Phenotype mining in electronic health records

Genomic Medicine XI - September 5th, 2018

MEDICAL CENTER

Patient #1: Diagnosed with cystic fibrosis

- Bronchiectasis
- Pancreatitis **CFTR ΔF508/ΔF508**
- Asthma

edge

Variant know

Diagnosed patients

Undiagnosed patients

Patient #2: Suspected genetic disease

- Hypoglycemia
- Failure to thrive
- ????
- Enlarged liver
- Developmental delay

Patient #3 C

CFTR L206W/L206W

- Chronic sinusitis
- Chronic cough/wheeze
- Bronchiectasis

Patient #4

DRC1 Q118*/Q118

- Otitis media
- Recurrent pneumonia
- Bronchiectasis

CYSTIC FIBROSIS; CF

INHERITANCE

- Autosomal recessive

GROWTH	HPO		Phecodes				
Other							
- Failure to thrive	► 1508		264.2	Failure to thrive1.62			
CARDIOVASCULAR							
Heart							
- Cor pulmonale	▶ 1648	>	415.1	Acute pulmonary heart disease1.49			
RESPIRATORY							
Airways							
- Chronic bronchopulmonary infection	▶ 6538	→	483	Acute bronchitis & bronchiolitis1.00			
- Bronchiectasis	▶ 2110		496.3	Bronchiectasis1.80			
- Asthma	▶ 2099	→	495	Asthma0.98			
- Pulmonary blebs	► _		-				
- Pseudomonas colonization	▶ -		-				
ABDOMEN							
Pancreas							
- Pancreatic insufficiency in 80%	► 1738	>	577	Diseases of pancreas1.42			
Biliary Tract							
- Biliary cirrhosis	▶ 2613	>	571.6	Primary biliary cirrhosis2.06			

Do diagnosed patients have higher phenotype risk scores?

You can differentiate a group individuals diagnosed with a disease using **only the features** of the disease

Hypothesis free

Hypothesis driven

If a variant in gene X is linked to a phenotypic pattern, other variants in gene X will produce a similar pattern.

Application #1: Variant interpretation

Gene	Variant	dbSNP	HOM/ HET	Associated Mendelian Disease	OMIM Reported inheritance	Phenotype categories in PRS	Beta	Р	ClinVar	HGMD
CFTR	c.1624G>T p.Gly542Ter	rs113993959	1/27	Cystic fibrosis	AR		1.39	2.9×10 ⁻⁸	Р	Y
CHRNA4	c.1448G>A p.Arg483GIn	rs55855125	1/21	Nocturnal frontal lobe epilepsy, 1	AD		0.58	9.0×10 ⁻⁸	U	
DGKE	c.966G>A p.Trp322Ter	rs138924661	1/14	Nephrotic syndrome, type 7	AR		1.31	2.8×10 ⁻⁷	LP	Y
SUOX	c.228G>T p.Arg76Ser	rs202085145	0/24	Sulfocysteinuria	AR		0.82	1.7×10 ⁻⁶	U	
CFTR	c.1657C>T p.Arg553Ter	rs74597325	0/12	Cystic fibrosis	AR		1.81	2.1×10 ⁻⁶	Р	Y
KIF1B	c.2021C>T p.Thr674lle	rs41274468	0/21	Charcot-Marie-Tooth disease, 2A1	AD		0.79	5.3×10 ⁻⁶		
VWF	c.5851A>G p.Thr1951Ala	rs144072210	0/21	Von Willebrand disease	AR*		0.53	8.6×10 ⁻⁶		Y
KIF1A	c.2676C>T p.Ala993=	rs116297894	1/25	Spastic paraplegia-30	AR		0.84	1.3×10⁻⁵	LB	
F10	c.872G>A p.Arg291GIn	rs149212700	0/15	Factor X deficiency	AR*		0.62	1.9×10⁻⁵		
HFE	c.502G>C p.Glu168Gln	rs146519482	0/40	Hemochromatosis	AR		1.08	4.0×10 ⁻⁵	U	Y
TG	c.229G>A p.Gly77Ser	rs142698837	0/69	Thyroid dyshormonogenesis	AR		0.26	6.0×10 ⁻⁵		Y
SH2B3	c.1183G>A p.Glu395Lys	rs148636776	0/22	Familial erythrocytosis, 1	AD		1.48	6.1×10 ⁻⁵		
SPTBN2	c.7109G>A p.Arg2370His	rs145522851	0/11	Spinocerebellar ataxia	AR*		0.75	9.0×10 ⁻⁵		
FAN1	c.1520G>A p.Arg507His	rs150393409	0/434	Interstitial nephritis, karyomegalic	AR		0.15	9.9×10 ⁻⁵		
PANK2	c.1561G>A p.Gly521Arg	rs137852959	0/26	HARP syndrome	AR		0.58	1.1×10 ⁻⁴	Р	Y
SH2B3	c.1183G>A p.Glu395Lys	rs148636776	0/22	Essential thrombocythemia	AD		0.33	1.4×10 ⁻⁴		
AGXT	c.883G>A p.Ala295Thr	rs13408961	1/35	Primary hyperoxaluria, type I	AR		0.82	1.7×10 ⁻⁴	U/LB	
PLCG2	c.751A>G p.lle251Val	rs190840748	0/10	Familial cold autoinflammaroty syn. 3	AD		0.70	1.9×10 ⁻⁴		

Application #2: WES interpretation

Proband phenotype Clinical symptoms and physical findings GROWTH PARAMETERS CARDIOVASCULAR GASTROINTESTINAL Gastroesophageal reflux GENITOURINARY BEHAVIOR, COGNITION AND DEVELOPMENT DIGESTIVE SYSTEM Hepatomegaly 573.3 METABOLISM/HOMEOSTASIS

Candidate variants

eterozygous	variants					
Gene	Chr Position rs#	Change	Effect	Proband	Mother (Unaff)	Father (Unaff)
COL9A1 NM_001851.4	chr6	$A \rightarrow T$		•0	00	•0
	70991091	c.876+2T>A	splice donor			
	rs149830493		10.322.7			
ELN NM_000501	chr7	$G \to A$		•0	00	•0
	73470684	c.1234G>A	missense			
	rs375116795	p.Gly412Arg				
	chr18	T→C		•0	00	•0
PIGN NM 012327	59757754	c.2238A>G	missense			
012027	rs200658159	p.lle746Met				
POLG NM_002693.2	chr15	$G \rightarrow C$		•0	00	•0
	89872002	c.1084C>G	missense			
	rs763248358	p.Leu362Val				
	chr3	$C \rightarrow T$		•0	•0	00
RFT1 NM_052859.3	53140879	c.782G>A	missense			
	rs374781452	p.Arg261Gln				

Application #3: Finding undiagnosed patients?

- Approach: Use the wealth of knowledge already generated.
- Utility: Which diseases are most important to diagnose?
- Scope: Which diseases are most likely undiagnosed? This may change as knowledge of pathogic variants increases

The valley of improbability

Acknowledgements

VANDERBILT VUNIVERSITY MEDICAL CENTER

