatin | SLCO1B1 [†] | rs4149056CC | Two decreased function alleles | Poor Function | по | | azathioprine
mercaptopurine
thioguanine | <u>TPMT</u> † | *1/*1 | Two normal function alleles | Normal Metabolizer | по | | atazanavir | <u>UGT1A1</u> [†] | *1/*1 | Two normal function alleles | Normal Metabolizer | по | | warfarin | VKORC1 [†] | -1639A/-1639A | N/A | N/A | по | ^C Indicates alleles not considered for the diplotype calls due to missing variant information, please see Allele calls section. Alleles that could not be considered due to missing input might change the metabolizer phenotype and possible CPIC recommendation. [†] Check the allele call details for this gene for more details about this call. # Summary - PharmCAT is a Pharmacogenomics Clinical Annotation Tool - Developed to automate the .vcf → haplotype → CPIC guideline process - PharmCAT version 1.0 is in testing - Goal to release very soon for community feedback - PharmCAT reports can then be adapted for local implementation into EHR or patient/provider reports # Acknowledgements - Teri Klein, Stanford, PharmGKB - Michelle Whirl-Carrillo, Stanford, PharmGKB - Ryan Whaley, Stanford, PharmGKB - Lester Carter, PharmGKB - Katrin Sangkuhl, PharmGKB - PGRN participants - ClinGen participants - CPIC participants - P-STAR participants PharmCAT team: T.E. Klein, M. Whirl-Carrillo, R.M. Whaley, M. Woon, K. Sangkuhl, L.G. Carter, H.M. Dunnenberger, P.E. Empey, A.T. Frase, R.R. Freimuth, A. Gaedigk, A. Gordon, C. Haidar, J.K. Hicks, J.M. Hoffman, M.T. Lee, N. Miller, S.D. Mooney, T.N. Person, J.F. Peterson, M.V. Relling, S.A. Scott, G. Twist, A. Verma, M.S. Williams, C. Wu, W. Yang, M.D. Ritchie