Gail P. Jarvik, M.D., Ph.D.

Arno G. Motulsky Endowed Chair Medicine and Genome Sciences Head, Medical Genetics University of Washington

"Genomic medicine must **NOT** become the responsibility of primary care providers"

Lack of Medical Student Genetics Training

Genetics

		Generics								
						is <i>part</i> of				
Academic Year 2018 – 2019						34 days				
	Medicine	Δutumn W	int	er, and Spring		_ _				
	DL OF MEDICINE	•		ci, and opinig						
Jenoc		Quarters								
2 w k	9/4-10/19, 2018 1 v F	10/29-12/14, 2018 (3 w k	1/2-3/8, 2019	1 1 w w k I	1 3/25 – 5/3/2019 v <	1 5/13/19- w 5/24/19 k	5/28-6/14/19		
	Molecular & Cellular Basis of Disease	Invaders & Defenders		Circulatory Systems (CPR)		Energetics & Homeostasis	MSK	Blood & Cancer		
Immersion, Foundations of Clinical Medicine & Orientation, Sea. 8/20-8/30/18	 Cell Physiology & Function Genes, Molecules, and Signaling Genetic Diseases 	 Inflammation & Repair Skin 	Winter Break (12/17/18 – 1/1/19)	 Cardiovascular System Respiratory System Renal-Urinary System Multisystem Fluid Balance 	Spring Brea	 Metabolism & Nutrition Obesity & Diabetes Gastrointestinal Physiology Endocrinology 	 Musculo- skeletal Systems: Anatomy & Function Rheuma- tologic Diseases Human Form & Function* Pathology/ Histology Pharma- cology 	 Cancers Heme/ Lymph 		
	Human Form & Function* Pathology/Histology Pharmacology Themes [†]			Pharmacology	(3/11/19 – 3/15/19)	Human Form & Function* Pathology/Histology Pharmacology		Human Form & Function* Pathology/ Histology Pharmacology		
icine	Themes [†]	Themes [†]	J	Themes [†]		Themes [†]	79 Themes [†]	Themes [†]		
	Foundations of Clinical Medicine [‡]	Foundations of Clinical Medicine [‡]		Foundations of Clinical Medicine [‡]		Foundations of Clinical Medicine [‡]		ons of Clinical edicine [‡]		

What do you need to know?

- Thousands of genetic diseases; where to get reliable information
- Who needs or does not need genetic testing?
- Test affected first
- Explain the test and possible outcomes (including VUS, IF)
- Test limits and follow-up intervals
- Genetic test preauthorization
- Management changes
- Implications for the family

\$50,000,000 award

- Known unbalanced translocation in family
- Valley Medical Center in Renton, WA. No genetic counselor or medical geneticist involved (Valley had reduced GC staff)
- Sent prenatal test, but did not specify the known condition in family (Lab did not f/u)
- Test missed unbalanced fetus
- Will need lifetime 24/7 care

Physician knowledge of clinical implications of VUS

- Mayo clinic FL, 92/488 nongenticists responded to survey.
- Asked 3 multiple choice questions about variants of uncertain significance (VUS)
- VUS detected over 30% of the time when a 25 gene panel is ordered to assess cancer susceptibility (PMID: 4872307)
- Over half of the physicians stated that they did not feel comfortable disclosing a VUS to a patient

PMID: 29721668

Physician response to case examples

Percentage of OB/GYN residents selecting each answer to pretest questions regarding hereditary breast-ovarian cancer (N=65)

Question		Answer (%) ^a				
	Yes	No	Unsu	ure		
Are the following features associated with HBOC						
Early age of cancer onset		92 ^b	3	5		
Dominant inheritance pattern		51	31	19		
Recessive inheritance pattern		30	35	28		
More than 1 primary cancer		83	5	8		
Can be inherited from the father's side of the family		62	14	25		
Can be inherited from the mother's side of the family		91	2	8		
Bilateral breast cancer		77	8	14		
Are the following cancers associated with HBOC						
Ovarian		97	0	3		
Lung		2	82	14		
Breast		<i>99</i>	0	2		
Endometrial		29	52	19		
Colorectal		51	30	20		
Cervix		0	85	12		

^aSome totals do not equal 100% because not all participants answered the question ^bBold and italic text indicates the percentage who answered the question correctly

Ready, K. J., Daniels, M. S., Sun, C. C., Peterson, S. K., Northrup, H., and Lu, K. H. (2010) Obstetrics/Gynecology residents' knowledge of hereditary breast and ovarian cancer and Lynch Syndrome. *Journal of Cancer Education* 25:401-404. doi: 10.1007/s13187-010-0063-4 PMID: 20186516

Table 1 Physician responses to questions about BRCA1 and 2 mutations, by specialty and practice characteristics

Suppose you had a patient whose aunt or grandmother on her father's side carries the BRCA1 gene mutation for breast/ovarian cancer syndrome. In your opinion, could your patient also be a carrier of this mutation?*

In your opinion, what percentage of female breast cancer patients have a BRCA1 or BRCA2 gene mutation?*

Characteristics	Yes (%)	No (%)	Not sure (%)	OR†	95% CI	<10 (%)	10- 100 (%)	Not sure (%)	OR‡	95% CI
Total	37.5	10.6	49.0			33.8	27.4	36.7		
Medical specialty										
Family/general practice	28.1	10.8	58.0	1.0	-	21.8	26.7	49.1	1.0	-
Internal medicine	37.3	11.3	47.7	1.3	0.9 to 1.8	29.5	30.8	36.6	1.4	0.9 to 2.0
Obstetricians/gynaecologist	51.9	11.9	34.4	2.0	1.3 to 3.0	53.6	29.3	16.5	3.0	1.9 to 4.6
Oncologists	66.8	7.6	21.8	3.4	2.2 to 5.3	71.0	21.5	4.2	5.7	3.6 to 9.0
General surgeons	45.0	13.7	38.8	1.7	1.1 to 2.7	57.8	20.5	20.9	4.6	2.9 to 7.4
Gastroenterologists	24.8	6.7	68.5	0.6	0.3 to 1.4	22.4	19.9	57.9	0.9	0.4 to 2.2
Age										
≥60	37.3	5.8	53.4	1.0	-	28.7	19.7	49.2	1.0	-
40-59	36.7	11.6	48.5	0.9	0.6 to 1.3	34.7	27.5	35.6	1.4	0.9 to 2.0
<40	40.2	11.0	46.6	1.1	0.7 to 1.8	34.8	33.7	29.8	1.6	0.9 to 2.6
Cancer genetics services provided	l in past 12	months								
None	33.3	9.2	54.5	1.0	-	27.6	28.3	41.8	1.0	-
Did not order breast/ovarian	45.3	12.6	40.6	1.2	0.8 to 1.6	45.2	27.5	26.4	1.4	1.0 to 1.9
cancer genetics tests, but did										
order other cancer genetics										
tests or referred patients										
elsewhere for testing or risk										
assessment										
Ordered breast/ovarian tests	54.6	17.0	25.0	1.6	0.8 to 3.3	55.8	21.3	19.5	2.3	1.1 to 4.7
but did not refer patients										
elsewhere										
Both ordered a breast/ovarian	49.0	16.6	24.3	1.4	0.6 to 3.6	58.5	18.8	17.7	2.1	0.9 to 5.4
test and referred patients										
elsewhere										
Local facilities for genetic counsel	ling and tes	ting for inherit	ed cancer ri	sk						
No	43.2	13.0	40.5	1.0	-	33.6	37.0	28.8	1.0	-
Yes	41.6	9.5	48.3	1.0	0.6 to 1.4	43.9	28.1	26.2	1.2	0.8 to 1.9
Not sure	28.6	7.7	61.4	0.7	0.4 to 1.0	20.6	24.4	52.7	0.6	0.4 to 1.0
Clear guidelines or strategies are	not availab	le for managin	g patients	with inherite	ed cancer suscept	fibility mutati	ions			
Agreed with statement,	40.8	12.4	45.9	1.0	-	37.1	31.1	31.6	1.0	-
somewhat or strongly										
Disagreed, somewhat or	42.1	6.5	47.5	1.1	0.7 to 1.7	39.9	26.4	33.7	1.0	0.6 to 1.6
strongly										
Not sure	22.7	5.4	72.0	0.5	0.3 to 0.8	17.1	13.1	69.1	0.5	0.3 to 0.8
Received cancer genetic test adve	rtising									
No or not sure				1.0	-	29.3	26.8	41.8	1.0	-
Yes				1.3	0.9 to 1.8	45.7	29.8	23.7	1.2	0.8 to 1.6
Academic affiliation										
No	36.6	9.8	51.0	1.0	-	31.8	26.3	40.0	1.0	-
Yes	39.8	11.9	45.3	1.0	0.8 to 1.3	37.4	30.0	31.1	1.0	0.7 to 1.3
Specialties in the practice										
Single specialty	36.9	10.9	49.3	1.0	-	33.9	27.0	37.2	1.0	-
Multispecialty	40.8	9.9	47.6	1.1	0.8 to 1.6	34.8	29.4	34.9	0.9	0.6 to 1.4
Practice arrangement						00				
Full or part owner	37.6	10.1	49.6	1.0	-	33.7	26.6	37.4	1.0	-
Employee of physician	38.0	11.0	48.5	1.0	0.8 to 1.4	33.9	28.4	36.5	1.1	0.8 to 1.6
practice, HMO, hospital,	00.0				0.0 10 1.4					
university, or clinic										
chine any, or chine										

Practicing Physician Responses on BRCA1/2

Year 2000 N=1251

*Unadjusted percentages representing physician responses are weighted to the U.S. population of physicians in the selected specialties. Row percentages may not add to 100% due to nonresponse to some items.

Wideroff, L., Vadaparampil, S. T., Greene, M. H., Taplkin, S., Olson, L., & Freedman, A. N. (2005). Hereditary breast/ovarian and colorectal cancer genetics knowledge in a national sample of US physicians. *J Med Genet*, *42*, 749-755. doi: 10.1136/jmg.2004.030296

A 2018 case

A patient with several teenage children was found to have a BRCA pathogenic variant by COLOR testing sent by her oncologist. She reports that she requested testing for her children and was told "we do not test children". No explanation was given.

The patient sent COLOR testing on her children. Only after that did she learn that her children' health care management would not change until the age of 25 and that life, disability, and long term care insurance are not protected by GINA.

GC only patients: cost effective

- In general, no exam needed or diagnosis issue
- familial cancer;
- cardiac genetics
- neurodegenerative conditions (including offering presymptomatic testing);
- chromosomal abnormalities;
- multiple miscarriage;
- single-gene disorders including hemoglobinopathy, cystic fibrosis, metabolic disorders, hemachromatosis disease;
- counselling for neural tube defect, advanced maternal age, or abnormal prenatal screening results
- test results
- "Practice at the top of your license". GC salary ~1/2 to 1/3 of MD.

GCs assisted review of genetic tests cases sent in to ARUP.

			Number of Tests
Month in 2010	Co	st Savings	Changed
February	\$	23,347	72
March		24,330	74
April		48,235	119
May		23,607	105
June		35,779	98
July		31,925	99
August		38,432	110
September		43,207	117
October		38,656	122
November		56,510	149
December		31,928	110
Total	\$	395,956	1175
Average per month	\$	35,996	107

Miller, C. E., Krautscheid, P., Baldwin, E. E., LaGrave, D., Openshaw, A., Hart, K., & Tvrdik, T. (2011). Value of genetic counselors in the laboratory. ARUP Laboratories, Salt Lake City, UT.

GC shortage

- Genetic counseling jobs go unfilled and the demand is growing
 - Anticipated national annual growth rate for jobs in genetic counseling is 30%.
 - Rural areas are underserved (e.g. Eastern and Southwestern WA, Skagit Valley, and the Peninsula).
 - Careers span a range of settings including clinical, industry, research & policy.
- There are not enough training programs
 - On average, there are over 107 applicants for every 8 new GC student slots.
 - In 2017 there were 41 GC programs in the USA (now~60)
 - 354 students matriculated in 2017, which did not meet the national need of over 500.
- It is easier to fix this than train MDs.

Commentary —What the Physician Needs to Know About Lynch Syndrome: An Update

- Stephen B. Gruber, MD, PhD, MPH; Joanne M. Jeter, MD; Julie A. Douglas, PhD Cancer Network Vol 9: Issue 4
- "The authors appropriately emphasize the "absolute necessity" of genetic counseling before and after testing; such counseling is critical to the care and management of patients and families at risk for hereditary cancer."

Conclusions

- Medical Geneticists and GCs spend 2 years training in genetics, vs. weeks for other physicians
- Genetics is rapidly changing, which is poorly suited to primary care practice
 - Testing is particularly rapidly changing
- Physicians are not adequately trained for the most simple case in adult genetics, BRCA1/2
 - They do not understand the basics of inheritance
- Many tasks of genetics clinics are not suited to other MDs
 - Pre-auth, test limitations, inheritance pattern
 - Lack of compensation for these harms interest
- GCs can be cost effective, relative to MDs
 - Train more!

	Ber	nign	Pathogenic					
	Strong	Supporting	Supporting	Moderate	Strong	Very Strong		
Population Data	MAF is too high for disorder <i>BA1/BS1</i> OR observation in controls inconsistent with disease penetrance <i>BS2</i>			Absent in population databases <i>PM2</i>	Prevalence in affecteds statistically increased over controls <i>PS4</i>	y		
Computational And Predictive Data		Multiple lines of computational evidence suggest no impact <i>BP4</i> Missense when only truncating cause disease <i>BP1</i> Silent variant with non predicted splice impact <i>BP7</i> In-frame indels in repeat w/out known function <i>BP3</i>	Multiple lines of computational evidence support a deleterious effect on the gene /gene product <i>PP3</i>	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before <i>PM5</i> Protein length changing variant <i>PM4</i>	Same amino acid change as an established pathogenic variant <i>PS1</i>	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1		
Functional Data	Well-established functional studies show no deleterious effect <i>BS3</i>		Missense in gene with low rate of benign missense variants and path. missenses common <i>PP2</i>	Mutational hot spot or well-studied functional domain without benign variation <i>PM1</i>	Well-established functional studies show a deleterious effect <i>PS3</i>			
Segregation Data	Non-segregation with disease <i>BS4</i>		$N \le 1/8$ if 1 family $N \le 1/4$ if > 1 family	N <u><</u> 1/16 if 1 family N <u><</u> 1/8 if >1 family	N <u>< 1</u> /32 if 1 family N <u>< 1</u> /16 if > 1 fami	ly		
De novo Data				<i>De novo</i> (without paternity & maternity confirmed) <i>PM6</i>	De novo (paternity & maternity confirmed PS2			
Allelic Data		Observed in <i>trans</i> with a dominant variant <i>BP2</i> Observed in <i>cis</i> with a pathogenic variant <i>BP2</i>		For recessive disorders, detected in <i>trans</i> with a pathogenic variant <i>PM3</i>				
Other Database		Reputable source w/out shared data = benign <i>BP6</i>	Reputable source = pathogenic PP5	Jarvik GP and Browning B AJHG 2016, PMID: 27236918		ning BL,		
Other Data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4					