ClinGen and ClinVar: Complementary Resources

Erin Rooney Riggs, MS, CGC
Geisinger
ClinGen Co-Investigator
eriggs@geisinger.edu

ClinGen and ClinVar: What's the Difference?

- ClinGen and ClinVar work together to provide complementary resources to support genomic interpretation
- ClinVar is a DATABASE funded by intramural NIH funding and maintained by the NCBI
 - Goal: Public archive of [any] reports of the relationships between [any] variants and [any] conditions
- ClinGen is a PROGRAM funded by NHGRI
 - Goal: Identifying clinically relevant genes and variants for use in precision medicine and research

What is ClinVar?

- Public archive of variant-phenotype assertions, submitted from a variety of sources, including:
 - Clinical laboratories
 - Research projects
 - Expert panels
 - Other databases, etc.
- Different from dbSNP, dbVar, which primarily maintain information about locations, types of variants

What does ClinVar DO?

ACTGATGGTATGGGGCCAAGAGATATATCT
CAGGTACGGCTGTCATCACTTAGACCTCAC
CAGGGCTGGGCATAAAAGTCAGGGCAGAGC
CCATGGTGCATCTGACTCCTGAGGAGAAGT
GCAGGTTGGTATCAAGGTTACAAGACAGGT
GGCACTGACTCTCTCTGCCTATTGGTCTAT

ClinVar

ClinVar aggregates information about genomic variation and its relationship to human health.

- Facilitates the evaluation of variant-phenotype assertions by:
 - Archiving submitted interpretations of gene-disease relationships
 - Aggregating data from multiple submitters
 - Determine if there is a consensus about the interpretation

ClinVar DOES NOT interpret variants!

What's currently in ClinVar?

Category of analysis	Current total (Aug 13, 2018)
Records submitted	700611
Records with assertion criteria	566125
Records with an interpretation	683254
Total genes represented	30190
Unique variation records	441973
Unique variation records with interpretations	431693
Unique variation records with assertion criteria	369351
Unique variation records with practice guidelines (4 stars)	23
Unique variation records from expert panels (3 stars)	10423
Unique variation records with assertion criteria, multiple submitters, and no conflicts (2 stars)	60340
Unique variation records with assertion criteria (1 star)	280110
Unique variation records with assertion criteria and a conflict (1 star)	18455
Unique variation records with conflicting interpretations	18608
Genes with variants specific to one gene	6053
Genes with variants specific to one protein-coding gene	5942
Genes included in a variant spanning more than one gene	30153
Variants affecting overlapping genes	13913
Total submitters	1021

ClinVar is a submitter-driven resource

• There are many pieces of information that ClinVar CAN collect on a variant, but if a submitter does not submit them, they aren't available.

Quality of submissions vary

 When assessing the information you find in ClinVar, you must assess the quality of the submitter/submission itself

Assessing Quality in ClinVar

- IN GENERAL, one mark of a submission's quality is it's review level – at minimum, you should be able to figure out the methods by which the variant was evaluated
- These are known as "assertion criteria"
- When a submitter provides assertion criteria, the submission receives at least 1 star

https://www.clinicalgenome.org/lablist/

Search our Knowledge Base for genes and diseases...

Q)

About ClinGen

Working Groups & Expert Panels

Resources & Tools

GenomeConnect

Share Your Data

Curation Activities

Clinical Laboratories Meeting Minimum Requirements for Data Sharing to Support Quality Assurance

ClinGen considers the sharing of variant interpretations essential for supporting genomic medicine and a critical part of quality assurance for accurate genetic and genomic testing. Open and transparent sharing allows peer-review and knowledge dissemination to ensure the highest quality care of patients.

Here, we identify clinical laboratories who meet a minimum standard of data sharing:

- Laboratory submissions are registered in ClinVar as 'Single Submitter, Assertion criteria provided' (single star)
- . Laboratory registered in the Genetic Test Registry (GTR) with up-to-date yearly review
- · Laboratory submits at least once per year adding new variants and updating reclassified variants as necessary
- Laboratory submits all categories of variants returned to patients (labs are also encouraged to share B/LB/VUS variants even if not returned)
- Laboratory has attested to submitting at least 75% of all sequence and/or copy number variants reported in the past year
- · Laboratory has submitted at least 100 variants
- · Laboratory is CLIA certified laboratory (USA) or meets an equivalent standard in another country

To apply for status, or to update your status, laboratories can apply here.

Questions about the criteria? Visit our Frequently Asked Questions or contact clingen@clinicalgenome.org.

Frequently Asked Questions

https://www.clinicalgenome.org/lablist/

		Additional Achievements				Additional Achievements					
Laboratory	Meets requirements	Submitted evidence ¹	>75% from past 5 years ²	Discrepancy resolution ³	Consenting mechanism ⁴	Laboratory	Meets requirements	Submitted evidence ¹	>75% from past 5 years ²	Discrepancy resolution ³	Consenting mechanism ⁴
Ambry	•				©	GeneDx	•				
ARUP	Ø			©		GeneKor MSA	Ø				©
Athena Diagnostics Inc.	Ø					Illumina	•				
Centre for Mendelian Genomics, University Medical Centre Ljubljana	Ø		*	*		Integrated Genetics/Laboratory Corporation of America	•				
Center for Pediatric Genomic Medicine, Children's	0		©	©		Invitae	•				
Mercy Hospital and Clinics Color Genomics, Inc.	2		<u> </u>	<u> </u>	***	Partners Laboratory for Molecular Medicine	•			©	
Counsyl	0			©	©	Phosphorus Diagnostics LLC	•				
EGL Genetics (Emory)			*	©		Quest Diagnostics Nichols Institute San Juan Capistrano	•			©	
	•			7		University of Chicago	•		©	©	**

What is the Clinical Genome Resource (ClinGen)?

ClinGen's Curation Efforts

Which variants in a gene actually cause disease?

- Several different efforts going on in this space
 - Addressing existing classification disagreements: Inter-laboratory discrepancy resolution
 - Sequence and copy number variants
 - Preventing future classification disagreements: Modifications of the current ACMG/AMP sequence variant guidelines (Sequence Variant Interpretation WG)
 - General/quantitative specifications of current guidelines
 - Disease-specific modifications

\longrightarrow	Unique variation records with conflicting interpretations	18608
→	Unique variation records from expert panels (3 stars)	10423

Discrepancy Resolution Efforts

Genetics in Medicine

Original Research Article | Published: 16 March 2017

Clinical laboratories collaborate to resolve differences in variant interpretations submitted to ClinVar

Steven M. Harrison PhD M, Jill S. Dolinsky MS, Amy E. Knight Johnson MS, Tina Pesaran MA, MS, Danielle R. Azzariti MS, Sherri Bale PhD, Elizabeth C. Chao MD, Soma Das PhD, Lisa Vincent PhD & Heidi L. Rehm PhD

Resolved 87.2% of discordant sequence variant classifications between participating labs

RESEARCH ARTICLE

Copy number variant discrepancy resolution using the ClinGen dosage sensitivity map results in updated clinical interpretations in ClinVar

Erin R. Riggs X, Tristan Nelson, Andrew Merz, Todd Ackley, Brian Bunke, Christin D. Collins, Morag N. Collinson, Yao-Shan Fan, McKinsey L. Goodenberger, Denae M. Golden, Linda Haglund-Hazy, Danijela Krgovic, Allen N. Lamb, Zoe Lewis, Guang Li, Yajuan Liu, Jeanne Meck, Whitney Neufeld-Kaiser, Cassandra K. Runke, Jennifer N. Sanmann, Dimitri J. Stavropoulos, Emma Strong, Meng Su, Marwan K. Tayeh, Nadja Kokalj Vokac, Erik C. Thorland, Erica Andersen, Christa L. Martin, ... See fewer authors

Updated classifications for 63.8% of CNVs evaluated overlapping dosage sensitive genes

	Ber	nign	Pathogenic					
	Strong	Supporting	Supporting	Moderate	Strong	Very Strong		
	MAF is too high for disorder &AL/WSI OR observation in controls inconsistent with disease penetrance SSZ			Whent is population databases PM2	Prevalence in affecteds statistically increased over controls PSF			
Computational And Predictive Data		Multiple lines of compatational evidence suggest no impact dMI Missense when only truncating case disease dMI Silent wishers with non predicted splice impact dMI terfame indels in repeat w/fort incompliancing dMI w/fort incompliancing dMI w/fort incompliancing dMI and missense indels in repeat w/fort incompliancing dMI and missense indels in repeat w/fort incompliancing dMI and missense indels in repeat w/fort incompliancing dMI and missense missense services and missense missense and missense and and and and and and and and	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different, pathogenic missense change has been seen before PMS Poolein length changing variant PMM	Same amino acid change as an established pathogenic variant PS2	Predicted null variant in a gene where LOF is a known mechanism of disease PVS2		
Functional Data	Well-established functional studies show no deleterious effect 853		Minome ingene with low rate of benign minome variants and path, minomes common PP2	Mutational hot spot or well-studied functional domain without benign variation /Mz	Well-established functional studies show a deleterious effect PS3			
Segregation Outs	Non-segregation with disease 854		Co-segregation with disease in multiple affected family members PPZ	increased segregation da	· · ·			
De novo Cuta				Be novo (without paternity & maternity conformed) PMG	De novo (paternity & maternity confirmed PS2			
Allelic Date		Observed in trans with a dominant variant 8P2 Observed in cis with a pathogenic variant, 8P2		For recessive disorders, detected in Issus with a pathogenic variant FMES				
Other Outabase		Reputable source w/out shared data = benign 696	Reputable source = pathogenic APS					
Other Data		Found in case with an alternate cause BPS	Patient's phenotype or Tithighly specific for gene AP4					

ACMG/AMP Guidelines

Cardiovascular

Neurodevelopmental Disorders

Hereditary Cancer

Metabolism

RASopathies, etc.

Gene/Disease Specific ACMG Guidelines

Harmonize recommendations for modifying ACMG guidelines

General recommendations to ACMG Guidelines

ClinGen's Curation Efforts

Does this gene, when significantly altered, cause this disease?

- Defines the criteria needed to assess (genetic evidence, gene-level experimental evidence)
- Describes the strength evidence supporting a gene-disease relationship in a semi-quantitative manner
- Allows users to methodically classify the validity of a given genedisease pair

The American Journal of Human Genetics 100, 895–906, June 1, 2017 895

ARTICLE

Evaluating the Clinical Validity of Gene-Disease Associations: An Evidence-Based Framework Developed by the Clinical Genome Resource

Natasha T. Strande, 1,14 Erin Rooney Riggs, 2,14 Adam H. Buchanan, 3 Ozge Ceyhan-Birsoy, 4,5,6,7 Marina DiStefano, 4 Selina S. Dwight, 8 Jenny Goldstein, 1 Rajarshi Ghosh, 9 Bryce A. Seifert, 1 Tam P. Sneddon, 8 Matt W. Wright, 8 Laura V. Milko, 1 J. Michael Cherry, 8 Monica A. Giovanni, 3 Michael F. Murray, 3 Julianne M. O'Daniel, 1 Erin M. Ramos, 10 Avni B. Santani, 11,12 Alan F. Scott, 13 Sharon E. Plon, 9 Heidi L. Rehm, 4,5,6,7 Christa L. Martin, 2,3,* and Jonathan S. Berg^{1,*}

Definitive

Role has been repeatedly demonstrated in research & clinical diagnostic settings

• Upheld over time (in general, at least 3 years) • No convincing contradictory evidence

Strong

≥2 independent studies with: • Multiple pathogenic variants in unrelated probands

• AND • Several different types of supporting experimental data • OR • Excess of pathogenic variants in cases vs. controls • No convincing contradictory evidence

Moderate

Several unrelated probands with pathogenic variants • Some supporting experimental data • No convincing contradictory evidence

Limited

<3 unrelated probands with pathogenic variants • OR • Multiple variants reported in unrelated probands but *without* sufficient evidence for pathogenicity • No convincing contradictory evidence

No Evidence Reported

No evidence reported for a causal role in disease (candidate genes, etc.), therefore no pathogenic variants have been identified in humans to date.

Conflicting Evidence Reported

Disputed

Convincing evidence disputing a role for this gene in this disease has arisen • Disputing evidence need not outweigh existing evidence supporting the gene: disease association

Refuted

Evidence refuting the role of the gene in the specified disease has been reported and significantly outweighs any evidence supporting the role • Applied at the discretion of clinical domain experts after thorough review of available evidence

Using Gene-Disease Validity in Clinical Practice

- Laboratory: test design
- Clinician: Test ordering which panel to choose?
 - May consider ordering only panels with established genes
 - Bigger is not always better!
- Clinician: Result interpretation dealing with results in genes of uncertain significance

ClinGen's Curation Efforts

Is a gene or genomic region dosage sensitive?

- Originally created in 2011 as a resource to assist in the interpretation of copy number variants (ISCA, ICCG, ClinGen)
- Evidence-based process to assess genes and regions for dosage sensitivity
 - Haploinsufficiency
 - Triplosensitivity
- Goal: to create a genome-wide dosage sensitivity map

Towards an evidence-based process for the clinical interpretation of copy number variation

Riggs ER, Church DM, Hanson K, Horner VL, Kaminsky EB, Kuhn RM, Wain KE, Williams ES, Aradhya S, Kearney HM, Ledbetter DH, South ST, Thorland EC, Martin CL. Towards an evidence-based process for the clinical interpretation of copy number variation.

Clin Genet 2012: 81: 403–412. © John Wiley & Sons A/S, 2011

The evidence-based review (EBR) process has been widely used to develop standards for medical decision-making and to explore complex

ER Riggs^a, DM Church^b, K Hanson^{c*}, VL Horner^a, EB Kaminsky^a, RM Kuhn^d, KE Wain^e, ES Williams^a, S Aradhya^f, HM Kearney^g, DH Ledbetter^h, ST Southⁱ, EC Thorland^g and CL Martin^{a,*}

Save ufficient Evidence

- At least 3 independent loss of function mutations or duplications in unrelated individuals with a similar phenotype and ONE of the following:
 - . Mutations are found in at least 2 separate publications, OR
 - Mutations are found in a single publication, but supporting secondary evidence is present
- . Role of mutations in normal populations must be understood
 - . Mutations are not observed in normal populations, OR
 - · Associations between phenotype an incomplete penetrance and/or variable expressivity are well documented

Potential Clinical Interpretation: Pathogenic

2: Emerging Evidence

- Two independent loss of function mutations or duplications in unrelated individuals with a similar phenotype OR
- . More than 2 mutations as described above, but the mutations are either:
 - Inherited from normal parents, and the spectrum of incomplete penetrance/variable expressivity is not understood, OR
 - . Not significantly enriched in clinical populations when compared to controls

OR

 Observed amongst clinical populations at a statistically significant level in more than one large-scale case control series, without a well-described phenotypic association

Potential Clinical Interpretation: Uncertain, Likely Pathogenic OR Uncertain

1: Little Evidence

- A single loss of function mutation or duplication in an individual with a clinical phenotype
- Observed amongst clinical populations at a statistically significant level in a single large-scale case-control series, without a well-described phenotypic association

OB

· Only secondary evidence available to support possible dosage sensitivity

Potential Clinical Interpretation: Uncertain

0: No Evidence

· No loss of function mutations or duplications reported in probands with a clinical phenotype

Potential Clinical Interpretation: Uncertain OR Uncertain, Likely Benign

Dosage Sensitivity is Unlikely

Only evidence refuting the region's dosage sensitivity (e.g., significant observation in normal population, etc.) has been reported

Potential Clinical Interpretation: Uncertain, Likely Benign OR Benign

Using Dosage Sensitivity in Clinical Practice

- Interpreting copy number variants
 - Which genes in the deleted/duplicated region are dosage sensitive?
- Beyond copy number variants...
 - Which diseases are potentially caused by LOF mechanism?

ClinGen's Curation Efforts

Which genes, when significantly altered, confer a high risk of serious disease that could be prevented or mitigated if the risk were known?

Genet Med. 2016 Dec; 18(12): 1258-1268.

Published online 2016 Apr 28. doi: 10.1038/gim.2016.40

A standardized, evidence-based protocol to assess clinical actionability of genetic disorders associated with genomic variation

PMCID: PMC5085884

NIHMSID: NIHMS769803

<u>Jessica Ezzell Hunter</u>, MS, PhD, ^{1,*} <u>Stephanie A. Irving</u>, MHS, ¹ <u>Leslie G. Biesecker</u>, MD, ² <u>Adam Buchanan</u>, MS, MPH, ³ <u>Brian Jensen</u>, MD, ⁴ <u>Kristy Lee</u>, MS, ⁵ <u>Christa Lese Martin</u>, PhD, ⁶ <u>Laura Milko</u>, PhD, ⁵ <u>Kristin Muessig</u>, MS, ¹ <u>Annie D. Niehaus</u>, BA, ⁷ <u>Julianne O'Daniel</u>, MS, ⁵ <u>Margaret A. Piper</u>, PhD, MPH, ¹ <u>Erin M. Ramos</u>, MPH, PhD, ⁷ <u>Sheri D. Schully</u>, PhD, ⁸ <u>Alan F. Scott</u>, PhD, ⁹ <u>Anne Slavotinek</u>, MBBS, PhD, ¹⁰ <u>Nara Sobreira</u>, MD, PhD, ⁹ <u>Natasha Strande</u>, PhD, ⁵ <u>Meredith Weaver</u>, ScM, PhD, ¹¹ <u>Elizabeth M. Webber</u>, MS, ¹ <u>Marc S. Williams</u>, MD, ³ <u>Jonathan S. Berg</u>, MD, PhD, ⁵ <u>James P. Evans</u>, MD, PhD, ⁵ <u>Katrina A.B. Goddard</u>, PhD, ¹ and ; on behalf of the ClinGen Resource

Domain	Scores			
Severity: what is the nature of the threat to health to an individual carrying a clearly deleterious allele in this gene?	3 = Reasonable possibility of sudden death 2 = Reasonable possibility of death or major morbidity 1 = Modest morbidity 0 = Minimal or no morbidity			
Likelihood of disease: what is the chance that a serious outcome will	3 = >40% chance			
materialize given a deleterious variant (akin to penetrance)?	2 = 5-39% chance			
	1 = 1-4% chance			
	0 = <1% chance			
Effectiveness of specific interventions: how effective is the selected, specific	3 = Highly effective			
intervention for preventing or significantly diminishing the risk of harm?	2 = Moderately effective			
	1 = Minimally effective			
	0 = Controversial or unknown effectiveness			
	IN = Ineffective/no intervention ^a			
Nature of intervention: how risky, medically burdensome, or intensive is a	3 = Low risk, or medically acceptable and low-intensity interventions			
given intervention?	2 = Moderate risk, moderately acceptable or intensive interventions			
	1 = Greater risk, less acceptable and substantial interventions			
	0 = High risk, poorly acceptable or intensive interventions			
State of the knowledge base: what is the level of evidence?	A = Substantial evidence, or evidence from a high tier (tier 1)			
	B = Moderate evidence, or evidence from a moderate tier (tier 2)			
	C = Minimal evidence, or evidence from a lower tier (tier 3 or 4)			
	D = Poor evidence, or evidence not provided in the report			
	E = Evidence based on expert contributions (tier 5)			

^{*}Do not score the remaining categories.

Using Clinical Actionability in Clinical Practice

- May help guide return of secondary or incidental findings
- Actionability reports provide a comprehensive overview of clinical features, natural history, and management recommendations based on published guidelines

Acknowledgements

- ClinGen PIs and working group members
 - >570 individuals from >230 institutions worldwide
 - Funding: NIH/NHGRI U41HG006834, U41HG009649, U41HG009650
- ClinVar staff
 - Team lead: Melissa Landrum
- Questions?
 - eriggs@geisinger.edu
 - clingen@clinicalgenome.org